xref: /llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp (revision 45c672e20d40be1f6dfc68ff0ee5347c91833d7c)
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities for loops with run-time
10 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
11 // trip counts.
12 //
13 // The functions in this file are used to generate extra code when the
14 // run-time trip count modulo the unroll factor is not 0.  When this is the
15 // case, we need to generate code to execute these 'left over' iterations.
16 //
17 // The current strategy generates an if-then-else sequence prior to the
18 // unrolled loop to execute the 'left over' iterations before or after the
19 // unrolled loop.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
42 #include "llvm/Transforms/Utils/UnrollLoop.h"
43 #include <algorithm>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "loop-unroll"
48 
49 STATISTIC(NumRuntimeUnrolled,
50           "Number of loops unrolled with run-time trip counts");
51 static cl::opt<bool> UnrollRuntimeMultiExit(
52     "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
53     cl::desc("Allow runtime unrolling for loops with multiple exits, when "
54              "epilog is generated"));
55 static cl::opt<bool> UnrollRuntimeOtherExitPredictable(
56     "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden,
57     cl::desc("Assume the non latch exit block to be predictable"));
58 
59 /// Connect the unrolling prolog code to the original loop.
60 /// The unrolling prolog code contains code to execute the
61 /// 'extra' iterations if the run-time trip count modulo the
62 /// unroll count is non-zero.
63 ///
64 /// This function performs the following:
65 /// - Create PHI nodes at prolog end block to combine values
66 ///   that exit the prolog code and jump around the prolog.
67 /// - Add a PHI operand to a PHI node at the loop exit block
68 ///   for values that exit the prolog and go around the loop.
69 /// - Branch around the original loop if the trip count is less
70 ///   than the unroll factor.
71 ///
72 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
73                           BasicBlock *PrologExit,
74                           BasicBlock *OriginalLoopLatchExit,
75                           BasicBlock *PreHeader, BasicBlock *NewPreHeader,
76                           ValueToValueMapTy &VMap, DominatorTree *DT,
77                           LoopInfo *LI, bool PreserveLCSSA) {
78   // Loop structure should be the following:
79   // Preheader
80   //  PrologHeader
81   //  ...
82   //  PrologLatch
83   //  PrologExit
84   //   NewPreheader
85   //    Header
86   //    ...
87   //    Latch
88   //      LatchExit
89   BasicBlock *Latch = L->getLoopLatch();
90   assert(Latch && "Loop must have a latch");
91   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
92 
93   // Create a PHI node for each outgoing value from the original loop
94   // (which means it is an outgoing value from the prolog code too).
95   // The new PHI node is inserted in the prolog end basic block.
96   // The new PHI node value is added as an operand of a PHI node in either
97   // the loop header or the loop exit block.
98   for (BasicBlock *Succ : successors(Latch)) {
99     for (PHINode &PN : Succ->phis()) {
100       // Add a new PHI node to the prolog end block and add the
101       // appropriate incoming values.
102       // TODO: This code assumes that the PrologExit (or the LatchExit block for
103       // prolog loop) contains only one predecessor from the loop, i.e. the
104       // PrologLatch. When supporting multiple-exiting block loops, we can have
105       // two or more blocks that have the LatchExit as the target in the
106       // original loop.
107       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
108                                        PrologExit->getFirstNonPHI());
109       // Adding a value to the new PHI node from the original loop preheader.
110       // This is the value that skips all the prolog code.
111       if (L->contains(&PN)) {
112         // Succ is loop header.
113         NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
114                            PreHeader);
115       } else {
116         // Succ is LatchExit.
117         NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
118       }
119 
120       Value *V = PN.getIncomingValueForBlock(Latch);
121       if (Instruction *I = dyn_cast<Instruction>(V)) {
122         if (L->contains(I)) {
123           V = VMap.lookup(I);
124         }
125       }
126       // Adding a value to the new PHI node from the last prolog block
127       // that was created.
128       NewPN->addIncoming(V, PrologLatch);
129 
130       // Update the existing PHI node operand with the value from the
131       // new PHI node.  How this is done depends on if the existing
132       // PHI node is in the original loop block, or the exit block.
133       if (L->contains(&PN))
134         PN.setIncomingValueForBlock(NewPreHeader, NewPN);
135       else
136         PN.addIncoming(NewPN, PrologExit);
137     }
138   }
139 
140   // Make sure that created prolog loop is in simplified form
141   SmallVector<BasicBlock *, 4> PrologExitPreds;
142   Loop *PrologLoop = LI->getLoopFor(PrologLatch);
143   if (PrologLoop) {
144     for (BasicBlock *PredBB : predecessors(PrologExit))
145       if (PrologLoop->contains(PredBB))
146         PrologExitPreds.push_back(PredBB);
147 
148     SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
149                            nullptr, PreserveLCSSA);
150   }
151 
152   // Create a branch around the original loop, which is taken if there are no
153   // iterations remaining to be executed after running the prologue.
