1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for loops with run-time 11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 12 // trip counts. 13 // 14 // The functions in this file are used to generate extra code when the 15 // run-time trip count modulo the unroll factor is not 0. When this is the 16 // case, we need to generate code to execute these 'left over' iterations. 17 // 18 // The current strategy generates an if-then-else sequence prior to the 19 // unrolled loop to execute the 'left over' iterations before or after the 20 // unrolled loop. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/Utils/UnrollLoop.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/LoopIterator.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionExpander.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Scalar.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/Cloning.h" 40 #include <algorithm> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-unroll" 45 46 STATISTIC(NumRuntimeUnrolled, 47 "Number of loops unrolled with run-time trip counts"); 48 49 /// Connect the unrolling prolog code to the original loop. 50 /// The unrolling prolog code contains code to execute the 51 /// 'extra' iterations if the run-time trip count modulo the 52 /// unroll count is non-zero. 53 /// 54 /// This function performs the following: 55 /// - Create PHI nodes at prolog end block to combine values 56 /// that exit the prolog code and jump around the prolog. 57 /// - Add a PHI operand to a PHI node at the loop exit block 58 /// for values that exit the prolog and go around the loop. 59 /// - Branch around the original loop if the trip count is less 60 /// than the unroll factor. 61 /// 62 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 63 BasicBlock *PrologExit, BasicBlock *PreHeader, 64 BasicBlock *NewPreHeader, ValueToValueMapTy &VMap, 65 DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) { 66 BasicBlock *Latch = L->getLoopLatch(); 67 assert(Latch && "Loop must have a latch"); 68 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 69 70 // Create a PHI node for each outgoing value from the original loop 71 // (which means it is an outgoing value from the prolog code too). 72 // The new PHI node is inserted in the prolog end basic block. 73 // The new PHI node value is added as an operand of a PHI node in either 74 // the loop header or the loop exit block. 75 for (BasicBlock *Succ : successors(Latch)) { 76 for (Instruction &BBI : *Succ) { 77 PHINode *PN = dyn_cast<PHINode>(&BBI); 78 // Exit when we passed all PHI nodes. 79 if (!PN) 80 break; 81 // Add a new PHI node to the prolog end block and add the 82 // appropriate incoming values. 83 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 84 PrologExit->getFirstNonPHI()); 85 // Adding a value to the new PHI node from the original loop preheader. 86 // This is the value that skips all the prolog code. 87 if (L->contains(PN)) { 88 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), 89 PreHeader); 90 } else { 91 NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 92 } 93 94 Value *V = PN->getIncomingValueForBlock(Latch); 95 if (Instruction *I = dyn_cast<Instruction>(V)) { 96 if (L->contains(I)) { 97 V = VMap.lookup(I); 98 } 99 } 100 // Adding a value to the new PHI node from the last prolog block 101 // that was created. 102 NewPN->addIncoming(V, PrologLatch); 103 104 // Update the existing PHI node operand with the value from the 105 // new PHI node. How this is done depends on if the existing 106 // PHI node is in the original loop block, or the exit block. 107 if (L->contains(PN)) { 108 PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN); 109 } else { 110 PN->addIncoming(NewPN, PrologExit); 111 } 112 } 113 } 114 115 // Make sure that created prolog loop is in simplified form 116 SmallVector<BasicBlock *, 4> PrologExitPreds; 117 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 118 if (PrologLoop) { 119 for (BasicBlock *PredBB : predecessors(PrologExit)) 120 if (PrologLoop->contains(PredBB)) 121 PrologExitPreds.push_back(PredBB); 122 123 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 124 PreserveLCSSA); 125 } 126 127 // Create a branch around the original loop, which is taken if there are no 128 // iterations remaining to be executed after running the prologue. 