xref: /llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp (revision 447256f22b4dc125877aed11aac875c03d0228eb)
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities for loops with run-time
10 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
11 // trip counts.
12 //
13 // The functions in this file are used to generate extra code when the
14 // run-time trip count modulo the unroll factor is not 0.  When this is the
15 // case, we need to generate code to execute these 'left over' iterations.
16 //
17 // The current strategy generates an if-then-else sequence prior to the
18 // unrolled loop to execute the 'left over' iterations before or after the
19 // unrolled loop.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 #include <algorithm>
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "loop-unroll"
46 
47 STATISTIC(NumRuntimeUnrolled,
48           "Number of loops unrolled with run-time trip counts");
49 static cl::opt<bool> UnrollRuntimeMultiExit(
50     "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
51     cl::desc("Allow runtime unrolling for loops with multiple exits, when "
52              "epilog is generated"));
53 static cl::opt<bool> UnrollRuntimeOtherExitPredictable(
54     "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden,
55     cl::desc("Assume the non latch exit block to be predictable"));
56 
57 /// Connect the unrolling prolog code to the original loop.
58 /// The unrolling prolog code contains code to execute the
59 /// 'extra' iterations if the run-time trip count modulo the
60 /// unroll count is non-zero.
61 ///
62 /// This function performs the following:
63 /// - Create PHI nodes at prolog end block to combine values
64 ///   that exit the prolog code and jump around the prolog.
65 /// - Add a PHI operand to a PHI node at the loop exit block
66 ///   for values that exit the prolog and go around the loop.
67 /// - Branch around the original loop if the trip count is less
68 ///   than the unroll factor.
69 ///
70 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
71                           BasicBlock *PrologExit,
72                           BasicBlock *OriginalLoopLatchExit,
73                           BasicBlock *PreHeader, BasicBlock *NewPreHeader,
74                           ValueToValueMapTy &VMap, DominatorTree *DT,
75                           LoopInfo *LI, bool PreserveLCSSA) {
76   // Loop structure should be the following:
77   // Preheader
78   //  PrologHeader
79   //  ...
80   //  PrologLatch
81   //  PrologExit
82   //   NewPreheader
83   //    Header
84   //    ...
85   //    Latch
86   //      LatchExit
87   BasicBlock *Latch = L->getLoopLatch();
88   assert(Latch && "Loop must have a latch");
89   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
90 
91   // Create a PHI node for each outgoing value from the original loop
92   // (which means it is an outgoing value from the prolog code too).
93   // The new PHI node is inserted in the prolog end basic block.
94   // The new PHI node value is added as an operand of a PHI node in either
95   // the loop header or the loop exit block.
96   for (BasicBlock *Succ : successors(Latch)) {
97     for (PHINode &PN : Succ->phis()) {
98       // Add a new PHI node to the prolog end block and add the
99       // appropriate incoming values.
100       // TODO: This code assumes that the PrologExit (or the LatchExit block for
101       // prolog loop) contains only one predecessor from the loop, i.e. the
102       // PrologLatch. When supporting multiple-exiting block loops, we can have
103       // two or more blocks that have the LatchExit as the target in the
104       // original loop.
105       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
106                                        PrologExit->getFirstNonPHI());
107       // Adding a value to the new PHI node from the original loop preheader.
108       // This is the value that skips all the prolog code.
109       if (L->contains(&PN)) {
110         // Succ is loop header.
111         NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
112                            PreHeader);
113       } else {
114         // Succ is LatchExit.
115         NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
116       }
117 
118       Value *V = PN.getIncomingValueForBlock(Latch);
119       if (Instruction *I = dyn_cast<Instruction>(V)) {
120         if (L->contains(I)) {
121           V = VMap.lookup(I);
122         }
123       }
124       // Adding a value to the new PHI node from the last prolog block
125       // that was created.