154   Instruction *InsertPt = PrologExit->getTerminator();
155   IRBuilder<> B(InsertPt);
156 
157   assert(Count != 0 && "nonsensical Count!");
158 
159   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
160   // This means %xtraiter is (BECount + 1) and all of the iterations of this
161   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
162   // then (BECount + 1) cannot unsigned-overflow.
163   Value *BrLoopExit =
164       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
165   // Split the exit to maintain loop canonicalization guarantees
166   SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
167   SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
168                          nullptr, PreserveLCSSA);
169   // Add the branch to the exit block (around the unrolled loop)
170   B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
171   InsertPt->eraseFromParent();
172   if (DT) {
173     auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit,
174                                                   PrologExit);
175     DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom);
176   }
177 }
178 
179 /// Connect the unrolling epilog code to the original loop.
180 /// The unrolling epilog code contains code to execute the
181 /// 'extra' iterations if the run-time trip count modulo the
182 /// unroll count is non-zero.
183 ///
184 /// This function performs the following:
185 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
186 /// - Create PHI nodes at the unrolling loop exit to combine
187 ///   values that exit the unrolling loop code and jump around it.
188 /// - Update PHI operands in the epilog loop by the new PHI nodes
189 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
190 ///
191 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
192                           BasicBlock *Exit, BasicBlock *PreHeader,
193                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
194                           ValueToValueMapTy &VMap, DominatorTree *DT,
195                           LoopInfo *LI, bool PreserveLCSSA)  {
196   BasicBlock *Latch = L->getLoopLatch();
197   assert(Latch && "Loop must have a latch");
198   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
199 
200   // Loop structure should be the following:
201   //
202   // PreHeader
203   // NewPreHeader
204   //   Header
205   //   ...
206   //   Latch
207   // NewExit (PN)
208   // EpilogPreHeader
209   //   EpilogHeader
210   //   ...
211   //   EpilogLatch
212   // Exit (EpilogPN)
213 
214   // Update PHI nodes at NewExit and Exit.
215   for (PHINode &PN : NewExit->phis()) {
216     // PN should be used in another PHI located in Exit block as
217     // Exit was split by SplitBlockPredecessors into Exit and NewExit
218     // Basicaly it should look like:
219     // NewExit:
220     //   PN = PHI [I, Latch]
221     // ...
222     // Exit:
223     //   EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil]
224     //
225     // Exits from non-latch blocks point to the original exit block and the
226     // epilogue edges have already been added.
227     //
228     // There is EpilogPreHeader incoming block instead of NewExit as
229     // NewExit was spilt 1 more time to get EpilogPreHeader.
230     assert(PN.hasOneUse() && "The phi should have 1 use");
231     PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
232     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
233 
234     // Add incoming PreHeader from branch around the Loop
235     PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
236 
237     Value *V = PN.getIncomingValueForBlock(Latch);
238     Instruction *I = dyn_cast<Instruction>(V);
239     if (I && L->contains(I))
240       // If value comes from an instruction in the loop add VMap value.
241       V = VMap.lookup(I);
242     // For the instruction out of the loop, constant or undefined value
243     // insert value itself.
244     EpilogPN->addIncoming(V, EpilogLatch);
245 
246     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
247           "EpilogPN should have EpilogPreHeader incoming block");
248     // Change EpilogPreHeader incoming block to NewExit.
249     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
250                                NewExit);
251     // Now PHIs should look like:
252     // NewExit:
253     //   PN = PHI [I, Latch], [undef, PreHeader]
254     // ...
255     // Exit:
256     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
257   }
258 
259   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
260   // Update corresponding PHI nodes in epilog loop.
261   for (BasicBlock *Succ : successors(Latch)) {
262     // Skip this as we already updated phis in exit blocks.
263     if (!L->contains(Succ))
264       continue;
265     for (PHINode &PN : Succ->phis()) {
266       // Add new PHI nodes to the loop exit block and update epilog
267       // PHIs with the new PHI values.
268       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
269                                        NewExit->getFirstNonPHI());
270       // Adding a value to the new PHI node from the unrolling loop preheader.
271       NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
272       // Adding a value to the new PHI node from the unrolling loop latch.