129 Instruction *InsertPt = PrologExit->getTerminator(); 130 IRBuilder<> B(InsertPt); 131 132 assert(Count != 0 && "nonsensical Count!"); 133 134 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 135 // This means %xtraiter is (BECount + 1) and all of the iterations of this 136 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 137 // then (BECount + 1) cannot unsigned-overflow. 138 Value *BrLoopExit = 139 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 140 BasicBlock *Exit = L->getUniqueExitBlock(); 141 assert(Exit && "Loop must have a single exit block only"); 142 // Split the exit to maintain loop canonicalization guarantees 143 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 144 SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI, 145 PreserveLCSSA); 146 // Add the branch to the exit block (around the unrolled loop) 147 B.CreateCondBr(BrLoopExit, Exit, NewPreHeader); 148 InsertPt->eraseFromParent(); 149 } 150 151 /// Connect the unrolling epilog code to the original loop. 152 /// The unrolling epilog code contains code to execute the 153 /// 'extra' iterations if the run-time trip count modulo the 154 /// unroll count is non-zero. 155 /// 156 /// This function performs the following: 157 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 158 /// - Create PHI nodes at the unrolling loop exit to combine 159 /// values that exit the unrolling loop code and jump around it. 160 /// - Update PHI operands in the epilog loop by the new PHI nodes 161 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 162 /// 163 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 164 BasicBlock *Exit, BasicBlock *PreHeader, 165 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 166 ValueToValueMapTy &VMap, DominatorTree *DT, 167 LoopInfo *LI, bool PreserveLCSSA) { 168 BasicBlock *Latch = L->getLoopLatch(); 169 assert(Latch && "Loop must have a latch"); 170 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 171 172 // Loop structure should be the following: 173 // 174 // PreHeader 175 // NewPreHeader 176 // Header 177 // ... 178 // Latch 179 // NewExit (PN) 180 // EpilogPreHeader 181 // EpilogHeader 182 // ... 183 // EpilogLatch 184 // Exit (EpilogPN) 185 186 // Update PHI nodes at NewExit and Exit. 187 for (Instruction &BBI : *NewExit) { 188 PHINode *PN = dyn_cast<PHINode>(&BBI); 189 // Exit when we passed all PHI nodes. 190 if (!PN) 191 break; 192 // PN should be used in another PHI located in Exit block as 193 // Exit was split by SplitBlockPredecessors into Exit and NewExit 194 // Basicaly it should look like: 195 // NewExit: 196 // PN = PHI [I, Latch] 197 // ... 198 // Exit: 199 // EpilogPN = PHI [PN, EpilogPreHeader] 200 // 201 // There is EpilogPreHeader incoming block instead of NewExit as 202 // NewExit was spilt 1 more time to get EpilogPreHeader. 203 assert(PN->hasOneUse() && "The phi should have 1 use"); 204 PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser()); 205 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 206 207 // Add incoming PreHeader from branch around the Loop 208 PN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 209 210 Value *V = PN->getIncomingValueForBlock(Latch); 211 Instruction *I = dyn_cast<Instruction>(V); 212 if (I && L->contains(I)) 213 // If value comes from an instruction in the loop add VMap value. 214 V = VMap.lookup(I); 215 // For the instruction out of the loop, constant or undefined value 216 // insert value itself. 217 EpilogPN->addIncoming(V, EpilogLatch); 218 219 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 220 "EpilogPN should have EpilogPreHeader incoming block"); 221 // Change EpilogPreHeader incoming block to NewExit. 222 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 223 NewExit); 224 // Now PHIs should look like: 225 // NewExit: 226 // PN = PHI [I, Latch], [undef, PreHeader] 227 // ... 228 // Exit: 229 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 230 } 231 232 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 233 // Update corresponding PHI nodes in epilog loop. 234 for (BasicBlock *Succ : successors(Latch)) { 235 // Skip this as we already updated phis in exit blocks. 236 if (!L->contains(Succ)) 237 continue; 238 for (Instruction &BBI : *Succ) { 239 PHINode *PN = dyn_cast<PHINode>(&BBI); 240 // Exit when we passed all PHI nodes. 241 if (!PN) 242 break; 243 // Add new PHI nodes to the loop exit block and update epilog 244 // PHIs with the new PHI values. 