126       NewPN->addIncoming(V, PrologLatch);
127 
128       // Update the existing PHI node operand with the value from the
129       // new PHI node.  How this is done depends on if the existing
130       // PHI node is in the original loop block, or the exit block.
131       if (L->contains(&PN))
132         PN.setIncomingValueForBlock(NewPreHeader, NewPN);
133       else
134         PN.addIncoming(NewPN, PrologExit);
135     }
136   }
137 
138   // Make sure that created prolog loop is in simplified form
139   SmallVector<BasicBlock *, 4> PrologExitPreds;
140   Loop *PrologLoop = LI->getLoopFor(PrologLatch);
141   if (PrologLoop) {
142     for (BasicBlock *PredBB : predecessors(PrologExit))
143       if (PrologLoop->contains(PredBB))
144         PrologExitPreds.push_back(PredBB);
145 
146     SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
147                            nullptr, PreserveLCSSA);
148   }
149 
150   // Create a branch around the original loop, which is taken if there are no
151   // iterations remaining to be executed after running the prologue.
152   Instruction *InsertPt = PrologExit->getTerminator();
153   IRBuilder<> B(InsertPt);
154 
155   assert(Count != 0 && "nonsensical Count!");
156 
157   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
158   // This means %xtraiter is (BECount + 1) and all of the iterations of this
159   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
160   // then (BECount + 1) cannot unsigned-overflow.
161   Value *BrLoopExit =
162       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
163   // Split the exit to maintain loop canonicalization guarantees
164   SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
165   SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
166                          nullptr, PreserveLCSSA);
167   // Add the branch to the exit block (around the unrolled loop)
168   B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
169   InsertPt->eraseFromParent();
170   if (DT)
171     DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit);
172 }
173 
174 /// Connect the unrolling epilog code to the original loop.
175 /// The unrolling epilog code contains code to execute the
176 /// 'extra' iterations if the run-time trip count modulo the
177 /// unroll count is non-zero.
178 ///
179 /// This function performs the following:
180 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
181 /// - Create PHI nodes at the unrolling loop exit to combine
182 ///   values that exit the unrolling loop code and jump around it.
183 /// - Update PHI operands in the epilog loop by the new PHI nodes
184 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
185 ///
186 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
187                           BasicBlock *Exit, BasicBlock *PreHeader,
188                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
189                           ValueToValueMapTy &VMap, DominatorTree *DT,
190                           LoopInfo *LI, bool PreserveLCSSA)  {
191   BasicBlock *Latch = L->getLoopLatch();
192   assert(Latch && "Loop must have a latch");
193   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
194 
195   // Loop structure should be the following:
196   //
197   // PreHeader
198   // NewPreHeader
199   //   Header
200   //   ...
201   //   Latch
202   // NewExit (PN)
203   // EpilogPreHeader
204   //   EpilogHeader
205   //   ...
206   //   EpilogLatch
207   // Exit (EpilogPN)
208 
209   // Update PHI nodes at NewExit and Exit.
210   for (PHINode &PN : NewExit->phis()) {
211     // PN should be used in another PHI located in Exit block as
212     // Exit was split by SplitBlockPredecessors into Exit and NewExit
213     // Basicaly it should look like:
214     // NewExit:
215     //   PN = PHI [I, Latch]
216     // ...
217     // Exit:
218     //   EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil]
219     //
220     // Exits from non-latch blocks point to the original exit block and the
221     // epilogue edges have already been added.
222     //
223     // There is EpilogPreHeader incoming block instead of NewExit as
224     // NewExit was spilt 1 more time to get EpilogPreHeader.
225     assert(PN.hasOneUse() && "The phi should have 1 use");
226     PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
227     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
228 
229     // Add incoming PreHeader from branch around the Loop
230     PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
231 
232     Value *V = PN.getIncomingValueForBlock(Latch);
233     Instruction *I = dyn_cast<Instruction>(V);
234     if (I && L->contains(I))
235       // If value comes from an instruction in the loop add VMap value.