273       NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
274 
275       // Update the existing PHI node operand with the value from the new PHI
276       // node.  Corresponding instruction in epilog loop should be PHI.
277       PHINode *VPN = cast<PHINode>(VMap[&PN]);
278       VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN);
279     }
280   }
281 
282   Instruction *InsertPt = NewExit->getTerminator();
283   IRBuilder<> B(InsertPt);
284   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
285   assert(Exit && "Loop must have a single exit block only");
286   // Split the epilogue exit to maintain loop canonicalization guarantees
287   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
288   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
289                          PreserveLCSSA);
290   // Add the branch to the exit block (around the unrolling loop)
291   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
292   InsertPt->eraseFromParent();
293   if (DT) {
294     auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit);
295     DT->changeImmediateDominator(Exit, NewDom);
296   }
297 
298   // Split the main loop exit to maintain canonicalization guarantees.
299   SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
300   SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
301                          PreserveLCSSA);
302 }
303 
304 /// Create a clone of the blocks in a loop and connect them together. A new
305 /// loop will be created including all cloned blocks, and the iterator of the
306 /// new loop switched to count NewIter down to 0.
307 /// The cloned blocks should be inserted between InsertTop and InsertBot.
308 /// InsertTop should be new preheader, InsertBot new loop exit.
309 /// Returns the new cloned loop that is created.
310 static Loop *
311 CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder,
312                 const bool UnrollRemainder,
313                 BasicBlock *InsertTop,
314                 BasicBlock *InsertBot, BasicBlock *Preheader,
315                 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
316                 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
317   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
318   BasicBlock *Header = L->getHeader();
319   BasicBlock *Latch = L->getLoopLatch();
320   Function *F = Header->getParent();
321   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
322   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
323   Loop *ParentLoop = L->getParentLoop();
324   NewLoopsMap NewLoops;
325   NewLoops[ParentLoop] = ParentLoop;
326 
327   // For each block in the original loop, create a new copy,
328   // and update the value map with the newly created values.
329   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
330     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
331     NewBlocks.push_back(NewBB);
332 
333     addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
334 
335     VMap[*BB] = NewBB;
336     if (Header == *BB) {
337       // For the first block, add a CFG connection to this newly
338       // created block.
339       InsertTop->getTerminator()->setSuccessor(0, NewBB);
340     }
341 
342     if (DT) {
343       if (Header == *BB) {
344         // The header is dominated by the preheader.
345         DT->addNewBlock(NewBB, InsertTop);
346       } else {
347         // Copy information from original loop to unrolled loop.
348         BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
349         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
350       }
351     }
352 
353     if (Latch == *BB) {
354       // For the last block, create a loop back to cloned head.
355       VMap.erase((*BB)->getTerminator());
356       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
357       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
358       IRBuilder<> Builder(LatchBR);
359       PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
360                                         suffix + ".iter",
361                                         FirstLoopBB->getFirstNonPHI());
362       Value *IdxSub =
363         Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
364                           NewIdx->getName() + ".sub");
365       Value *IdxCmp =
366         Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
367       Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
368       NewIdx->addIncoming(NewIter, InsertTop);
369       NewIdx->addIncoming(IdxSub, NewBB);
370       LatchBR->eraseFromParent();
371     }
372   }
373 
374   // Change the incoming values to the ones defined in the preheader or
375   // cloned loop.
376   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
377     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
378     unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
379     NewPHI->setIncomingBlock(idx, InsertTop);
380     BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
381     idx = NewPHI->getBasicBlockIndex(Latch);
382     Value *InVal = NewPHI->getIncomingValue(idx);
383     NewPHI->setIncomingBlock(idx, NewLatch);
384     if (Value *V = VMap.lookup(InVal))
385       NewPHI->setIncomingValue(idx, V);
386   }
387 
388   Loop *NewLoop = NewLoops[L];
389   assert(NewLoop && "L should have been cloned");
390   MDNode *LoopID = NewLoop->getLoopID();
391 
392   // Only add loop metadata if the loop is not going to be completely
393   // unrolled.
394   if (UnrollRemainder)
395     return NewLoop;
396 
397   Optional<MDNode *> NewLoopID = makeFollowupLoopID(
398       LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
399   if (NewLoopID.hasValue()) {
400     NewLoop->setLoopID(NewLoopID.getValue());
401 
402     // Do not setLoopAlreadyUnrolled if loop attributes have been defined
403     // explicitly.
404     return NewLoop;
405   }
406 
407   // Add unroll disable metadata to disable future unrolling for this loop.
408   NewLoop->setLoopAlreadyUnrolled();
409   return NewLoop;
410 }
411 
412 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
413 /// is populated with all the loop exit blocks other than the LatchExit block.