245 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 246 NewExit->getFirstNonPHI()); 247 // Adding a value to the new PHI node from the unrolling loop preheader. 248 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader); 249 // Adding a value to the new PHI node from the unrolling loop latch. 250 NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch); 251 252 // Update the existing PHI node operand with the value from the new PHI 253 // node. Corresponding instruction in epilog loop should be PHI. 254 PHINode *VPN = cast<PHINode>(VMap[&BBI]); 255 VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN); 256 } 257 } 258 259 Instruction *InsertPt = NewExit->getTerminator(); 260 IRBuilder<> B(InsertPt); 261 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 262 assert(Exit && "Loop must have a single exit block only"); 263 // Split the exit to maintain loop canonicalization guarantees 264 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 265 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, 266 PreserveLCSSA); 267 // Add the branch to the exit block (around the unrolling loop) 268 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 269 InsertPt->eraseFromParent(); 270 } 271 272 /// Create a clone of the blocks in a loop and connect them together. 273 /// If CreateRemainderLoop is false, loop structure will not be cloned, 274 /// otherwise a new loop will be created including all cloned blocks, and the 275 /// iterator of it switches to count NewIter down to 0. 276 /// The cloned blocks should be inserted between InsertTop and InsertBot. 277 /// If loop structure is cloned InsertTop should be new preheader, InsertBot 278 /// new loop exit. 279 /// 280 static void CloneLoopBlocks(Loop *L, Value *NewIter, 281 const bool CreateRemainderLoop, 282 const bool UseEpilogRemainder, 283 BasicBlock *InsertTop, BasicBlock *InsertBot, 284 BasicBlock *Preheader, 285 std::vector<BasicBlock *> &NewBlocks, 286 LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, 287 LoopInfo *LI) { 288 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 289 BasicBlock *Header = L->getHeader(); 290 BasicBlock *Latch = L->getLoopLatch(); 291 Function *F = Header->getParent(); 292 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 293 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 294 Loop *NewLoop = nullptr; 295 Loop *ParentLoop = L->getParentLoop(); 296 if (CreateRemainderLoop) { 297 NewLoop = new Loop(); 298 if (ParentLoop) 299 ParentLoop->addChildLoop(NewLoop); 300 else 301 LI->addTopLevelLoop(NewLoop); 302 } 303 304 NewLoopsMap NewLoops; 305 NewLoops[L] = NewLoop; 306 // For each block in the original loop, create a new copy, 307 // and update the value map with the newly created values. 308 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 309 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 310 NewBlocks.push_back(NewBB); 311 312 if (NewLoop) { 313 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 314 } else if (ParentLoop) 315 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 316 317 VMap[*BB] = NewBB; 318 if (Header == *BB) { 319 // For the first block, add a CFG connection to this newly 320 // created block. 321 InsertTop->getTerminator()->setSuccessor(0, NewBB); 322 } 323 324 if (Latch == *BB) { 325 // For the last block, if CreateRemainderLoop is false, create a direct 326 // jump to InsertBot. If not, create a loop back to cloned head. 327 VMap.erase((*BB)->getTerminator()); 328 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 329 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 330 IRBuilder<> Builder(LatchBR); 331 if (!CreateRemainderLoop) { 332 Builder.CreateBr(InsertBot); 333 } else { 334 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 335 suffix + ".iter", 336 FirstLoopBB->getFirstNonPHI()); 337 Value *IdxSub = 338 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 339 NewIdx->getName() + ".sub"); 340 Value *IdxCmp = 341 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 342 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 343 NewIdx->addIncoming(NewIter, InsertTop); 344 NewIdx->addIncoming(IdxSub, NewBB); 345 } 346 LatchBR->eraseFromParent(); 347 } 348 } 349 350 // Change the incoming values to the ones defined in the preheader or 351 // cloned loop. 352 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 