236       V = VMap.lookup(I);
237     // For the instruction out of the loop, constant or undefined value
238     // insert value itself.
239     EpilogPN->addIncoming(V, EpilogLatch);
240 
241     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
242           "EpilogPN should have EpilogPreHeader incoming block");
243     // Change EpilogPreHeader incoming block to NewExit.
244     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
245                                NewExit);
246     // Now PHIs should look like:
247     // NewExit:
248     //   PN = PHI [I, Latch], [undef, PreHeader]
249     // ...
250     // Exit:
251     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
252   }
253 
254   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
255   // Update corresponding PHI nodes in epilog loop.
256   for (BasicBlock *Succ : successors(Latch)) {
257     // Skip this as we already updated phis in exit blocks.
258     if (!L->contains(Succ))
259       continue;
260     for (PHINode &PN : Succ->phis()) {
261       // Add new PHI nodes to the loop exit block and update epilog
262       // PHIs with the new PHI values.
263       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
264                                        NewExit->getFirstNonPHI());
265       // Adding a value to the new PHI node from the unrolling loop preheader.
266       NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
267       // Adding a value to the new PHI node from the unrolling loop latch.
268       NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
269 
270       // Update the existing PHI node operand with the value from the new PHI
271       // node.  Corresponding instruction in epilog loop should be PHI.
272       PHINode *VPN = cast<PHINode>(VMap[&PN]);
273       VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN);
274     }
275   }
276 
277   Instruction *InsertPt = NewExit->getTerminator();
278   IRBuilder<> B(InsertPt);
279   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
280   assert(Exit && "Loop must have a single exit block only");
281   // Split the epilogue exit to maintain loop canonicalization guarantees
282   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
283   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
284                          PreserveLCSSA);
285   // Add the branch to the exit block (around the unrolling loop)
286   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
287   InsertPt->eraseFromParent();
288   if (DT) {
289     auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit);
290     DT->changeImmediateDominator(Exit, NewDom);
291   }
292 
293   // Split the main loop exit to maintain canonicalization guarantees.
294   SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
295   SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
296                          PreserveLCSSA);
297 }
298 
299 /// Create a clone of the blocks in a loop and connect them together.
300 /// If CreateRemainderLoop is false, loop structure will not be cloned,
301 /// otherwise a new loop will be created including all cloned blocks, and the
302 /// iterator of it switches to count NewIter down to 0.
303 /// The cloned blocks should be inserted between InsertTop and InsertBot.
304 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
305 /// new loop exit.
306 /// Return the new cloned loop that is created when CreateRemainderLoop is true.
307 static Loop *
308 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
309                 const bool UseEpilogRemainder, const bool UnrollRemainder,
310                 BasicBlock *InsertTop,
311                 BasicBlock *InsertBot, BasicBlock *Preheader,
312                 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
313                 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
314   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
315   BasicBlock *Header = L->getHeader();
316   BasicBlock *Latch = L->getLoopLatch();
317   Function *F = Header->getParent();
318   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
319   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
320   Loop *ParentLoop = L->getParentLoop();
321   NewLoopsMap NewLoops;
322   NewLoops[ParentLoop] = ParentLoop;
323   if (!CreateRemainderLoop)
324     NewLoops[L] = ParentLoop;
325 
326   // For each block in the original loop, create a new copy,
327   // and update the value map with the newly created values.
328   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
329     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
330     NewBlocks.push_back(NewBB);
331 
332     // If we're unrolling the outermost loop, there's no remainder loop,
333     // and this block isn't in a nested loop, then the new block is not
334     // in any loop. Otherwise, add it to loopinfo.
335     if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
336       addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
337 
338     VMap[*BB] = NewBB;
339     if (Header == *BB) {
340       // For the first block, add a CFG connection to this newly
341       // created block.