414 static bool canSafelyUnrollMultiExitLoop(Loop *L, BasicBlock *LatchExit,
415                                          bool PreserveLCSSA,
416                                          bool UseEpilogRemainder) {
417 
418   // We currently have some correctness constrains in unrolling a multi-exit
419   // loop. Check for these below.
420 
421   // We rely on LCSSA form being preserved when the exit blocks are transformed.
422   // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.)
423   if (!PreserveLCSSA)
424     return false;
425 
426   // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
427   // and L is an inner loop. This is because in presence of multiple exits, the
428   // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
429   // outer loop. This is automatically handled in the prolog case, so we do not
430   // have that bug in prolog generation.
431   if (UseEpilogRemainder && L->getParentLoop())
432     return false;
433 
434   // All constraints have been satisfied.
435   return true;
436 }
437 
438 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
439 /// we return true only if UnrollRuntimeMultiExit is set to true.
440 static bool canProfitablyUnrollMultiExitLoop(
441     Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
442     bool PreserveLCSSA, bool UseEpilogRemainder) {
443 
444 #if !defined(NDEBUG)
445   assert(canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA,
446                                       UseEpilogRemainder) &&
447          "Should be safe to unroll before checking profitability!");
448 #endif
449 
450   // Priority goes to UnrollRuntimeMultiExit if it's supplied.
451   if (UnrollRuntimeMultiExit.getNumOccurrences())
452     return UnrollRuntimeMultiExit;
453 
454   // TODO: We used to bail out for correctness (now fixed).  Under what
455   // circumstances is this case profitable to allow?
456   if (!LatchExit->getSinglePredecessor())
457     return false;
458 
459   // The main pain point with multi-exit loop unrolling is that once unrolled,
460   // we will not be able to merge all blocks into a straight line code.
461   // There are branches within the unrolled loop that go to the OtherExits.
462   // The second point is the increase in code size, but this is true
463   // irrespective of multiple exits.
464 
465   // Note: Both the heuristics below are coarse grained. We are essentially
466   // enabling unrolling of loops that have a single side exit other than the
467   // normal LatchExit (i.e. exiting into a deoptimize block).
468   // The heuristics considered are:
469   // 1. low number of branches in the unrolled version.
470   // 2. high predictability of these extra branches.
471   // We avoid unrolling loops that have more than two exiting blocks. This
472   // limits the total number of branches in the unrolled loop to be atmost
473   // the unroll factor (since one of the exiting blocks is the latch block).
474   SmallVector<BasicBlock*, 4> ExitingBlocks;
475   L->getExitingBlocks(ExitingBlocks);
476   if (ExitingBlocks.size() > 2)
477     return false;
478 
479   // Allow unrolling of loops with no non latch exit blocks.
480   if (OtherExits.size() == 0)
481     return true;
482 
483   // The second heuristic is that L has one exit other than the latchexit and
484   // that exit is a deoptimize block. We know that deoptimize blocks are rarely
485   // taken, which also implies the branch leading to the deoptimize block is
486   // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we
487   // assume the other exit branch is predictable even if it has no deoptimize
488   // call.
489   return (OtherExits.size() == 1 &&
490           (UnrollRuntimeOtherExitPredictable ||
491            OtherExits[0]->getTerminatingDeoptimizeCall()));
492   // TODO: These can be fine-tuned further to consider code size or deopt states
493   // that are captured by the deoptimize exit block.
494   // Also, we can extend this to support more cases, if we actually
495   // know of kinds of multiexit loops that would benefit from unrolling.
496 }
497 
498 // Assign the maximum possible trip count as the back edge weight for the
499 // remainder loop if the original loop comes with a branch weight.
500 static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop,
501                                                      Loop *RemainderLoop,
502                                                      uint64_t UnrollFactor) {
503   uint64_t TrueWeight, FalseWeight;
504   BranchInst *LatchBR =
505       cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
506   if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
507     return;
508   uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader()
509                             ? FalseWeight
510                             : TrueWeight;
511   assert(UnrollFactor > 1);
512   uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight;
513   BasicBlock *Header = RemainderLoop->getHeader();
514   BasicBlock *Latch = RemainderLoop->getLoopLatch();
515   auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator());
516   unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1);
517   MDBuilder MDB(RemainderLatchBR->getContext());
518   MDNode *WeightNode =
519     HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight)
520                 : MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
521   RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
522 }
523 
524 /// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain
525 /// accounting for the possibility of unsigned overflow in the 2s complement
526 /// domain. Preconditions:
527 /// 1) TripCount = BECount + 1 (allowing overflow)
528 /// 2) Log2(Count) <= BitWidth(BECount)
529 static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount,
530                                   Value *TripCount, unsigned Count) {
531   // Note that TripCount is BECount + 1.