353 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 354 if (!CreateRemainderLoop) { 355 if (UseEpilogRemainder) { 356 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 357 NewPHI->setIncomingBlock(idx, InsertTop); 358 NewPHI->removeIncomingValue(Latch, false); 359 } else { 360 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 361 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 362 } 363 } else { 364 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 365 NewPHI->setIncomingBlock(idx, InsertTop); 366 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 367 idx = NewPHI->getBasicBlockIndex(Latch); 368 Value *InVal = NewPHI->getIncomingValue(idx); 369 NewPHI->setIncomingBlock(idx, NewLatch); 370 if (Value *V = VMap.lookup(InVal)) 371 NewPHI->setIncomingValue(idx, V); 372 } 373 } 374 if (NewLoop) { 375 // Add unroll disable metadata to disable future unrolling for this loop. 376 SmallVector<Metadata *, 4> MDs; 377 // Reserve first location for self reference to the LoopID metadata node. 378 MDs.push_back(nullptr); 379 MDNode *LoopID = NewLoop->getLoopID(); 380 if (LoopID) { 381 // First remove any existing loop unrolling metadata. 382 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 383 bool IsUnrollMetadata = false; 384 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 385 if (MD) { 386 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 387 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 388 } 389 if (!IsUnrollMetadata) 390 MDs.push_back(LoopID->getOperand(i)); 391 } 392 } 393 394 LLVMContext &Context = NewLoop->getHeader()->getContext(); 395 SmallVector<Metadata *, 1> DisableOperands; 396 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 397 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 398 MDs.push_back(DisableNode); 399 400 MDNode *NewLoopID = MDNode::get(Context, MDs); 401 // Set operand 0 to refer to the loop id itself. 402 NewLoopID->replaceOperandWith(0, NewLoopID); 403 NewLoop->setLoopID(NewLoopID); 404 } 405 } 406 407 /// Insert code in the prolog/epilog code when unrolling a loop with a 408 /// run-time trip-count. 409 /// 410 /// This method assumes that the loop unroll factor is total number 411 /// of loop bodies in the loop after unrolling. (Some folks refer 412 /// to the unroll factor as the number of *extra* copies added). 413 /// We assume also that the loop unroll factor is a power-of-two. So, after 414 /// unrolling the loop, the number of loop bodies executed is 2, 415 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 416 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 417 /// the switch instruction is generated. 418 /// 419 /// ***Prolog case*** 420 /// extraiters = tripcount % loopfactor 421 /// if (extraiters == 0) jump Loop: 422 /// else jump Prol: 423 /// Prol: LoopBody; 424 /// extraiters -= 1 // Omitted if unroll factor is 2. 425 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 426 /// if (tripcount < loopfactor) jump End: 427 /// Loop: 428 /// ... 429 /// End: 430 /// 431 /// ***Epilog case*** 432 /// extraiters = tripcount % loopfactor 433 /// if (tripcount < loopfactor) jump LoopExit: 434 /// unroll_iters = tripcount - extraiters 435 /// Loop: LoopBody; (executes unroll_iter times); 436 /// unroll_iter -= 1 437 /// if (unroll_iter != 0) jump Loop: 438 /// LoopExit: 439 /// if (extraiters == 0) jump EpilExit: 440 /// Epil: LoopBody; (executes extraiters times) 441 /// extraiters -= 1 // Omitted if unroll factor is 2. 442 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 443 /// EpilExit: 444 445 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, 446 bool AllowExpensiveTripCount, 447 bool UseEpilogRemainder, 448 LoopInfo *LI, ScalarEvolution *SE, 449 DominatorTree *DT, bool PreserveLCSSA) { 450 // for now, only unroll loops that contain a single exit 451 if (!L->getExitingBlock()) 452 return false; 453 454 // Make sure the loop is in canonical form, and there is a single 455 // exit block only. 456 if (!L->isLoopSimplifyForm()) 457 return false; 458 BasicBlock *Exit = L->getUniqueExitBlock(); // successor out of loop 459 if (!Exit) 460 return false; 461 462 // Use Scalar Evolution to compute the trip count. This allows more loops to 463 // be unrolled than relying on induction var simplification. 