342       InsertTop->getTerminator()->setSuccessor(0, NewBB);
343     }
344 
345     if (DT) {
346       if (Header == *BB) {
347         // The header is dominated by the preheader.
348         DT->addNewBlock(NewBB, InsertTop);
349       } else {
350         // Copy information from original loop to unrolled loop.
351         BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
352         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
353       }
354     }
355 
356     if (Latch == *BB) {
357       // For the last block, if CreateRemainderLoop is false, create a direct
358       // jump to InsertBot. If not, create a loop back to cloned head.
359       VMap.erase((*BB)->getTerminator());
360       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
361       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
362       IRBuilder<> Builder(LatchBR);
363       if (!CreateRemainderLoop) {
364         Builder.CreateBr(InsertBot);
365       } else {
366         PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
367                                           suffix + ".iter",
368                                           FirstLoopBB->getFirstNonPHI());
369         Value *IdxSub =
370             Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
371                               NewIdx->getName() + ".sub");
372         Value *IdxCmp =
373             Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
374         Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
375         NewIdx->addIncoming(NewIter, InsertTop);
376         NewIdx->addIncoming(IdxSub, NewBB);
377       }
378       LatchBR->eraseFromParent();
379     }
380   }
381 
382   // Change the incoming values to the ones defined in the preheader or
383   // cloned loop.
384   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
385     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
386     if (!CreateRemainderLoop) {
387       if (UseEpilogRemainder) {
388         unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
389         NewPHI->setIncomingBlock(idx, InsertTop);
390         NewPHI->removeIncomingValue(Latch, false);
391       } else {
392         VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
393         cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
394       }
395     } else {
396       unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
397       NewPHI->setIncomingBlock(idx, InsertTop);
398       BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
399       idx = NewPHI->getBasicBlockIndex(Latch);
400       Value *InVal = NewPHI->getIncomingValue(idx);
401       NewPHI->setIncomingBlock(idx, NewLatch);
402       if (Value *V = VMap.lookup(InVal))
403         NewPHI->setIncomingValue(idx, V);
404     }
405   }
406   if (CreateRemainderLoop) {
407     Loop *NewLoop = NewLoops[L];
408     assert(NewLoop && "L should have been cloned");
409     MDNode *LoopID = NewLoop->getLoopID();
410 
411     // Only add loop metadata if the loop is not going to be completely
412     // unrolled.
413     if (UnrollRemainder)
414       return NewLoop;
415 
416     Optional<MDNode *> NewLoopID = makeFollowupLoopID(
417         LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
418     if (NewLoopID.hasValue()) {
419       NewLoop->setLoopID(NewLoopID.getValue());
420 
421       // Do not setLoopAlreadyUnrolled if loop attributes have been defined
422       // explicitly.
423       return NewLoop;
424     }
425 
426     // Add unroll disable metadata to disable future unrolling for this loop.
427     NewLoop->setLoopAlreadyUnrolled();
428     return NewLoop;
429   }
430   else
431     return nullptr;
432 }
433 
434 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
435 /// is populated with all the loop exit blocks other than the LatchExit block.
436 static bool canSafelyUnrollMultiExitLoop(Loop *L, BasicBlock *LatchExit,
437                                          bool PreserveLCSSA,
438                                          bool UseEpilogRemainder) {
439 
440   // We currently have some correctness constrains in unrolling a multi-exit
441   // loop. Check for these below.
442 
443   // We rely on LCSSA form being preserved when the exit blocks are transformed.
444   // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.)
445   if (!PreserveLCSSA)
446     return false;
447 
448   // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
449   // using a prolog loop.
450   if (!UseEpilogRemainder && !LatchExit->getSinglePredecessor()) {
451     LLVM_DEBUG(
452         dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
453                   "predecessor.\n");
454     return false;
455   }
456   // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
457   // and L is an inner loop. This is because in presence of multiple exits, the
458   // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
459   // outer loop. This is automatically handled in the prolog case, so we do not
460   // have that bug in prolog generation.