532   if (isPowerOf2_32(Count))
533     // If the expression is zero, then either:
534     //  1. There are no iterations to be run in the prolog/epilog loop.
535     // OR
536     //  2. The addition computing TripCount overflowed.
537     //
538     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
539     // the number of iterations that remain to be run in the original loop is a
540     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a
541     // precondition of this method).
542     return B.CreateAnd(TripCount, Count - 1, "xtraiter");
543 
544   // As (BECount + 1) can potentially unsigned overflow we count
545   // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
546   Constant *CountC = ConstantInt::get(BECount->getType(), Count);
547   Value *ModValTmp = B.CreateURem(BECount, CountC);
548   Value *ModValAdd = B.CreateAdd(ModValTmp,
549                                  ConstantInt::get(ModValTmp->getType(), 1));
550   // At that point (BECount % Count) + 1 could be equal to Count.
551   // To handle this case we need to take mod by Count one more time.
552   return B.CreateURem(ModValAdd, CountC, "xtraiter");
553 }
554 
555 
556 /// Insert code in the prolog/epilog code when unrolling a loop with a
557 /// run-time trip-count.
558 ///
559 /// This method assumes that the loop unroll factor is total number
560 /// of loop bodies in the loop after unrolling. (Some folks refer
561 /// to the unroll factor as the number of *extra* copies added).
562 /// We assume also that the loop unroll factor is a power-of-two. So, after
563 /// unrolling the loop, the number of loop bodies executed is 2,
564 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
565 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
566 /// the switch instruction is generated.
567 ///
568 /// ***Prolog case***
569 ///        extraiters = tripcount % loopfactor
570 ///        if (extraiters == 0) jump Loop:
571 ///        else jump Prol:
572 /// Prol:  LoopBody;
573 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
574 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
575 ///        if (tripcount < loopfactor) jump End:
576 /// Loop:
577 /// ...
578 /// End:
579 ///
580 /// ***Epilog case***
581 ///        extraiters = tripcount % loopfactor
582 ///        if (tripcount < loopfactor) jump LoopExit:
583 ///        unroll_iters = tripcount - extraiters
584 /// Loop:  LoopBody; (executes unroll_iter times);
585 ///        unroll_iter -= 1
586 ///        if (unroll_iter != 0) jump Loop:
587 /// LoopExit:
588 ///        if (extraiters == 0) jump EpilExit:
589 /// Epil:  LoopBody; (executes extraiters times)
590 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
591 ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
592 /// EpilExit:
593 
594 bool llvm::UnrollRuntimeLoopRemainder(
595     Loop *L, unsigned Count, bool AllowExpensiveTripCount,
596     bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV,
597     LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
598     const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) {
599   LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
600   LLVM_DEBUG(L->dump());
601   LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
602                                 : dbgs() << "Using prolog remainder.\n");
603 
604   // Make sure the loop is in canonical form.
605   if (!L->isLoopSimplifyForm()) {
606     LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
607     return false;
608   }
609 
610   // Guaranteed by LoopSimplifyForm.
611   BasicBlock *Latch = L->getLoopLatch();
612   BasicBlock *Header = L->getHeader();
613 
614   BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
615 
616   if (!LatchBR || LatchBR->isUnconditional()) {
617     // The loop-rotate pass can be helpful to avoid this in many cases.
618     LLVM_DEBUG(
619         dbgs()
620         << "Loop latch not terminated by a conditional branch.\n");
621     return false;
622   }
623 
624   unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
625   BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
626 
627   if (L->contains(LatchExit)) {
628     // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
629     // targets of the Latch be an exit block out of the loop.
630     LLVM_DEBUG(
631         dbgs()
632         << "One of the loop latch successors must be the exit block.\n");
633     return false;
634   }
635 
636   // These are exit blocks other than the target of the latch exiting block.
637   SmallVector<BasicBlock *, 4> OtherExits;
638   L->getUniqueNonLatchExitBlocks(OtherExits);
639   bool isMultiExitUnrollingEnabled =
640       canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA,
641                                    UseEpilogRemainder) &&
642       canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
643                                        UseEpilogRemainder);
644   // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
645   if (!isMultiExitUnrollingEnabled &&
646       (!L->getExitingBlock() || OtherExits.size())) {
647     LLVM_DEBUG(
648         dbgs()
649         << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
650            "enabled!\n");
651     return false;
652   }
653   // Use Scalar Evolution to compute the trip count. This allows more loops to
654   // be unrolled than relying on induction var simplification.