464 if (!SE) 465 return false; 466 467 // Only unroll loops with a computable trip count, and the trip count needs 468 // to be an int value (allowing a pointer type is a TODO item). 469 const SCEV *BECountSC = SE->getBackedgeTakenCount(L); 470 if (isa<SCEVCouldNotCompute>(BECountSC) || 471 !BECountSC->getType()->isIntegerTy()) 472 return false; 473 474 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 475 476 // Add 1 since the backedge count doesn't include the first loop iteration. 477 const SCEV *TripCountSC = 478 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 479 if (isa<SCEVCouldNotCompute>(TripCountSC)) 480 return false; 481 482 BasicBlock *Header = L->getHeader(); 483 BasicBlock *PreHeader = L->getLoopPreheader(); 484 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 485 const DataLayout &DL = Header->getModule()->getDataLayout(); 486 SCEVExpander Expander(*SE, DL, "loop-unroll"); 487 if (!AllowExpensiveTripCount && 488 Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) 489 return false; 490 491 // This constraint lets us deal with an overflowing trip count easily; see the 492 // comment on ModVal below. 493 if (Log2_32(Count) > BEWidth) 494 return false; 495 496 BasicBlock *Latch = L->getLoopLatch(); 497 498 // Loop structure is the following: 499 // 500 // PreHeader 501 // Header 502 // ... 503 // Latch 504 // Exit 505 506 BasicBlock *NewPreHeader; 507 BasicBlock *NewExit = nullptr; 508 BasicBlock *PrologExit = nullptr; 509 BasicBlock *EpilogPreHeader = nullptr; 510 BasicBlock *PrologPreHeader = nullptr; 511 512 if (UseEpilogRemainder) { 513 // If epilog remainder 514 // Split PreHeader to insert a branch around loop for unrolling. 515 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 516 NewPreHeader->setName(PreHeader->getName() + ".new"); 517 // Split Exit to create phi nodes from branch above. 518 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 519 NewExit = SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", 520 DT, LI, PreserveLCSSA); 521 // Split NewExit to insert epilog remainder loop. 522 EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI); 523 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 524 } else { 525 // If prolog remainder 526 // Split the original preheader twice to insert prolog remainder loop 527 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 528 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 529 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 530 DT, LI); 531 PrologExit->setName(Header->getName() + ".prol.loopexit"); 532 // Split PrologExit to get NewPreHeader. 533 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 534 NewPreHeader->setName(PreHeader->getName() + ".new"); 535 } 536 // Loop structure should be the following: 537 // Epilog Prolog 538 // 539 // PreHeader PreHeader 540 // *NewPreHeader *PrologPreHeader 541 // Header *PrologExit 542 // ... *NewPreHeader 543 // Latch Header 544 // *NewExit ... 545 // *EpilogPreHeader Latch 546 // Exit Exit 547 548 // Calculate conditions for branch around loop for unrolling 549 // in epilog case and around prolog remainder loop in prolog case. 550 // Compute the number of extra iterations required, which is: 551 // extra iterations = run-time trip count % loop unroll factor 552 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 553 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 554 PreHeaderBR); 555 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 556 PreHeaderBR); 557 IRBuilder<> B(PreHeaderBR); 558 Value *ModVal; 559 // Calculate ModVal = (BECount + 1) % Count. 560 // Note that TripCount is BECount + 1. 561 if (isPowerOf2_32(Count)) { 562 // When Count is power of 2 we don't BECount for epilog case, however we'll 563 // need it for a branch around unrolling loop for prolog case. 564 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 565 // 1. There are no iterations to be run in the prolog/epilog loop. 566 // OR 567 // 2. The addition computing TripCount overflowed. 568 // 569 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 570 // the number of iterations that remain to be run in the original loop is a 571 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 572 // explicitly check this above). 573 } else { 574 // As (BECount + 1) can potentially unsigned overflow we count 575 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 576 Value *ModValTmp = B.CreateURem(BECount, 577 ConstantInt::get(BECount->getType(), 578 Count)); 579 Value *ModValAdd = B.CreateAdd(ModValTmp, 580 ConstantInt::get(ModValTmp->getType(), 1)); 581 // At that point (BECount % Count) + 1 could be equal to Count. 