461   if (UseEpilogRemainder && L->getParentLoop())
462     return false;
463 
464   // All constraints have been satisfied.
465   return true;
466 }
467 
468 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
469 /// we return true only if UnrollRuntimeMultiExit is set to true.
470 static bool canProfitablyUnrollMultiExitLoop(
471     Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
472     bool PreserveLCSSA, bool UseEpilogRemainder) {
473 
474 #if !defined(NDEBUG)
475   assert(canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA,
476                                       UseEpilogRemainder) &&
477          "Should be safe to unroll before checking profitability!");
478 #endif
479 
480   // Priority goes to UnrollRuntimeMultiExit if it's supplied.
481   if (UnrollRuntimeMultiExit.getNumOccurrences())
482     return UnrollRuntimeMultiExit;
483 
484   // TODO: We used to bail out for correctness (now fixed).  Under what
485   // circumstances is this case profitable to allow?
486   if (!LatchExit->getSinglePredecessor())
487     return false;
488 
489   // The main pain point with multi-exit loop unrolling is that once unrolled,
490   // we will not be able to merge all blocks into a straight line code.
491   // There are branches within the unrolled loop that go to the OtherExits.
492   // The second point is the increase in code size, but this is true
493   // irrespective of multiple exits.
494 
495   // Note: Both the heuristics below are coarse grained. We are essentially
496   // enabling unrolling of loops that have a single side exit other than the
497   // normal LatchExit (i.e. exiting into a deoptimize block).
498   // The heuristics considered are:
499   // 1. low number of branches in the unrolled version.
500   // 2. high predictability of these extra branches.
501   // We avoid unrolling loops that have more than two exiting blocks. This
502   // limits the total number of branches in the unrolled loop to be atmost
503   // the unroll factor (since one of the exiting blocks is the latch block).
504   SmallVector<BasicBlock*, 4> ExitingBlocks;
505   L->getExitingBlocks(ExitingBlocks);
506   if (ExitingBlocks.size() > 2)
507     return false;
508 
509   // Allow unrolling of loops with no non latch exit blocks.
510   if (OtherExits.size() == 0)
511     return true;
512 
513   // The second heuristic is that L has one exit other than the latchexit and
514   // that exit is a deoptimize block. We know that deoptimize blocks are rarely
515   // taken, which also implies the branch leading to the deoptimize block is
516   // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we
517   // assume the other exit branch is predictable even if it has no deoptimize
518   // call.
519   return (OtherExits.size() == 1 &&
520           (UnrollRuntimeOtherExitPredictable ||
521            OtherExits[0]->getTerminatingDeoptimizeCall()));
522   // TODO: These can be fine-tuned further to consider code size or deopt states
523   // that are captured by the deoptimize exit block.
524   // Also, we can extend this to support more cases, if we actually
525   // know of kinds of multiexit loops that would benefit from unrolling.
526 }
527 
528 // Assign the maximum possible trip count as the back edge weight for the
529 // remainder loop if the original loop comes with a branch weight.
530 static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop,
531                                                      Loop *RemainderLoop,
532                                                      uint64_t UnrollFactor) {
533   uint64_t TrueWeight, FalseWeight;
534   BranchInst *LatchBR =
535       cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
536   if (LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) {
537     uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader()
538                               ? FalseWeight
539                               : TrueWeight;
540     assert(UnrollFactor > 1);
541     uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight;
542     BasicBlock *Header = RemainderLoop->getHeader();
543     BasicBlock *Latch = RemainderLoop->getLoopLatch();
544     auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator());
545     unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1);
546     MDBuilder MDB(RemainderLatchBR->getContext());
547     MDNode *WeightNode =
548         HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight)
549                   : MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
550     RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
551   }
552 }
553 
554 /// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain
555 /// accounting for the possibility of unsigned overflow in the 2s complement
556 /// domain. Preconditions:
557 /// 1) TripCount = BECount + 1 (allowing overflow)
558 /// 2) Log2(Count) <= BitWidth(BECount)
559 static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount,
560                                   Value *TripCount, unsigned Count) {
561   // Note that TripCount is BECount + 1.