655   if (!SE)
656     return false;
657 
658   // Only unroll loops with a computable trip count, and the trip count needs
659   // to be an int value (allowing a pointer type is a TODO item).
660   // We calculate the backedge count by using getExitCount on the Latch block,
661   // which is proven to be the only exiting block in this loop. This is same as
662   // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
663   // exiting blocks).
664   const SCEV *BECountSC = SE->getExitCount(L, Latch);
665   if (isa<SCEVCouldNotCompute>(BECountSC) ||
666       !BECountSC->getType()->isIntegerTy()) {
667     LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
668     return false;
669   }
670 
671   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
672 
673   // Add 1 since the backedge count doesn't include the first loop iteration.
674   // (Note that overflow can occur, this is handled explicitly below)
675   const SCEV *TripCountSC =
676       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
677   if (isa<SCEVCouldNotCompute>(TripCountSC)) {
678     LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
679     return false;
680   }
681 
682   BasicBlock *PreHeader = L->getLoopPreheader();
683   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
684   const DataLayout &DL = Header->getModule()->getDataLayout();
685   SCEVExpander Expander(*SE, DL, "loop-unroll");
686   if (!AllowExpensiveTripCount &&
687       Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget,
688                                    TTI, PreHeaderBR)) {
689     LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
690     return false;
691   }
692 
693   // This constraint lets us deal with an overflowing trip count easily; see the
694   // comment on ModVal below.
695   if (Log2_32(Count) > BEWidth) {
696     LLVM_DEBUG(
697         dbgs()
698         << "Count failed constraint on overflow trip count calculation.\n");
699     return false;
700   }
701 
702   // Loop structure is the following:
703   //
704   // PreHeader
705   //   Header
706   //   ...
707   //   Latch
708   // LatchExit
709 
710   BasicBlock *NewPreHeader;
711   BasicBlock *NewExit = nullptr;
712   BasicBlock *PrologExit = nullptr;
713   BasicBlock *EpilogPreHeader = nullptr;
714   BasicBlock *PrologPreHeader = nullptr;
715 
716   if (UseEpilogRemainder) {
717     // If epilog remainder
718     // Split PreHeader to insert a branch around loop for unrolling.
719     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
720     NewPreHeader->setName(PreHeader->getName() + ".new");
721     // Split LatchExit to create phi nodes from branch above.
722     NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI,
723                                      nullptr, PreserveLCSSA);
724     // NewExit gets its DebugLoc from LatchExit, which is not part of the
725     // original Loop.
726     // Fix this by setting Loop's DebugLoc to NewExit.
727     auto *NewExitTerminator = NewExit->getTerminator();
728     NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
729     // Split NewExit to insert epilog remainder loop.
730     EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
731     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
732   } else {
733     // If prolog remainder
734     // Split the original preheader twice to insert prolog remainder loop
735     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
736     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
737     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
738                             DT, LI);
739     PrologExit->setName(Header->getName() + ".prol.loopexit");
740     // Split PrologExit to get NewPreHeader.
741     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
742     NewPreHeader->setName(PreHeader->getName() + ".new");
743   }
744   // Loop structure should be the following:
745   //  Epilog             Prolog
746   //
747   // PreHeader         PreHeader
748   // *NewPreHeader     *PrologPreHeader
749   //   Header          *PrologExit
750   //   ...             *NewPreHeader
751   //   Latch             Header
752   // *NewExit            ...
753   // *EpilogPreHeader    Latch
754   // LatchExit              LatchExit
755 
756   // Calculate conditions for branch around loop for unrolling
757   // in epilog case and around prolog remainder loop in prolog case.
758   // Compute the number of extra iterations required, which is:
759   //  extra iterations = run-time trip count % loop unroll factor
760   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
761   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
762                                             PreHeaderBR);
763   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
764                                           PreHeaderBR);
765   IRBuilder<> B(PreHeaderBR);
766   Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count);
767 
768   Value *BranchVal =
769       UseEpilogRemainder ? B.CreateICmpULT(BECount,
770                                            ConstantInt::get(BECount->getType(),
771                                                             Count - 1)) :
772                            B.CreateIsNotNull(ModVal, "lcmp.mod");
773   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
774   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
775   // Branch to either remainder (extra iterations) loop or unrolling loop.