582 // To handle this case we need to take mod by Count one more time. 583 ModVal = B.CreateURem(ModValAdd, 584 ConstantInt::get(BECount->getType(), Count), 585 "xtraiter"); 586 } 587 Value *BranchVal = 588 UseEpilogRemainder ? B.CreateICmpULT(BECount, 589 ConstantInt::get(BECount->getType(), 590 Count - 1)) : 591 B.CreateIsNotNull(ModVal, "lcmp.mod"); 592 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 593 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 594 // Branch to either remainder (extra iterations) loop or unrolling loop. 595 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 596 PreHeaderBR->eraseFromParent(); 597 Function *F = Header->getParent(); 598 // Get an ordered list of blocks in the loop to help with the ordering of the 599 // cloned blocks in the prolog/epilog code 600 LoopBlocksDFS LoopBlocks(L); 601 LoopBlocks.perform(LI); 602 603 // 604 // For each extra loop iteration, create a copy of the loop's basic blocks 605 // and generate a condition that branches to the copy depending on the 606 // number of 'left over' iterations. 607 // 608 std::vector<BasicBlock *> NewBlocks; 609 ValueToValueMapTy VMap; 610 611 // For unroll factor 2 remainder loop will have 1 iterations. 612 // Do not create 1 iteration loop. 613 bool CreateRemainderLoop = (Count != 2); 614 615 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 616 // the loop, otherwise we create a cloned loop to execute the extra 617 // iterations. This function adds the appropriate CFG connections. 618 BasicBlock *InsertBot = UseEpilogRemainder ? Exit : PrologExit; 619 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 620 CloneLoopBlocks(L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop, 621 InsertBot, NewPreHeader, NewBlocks, LoopBlocks, VMap, LI); 622 623 // Insert the cloned blocks into the function. 624 F->getBasicBlockList().splice(InsertBot->getIterator(), 625 F->getBasicBlockList(), 626 NewBlocks[0]->getIterator(), 627 F->end()); 628 629 // Loop structure should be the following: 630 // Epilog Prolog 631 // 632 // PreHeader PreHeader 633 // NewPreHeader PrologPreHeader 634 // Header PrologHeader 635 // ... ... 636 // Latch PrologLatch 637 // NewExit PrologExit 638 // EpilogPreHeader NewPreHeader 639 // EpilogHeader Header 640 // ... ... 641 // EpilogLatch Latch 642 // Exit Exit 643 644 // Rewrite the cloned instruction operands to use the values created when the 645 // clone is created. 646 for (BasicBlock *BB : NewBlocks) { 647 for (Instruction &I : *BB) { 648 RemapInstruction(&I, VMap, 649 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 650 } 651 } 652 653 if (UseEpilogRemainder) { 654 // Connect the epilog code to the original loop and update the 655 // PHI functions. 656 ConnectEpilog(L, ModVal, NewExit, Exit, PreHeader, 657 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 658 PreserveLCSSA); 659 660 // Update counter in loop for unrolling. 661 // I should be multiply of Count. 662 IRBuilder<> B2(NewPreHeader->getTerminator()); 663 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 664 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 665 B2.SetInsertPoint(LatchBR); 666 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 667 Header->getFirstNonPHI()); 668 Value *IdxSub = 669 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 670 NewIdx->getName() + ".nsub"); 671 Value *IdxCmp; 672 if (LatchBR->getSuccessor(0) == Header) 673 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); 674 else 675 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); 676 NewIdx->addIncoming(TestVal, NewPreHeader); 677 NewIdx->addIncoming(IdxSub, Latch); 678 LatchBR->setCondition(IdxCmp); 679 } else { 680 // Connect the prolog code to the original loop and update the 681 // PHI functions. 682 ConnectProlog(L, BECount, Count, PrologExit, PreHeader, NewPreHeader, 683 VMap, DT, LI, PreserveLCSSA); 684 } 685 686 // If this loop is nested, then the loop unroller changes the code in the 687 // parent loop, so the Scalar Evolution pass needs to be run again. 688 if (Loop *ParentLoop = L->getParentLoop()) 689 SE->forgetLoop(ParentLoop); 690 691 NumRuntimeUnrolled++; 692 return true; 693 } 694