562   if (isPowerOf2_32(Count))
563     // If the expression is zero, then either:
564     //  1. There are no iterations to be run in the prolog/epilog loop.
565     // OR
566     //  2. The addition computing TripCount overflowed.
567     //
568     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
569     // the number of iterations that remain to be run in the original loop is a
570     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a
571     // precondition of this method).
572     return B.CreateAnd(TripCount, Count - 1, "xtraiter");
573 
574   // As (BECount + 1) can potentially unsigned overflow we count
575   // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
576   Constant *CountC = ConstantInt::get(BECount->getType(), Count);
577   Value *ModValTmp = B.CreateURem(BECount, CountC);
578   Value *ModValAdd = B.CreateAdd(ModValTmp,
579                                  ConstantInt::get(ModValTmp->getType(), 1));
580   // At that point (BECount % Count) + 1 could be equal to Count.
581   // To handle this case we need to take mod by Count one more time.
582   return B.CreateURem(ModValAdd, CountC, "xtraiter");
583 }
584 
585 
586 /// Insert code in the prolog/epilog code when unrolling a loop with a
587 /// run-time trip-count.
588 ///
589 /// This method assumes that the loop unroll factor is total number
590 /// of loop bodies in the loop after unrolling. (Some folks refer
591 /// to the unroll factor as the number of *extra* copies added).
592 /// We assume also that the loop unroll factor is a power-of-two. So, after
593 /// unrolling the loop, the number of loop bodies executed is 2,
594 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
595 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
596 /// the switch instruction is generated.
597 ///
598 /// ***Prolog case***
599 ///        extraiters = tripcount % loopfactor
600 ///        if (extraiters == 0) jump Loop:
601 ///        else jump Prol:
602 /// Prol:  LoopBody;
603 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
604 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
605 ///        if (tripcount < loopfactor) jump End:
606 /// Loop:
607 /// ...
608 /// End:
609 ///
610 /// ***Epilog case***
611 ///        extraiters = tripcount % loopfactor
612 ///        if (tripcount < loopfactor) jump LoopExit:
613 ///        unroll_iters = tripcount - extraiters
614 /// Loop:  LoopBody; (executes unroll_iter times);
615 ///        unroll_iter -= 1
616 ///        if (unroll_iter != 0) jump Loop:
617 /// LoopExit:
618 ///        if (extraiters == 0) jump EpilExit:
619 /// Epil:  LoopBody; (executes extraiters times)
620 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
621 ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
622 /// EpilExit:
623 
624 bool llvm::UnrollRuntimeLoopRemainder(
625     Loop *L, unsigned Count, bool AllowExpensiveTripCount,
626     bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV,
627     LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
628     const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) {
629   LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
630   LLVM_DEBUG(L->dump());
631   LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
632                                 : dbgs() << "Using prolog remainder.\n");
633 
634   // Make sure the loop is in canonical form.
635   if (!L->isLoopSimplifyForm()) {
636     LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
637     return false;
638   }
639 
640   // Guaranteed by LoopSimplifyForm.
641   BasicBlock *Latch = L->getLoopLatch();
642   BasicBlock *Header = L->getHeader();
643 
644   BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
645 
646   if (!LatchBR || LatchBR->isUnconditional()) {
647     // The loop-rotate pass can be helpful to avoid this in many cases.
648     LLVM_DEBUG(
649         dbgs()
650         << "Loop latch not terminated by a conditional branch.\n");
651     return false;
652   }
653 
654   unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
655   BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
656 
657   if (L->contains(LatchExit)) {
658     // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
659     // targets of the Latch be an exit block out of the loop.