776   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
777   PreHeaderBR->eraseFromParent();
778   if (DT) {
779     if (UseEpilogRemainder)
780       DT->changeImmediateDominator(NewExit, PreHeader);
781     else
782       DT->changeImmediateDominator(PrologExit, PreHeader);
783   }
784   Function *F = Header->getParent();
785   // Get an ordered list of blocks in the loop to help with the ordering of the
786   // cloned blocks in the prolog/epilog code
787   LoopBlocksDFS LoopBlocks(L);
788   LoopBlocks.perform(LI);
789 
790   //
791   // For each extra loop iteration, create a copy of the loop's basic blocks
792   // and generate a condition that branches to the copy depending on the
793   // number of 'left over' iterations.
794   //
795   std::vector<BasicBlock *> NewBlocks;
796   ValueToValueMapTy VMap;
797 
798   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
799   // the loop, otherwise we create a cloned loop to execute the extra
800   // iterations. This function adds the appropriate CFG connections.
801   BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
802   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
803   Loop *remainderLoop = CloneLoopBlocks(
804       L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot,
805       NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
806 
807   // Assign the maximum possible trip count as the back edge weight for the
808   // remainder loop if the original loop comes with a branch weight.
809   if (remainderLoop && !UnrollRemainder)
810     updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count);
811 
812   // Insert the cloned blocks into the function.
813   F->getBasicBlockList().splice(InsertBot->getIterator(),
814                                 F->getBasicBlockList(),
815                                 NewBlocks[0]->getIterator(),
816                                 F->end());
817 
818   // Now the loop blocks are cloned and the other exiting blocks from the
819   // remainder are connected to the original Loop's exit blocks. The remaining
820   // work is to update the phi nodes in the original loop, and take in the
821   // values from the cloned region.
822   for (auto *BB : OtherExits) {
823     // Given we preserve LCSSA form, we know that the values used outside the
824     // loop will be used through these phi nodes at the exit blocks that are
825     // transformed below.
826     for (PHINode &PN : BB->phis()) {
827      unsigned oldNumOperands = PN.getNumIncomingValues();
828      // Add the incoming values from the remainder code to the end of the phi
829      // node.
830      for (unsigned i = 0; i < oldNumOperands; i++){
831        auto *PredBB =PN.getIncomingBlock(i);
832        if (PredBB == Latch)
833          // The latch exit is handled seperately, see connectX
834          continue;
835        if (!L->contains(PredBB))
836          // Even if we had dedicated exits, the code above inserted an
837          // extra branch which can reach the latch exit.
838          continue;
839 
840        auto *V = PN.getIncomingValue(i);
841        if (Instruction *I = dyn_cast<Instruction>(V))
842          if (L->contains(I))
843            V = VMap.lookup(I);
844        PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB]));
845      }
846    }
847 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
848     for (BasicBlock *SuccBB : successors(BB)) {
849       assert(!(any_of(OtherExits,
850                       [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
851                SuccBB == LatchExit) &&
852              "Breaks the definition of dedicated exits!");
853     }
854 #endif
855   }
856 
857   // Update the immediate dominator of the exit blocks and blocks that are
858   // reachable from the exit blocks. This is needed because we now have paths
859   // from both the original loop and the remainder code reaching the exit
860   // blocks. While the IDom of these exit blocks were from the original loop,
861   // now the IDom is the preheader (which decides whether the original loop or
862   // remainder code should run).
863   if (DT && !L->getExitingBlock()) {
864     SmallVector<BasicBlock *, 16> ChildrenToUpdate;
865     // NB! We have to examine the dom children of all loop blocks, not just
866     // those which are the IDom of the exit blocks. This is because blocks
867     // reachable from the exit blocks can have their IDom as the nearest common
868     // dominator of the exit blocks.
869     for (auto *BB : L->blocks()) {
870       auto *DomNodeBB = DT->getNode(BB);
871       for (auto *DomChild : DomNodeBB->children()) {
872         auto *DomChildBB = DomChild->getBlock();
873         if (!L->contains(LI->getLoopFor(DomChildBB)))
874           ChildrenToUpdate.push_back(DomChildBB);
875       }
876     }
877     for (auto *BB : ChildrenToUpdate)
878       DT->changeImmediateDominator(BB, PreHeader);
879   }
880 
881   // Loop structure should be the following:
882   //  Epilog             Prolog
883   //
884   // PreHeader         PreHeader
885   // NewPreHeader      PrologPreHeader
886   //   Header            PrologHeader
887   //   ...               ...
888   //   Latch             PrologLatch
889   // NewExit           PrologExit
890   // EpilogPreHeader   NewPreHeader
891   //   EpilogHeader      Header
892   //   ...               ...
893   //   EpilogLatch       Latch
894   // LatchExit              LatchExit
895 
896   // Rewrite the cloned instruction operands to use the values created when the
897   // clone is created.