660     LLVM_DEBUG(
661         dbgs()
662         << "One of the loop latch successors must be the exit block.\n");
663     return false;
664   }
665 
666   // These are exit blocks other than the target of the latch exiting block.
667   SmallVector<BasicBlock *, 4> OtherExits;
668   L->getUniqueNonLatchExitBlocks(OtherExits);
669   bool isMultiExitUnrollingEnabled =
670       canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA,
671                                    UseEpilogRemainder) &&
672       canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
673                                        UseEpilogRemainder);
674   // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
675   if (!isMultiExitUnrollingEnabled &&
676       (!L->getExitingBlock() || OtherExits.size())) {
677     LLVM_DEBUG(
678         dbgs()
679         << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
680            "enabled!\n");
681     return false;
682   }
683   // Use Scalar Evolution to compute the trip count. This allows more loops to
684   // be unrolled than relying on induction var simplification.
685   if (!SE)
686     return false;
687 
688   // Only unroll loops with a computable trip count, and the trip count needs
689   // to be an int value (allowing a pointer type is a TODO item).
690   // We calculate the backedge count by using getExitCount on the Latch block,
691   // which is proven to be the only exiting block in this loop. This is same as
692   // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
693   // exiting blocks).
694   const SCEV *BECountSC = SE->getExitCount(L, Latch);
695   if (isa<SCEVCouldNotCompute>(BECountSC) ||
696       !BECountSC->getType()->isIntegerTy()) {
697     LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
698     return false;
699   }
700 
701   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
702 
703   // Add 1 since the backedge count doesn't include the first loop iteration.
704   // (Note that overflow can occur, this is handled explicitly below)
705   const SCEV *TripCountSC =
706       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
707   if (isa<SCEVCouldNotCompute>(TripCountSC)) {
708     LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
709     return false;
710   }
711 
712   BasicBlock *PreHeader = L->getLoopPreheader();
713   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
714   const DataLayout &DL = Header->getModule()->getDataLayout();
715   SCEVExpander Expander(*SE, DL, "loop-unroll");
716   if (!AllowExpensiveTripCount &&
717       Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget,
718                                    TTI, PreHeaderBR)) {
719     LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
720     return false;
721   }
722 
723   // This constraint lets us deal with an overflowing trip count easily; see the
724   // comment on ModVal below.
725   if (Log2_32(Count) > BEWidth) {
726     LLVM_DEBUG(
727         dbgs()
728         << "Count failed constraint on overflow trip count calculation.\n");
729     return false;
730   }
731 
732   // Loop structure is the following:
733   //
734   // PreHeader
735   //   Header
736   //   ...
737   //   Latch
738   // LatchExit
739 
740   BasicBlock *NewPreHeader;
741   BasicBlock *NewExit = nullptr;
742   BasicBlock *PrologExit = nullptr;
743   BasicBlock *EpilogPreHeader = nullptr;
744   BasicBlock *PrologPreHeader = nullptr;
745 
746   if (UseEpilogRemainder) {
747     // If epilog remainder
748     // Split PreHeader to insert a branch around loop for unrolling.
749     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
750     NewPreHeader->setName(PreHeader->getName() + ".new");
751     // Split LatchExit to create phi nodes from branch above.
752     NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI,
753                                      nullptr, PreserveLCSSA);
754     // NewExit gets its DebugLoc from LatchExit, which is not part of the
755     // original Loop.
756     // Fix this by setting Loop's DebugLoc to NewExit.
757     auto *NewExitTerminator = NewExit->getTerminator();
758     NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
759     // Split NewExit to insert epilog remainder loop.
760     EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
761     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
762   } else {
763     // If prolog remainder
764     // Split the original preheader twice to insert prolog remainder loop
765     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
766     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
767     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
768                             DT, LI);
769     PrologExit->setName(Header->getName() + ".prol.loopexit");
770     // Split PrologExit to get NewPreHeader.