898   for (BasicBlock *BB : NewBlocks) {
899     for (Instruction &I : *BB) {
900       RemapInstruction(&I, VMap,
901                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
902     }
903   }
904 
905   if (UseEpilogRemainder) {
906     // Connect the epilog code to the original loop and update the
907     // PHI functions.
908     ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
909                   EpilogPreHeader, NewPreHeader, VMap, DT, LI,
910                   PreserveLCSSA);
911 
912     // Update counter in loop for unrolling.
913     // I should be multiply of Count.
914     IRBuilder<> B2(NewPreHeader->getTerminator());
915     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
916     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
917     B2.SetInsertPoint(LatchBR);
918     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
919                                       Header->getFirstNonPHI());
920     Value *IdxSub =
921         B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
922                      NewIdx->getName() + ".nsub");
923     Value *IdxCmp;
924     if (LatchBR->getSuccessor(0) == Header)
925       IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
926     else
927       IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
928     NewIdx->addIncoming(TestVal, NewPreHeader);
929     NewIdx->addIncoming(IdxSub, Latch);
930     LatchBR->setCondition(IdxCmp);
931   } else {
932     // Connect the prolog code to the original loop and update the
933     // PHI functions.
934     ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
935                   NewPreHeader, VMap, DT, LI, PreserveLCSSA);
936   }
937 
938   // If this loop is nested, then the loop unroller changes the code in the any
939   // of its parent loops, so the Scalar Evolution pass needs to be run again.
940   SE->forgetTopmostLoop(L);
941 
942   // Verify that the Dom Tree and Loop Info are correct.
943 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
944   if (DT) {
945     assert(DT->verify(DominatorTree::VerificationLevel::Full));
946     LI->verify(*DT);
947   }
948 #endif
949 
950   // For unroll factor 2 remainder loop will have 1 iteration.
951   if (Count == 2 && DT && LI && SE) {
952     // TODO: This code could probably be pulled out into a helper function
953     // (e.g. breakLoopBackedgeAndSimplify) and reused in loop-deletion.
954     BasicBlock *RemainderLatch = remainderLoop->getLoopLatch();
955     assert(RemainderLatch);
956     SmallVector<BasicBlock*> RemainderBlocks(remainderLoop->getBlocks().begin(),
957                                              remainderLoop->getBlocks().end());
958     breakLoopBackedge(remainderLoop, *DT, *SE, *LI, nullptr);
959     remainderLoop = nullptr;
960 
961     // Simplify loop values after breaking the backedge
962     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
963     SmallVector<WeakTrackingVH, 16> DeadInsts;
964     for (BasicBlock *BB : RemainderBlocks) {
965       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
966         Instruction *Inst = &*I++;
967         if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
968           if (LI->replacementPreservesLCSSAForm(Inst, V))
969             Inst->replaceAllUsesWith(V);
970         if (isInstructionTriviallyDead(Inst))
971           DeadInsts.emplace_back(Inst);
972       }
973       // We can't do recursive deletion until we're done iterating, as we might
974       // have a phi which (potentially indirectly) uses instructions later in
975       // the block we're iterating through.
976       RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
977     }
978 
979     // Merge latch into exit block.
980     auto *ExitBB = RemainderLatch->getSingleSuccessor();
981     assert(ExitBB && "required after breaking cond br backedge");
982     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
983     MergeBlockIntoPredecessor(ExitBB, &DTU, LI);
984   }
985 
986   // Canonicalize to LoopSimplifyForm both original and remainder loops. We
987   // cannot rely on the LoopUnrollPass to do this because it only does
988   // canonicalization for parent/subloops and not the sibling loops.
989   if (OtherExits.size() > 0) {
990     // Generate dedicated exit blocks for the original loop, to preserve
991     // LoopSimplifyForm.
992     formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
993     // Generate dedicated exit blocks for the remainder loop if one exists, to
994     // preserve LoopSimplifyForm.
995     if (remainderLoop)
996       formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA);
997   }
998 
999   auto UnrollResult = LoopUnrollResult::Unmodified;
1000   if (remainderLoop && UnrollRemainder) {
1001     LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
1002     UnrollResult =
1003         UnrollLoop(remainderLoop,
1004                    {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false,
1005                     /*AllowExpensiveTripCount*/ false,
1006                     /*UnrollRemainder*/ false, ForgetAllSCEV},
1007                    LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA);
1008   }
1009 
1010   if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
1011     *ResultLoop = remainderLoop;
1012   NumRuntimeUnrolled++;
1013   return true;
1014 }
1015