771     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
772     NewPreHeader->setName(PreHeader->getName() + ".new");
773   }
774   // Loop structure should be the following:
775   //  Epilog             Prolog
776   //
777   // PreHeader         PreHeader
778   // *NewPreHeader     *PrologPreHeader
779   //   Header          *PrologExit
780   //   ...             *NewPreHeader
781   //   Latch             Header
782   // *NewExit            ...
783   // *EpilogPreHeader    Latch
784   // LatchExit              LatchExit
785 
786   // Calculate conditions for branch around loop for unrolling
787   // in epilog case and around prolog remainder loop in prolog case.
788   // Compute the number of extra iterations required, which is:
789   //  extra iterations = run-time trip count % loop unroll factor
790   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
791   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
792                                             PreHeaderBR);
793   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
794                                           PreHeaderBR);
795   IRBuilder<> B(PreHeaderBR);
796   Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count);
797 
798   Value *BranchVal =
799       UseEpilogRemainder ? B.CreateICmpULT(BECount,
800                                            ConstantInt::get(BECount->getType(),
801                                                             Count - 1)) :
802                            B.CreateIsNotNull(ModVal, "lcmp.mod");
803   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
804   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
805   // Branch to either remainder (extra iterations) loop or unrolling loop.
806   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
807   PreHeaderBR->eraseFromParent();
808   if (DT) {
809     if (UseEpilogRemainder)
810       DT->changeImmediateDominator(NewExit, PreHeader);
811     else
812       DT->changeImmediateDominator(PrologExit, PreHeader);
813   }
814   Function *F = Header->getParent();
815   // Get an ordered list of blocks in the loop to help with the ordering of the
816   // cloned blocks in the prolog/epilog code
817   LoopBlocksDFS LoopBlocks(L);
818   LoopBlocks.perform(LI);
819 
820   //
821   // For each extra loop iteration, create a copy of the loop's basic blocks
822   // and generate a condition that branches to the copy depending on the
823   // number of 'left over' iterations.
824   //
825   std::vector<BasicBlock *> NewBlocks;
826   ValueToValueMapTy VMap;
827 
828   // For unroll factor 2 remainder loop will have 1 iterations.
829   // Do not create 1 iteration loop.
830   bool CreateRemainderLoop = (Count != 2);
831 
832   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
833   // the loop, otherwise we create a cloned loop to execute the extra
834   // iterations. This function adds the appropriate CFG connections.
835   BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
836   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
837   Loop *remainderLoop = CloneLoopBlocks(
838       L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder,
839       InsertTop, InsertBot,
840       NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
841 
842   // Assign the maximum possible trip count as the back edge weight for the
843   // remainder loop if the original loop comes with a branch weight.
844   if (remainderLoop && !UnrollRemainder)
845     updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count);
846 
847   // Insert the cloned blocks into the function.
848   F->getBasicBlockList().splice(InsertBot->getIterator(),
849                                 F->getBasicBlockList(),
850                                 NewBlocks[0]->getIterator(),
851                                 F->end());
852 
853   // Now the loop blocks are cloned and the other exiting blocks from the
854   // remainder are connected to the original Loop's exit blocks. The remaining
855   // work is to update the phi nodes in the original loop, and take in the
856   // values from the cloned region.
857   for (auto *BB : OtherExits) {
858     // Given we preserve LCSSA form, we know that the values used outside the
859     // loop will be used through these phi nodes at the exit blocks that are
860     // transformed below.
861     for (PHINode &PN : BB->phis()) {
862      unsigned oldNumOperands = PN.getNumIncomingValues();
863      // Add the incoming values from the remainder code to the end of the phi
864      // node.
865      for (unsigned i = 0; i < oldNumOperands; i++){
866        auto *PredBB =PN.getIncomingBlock(i);
867        if (PredBB == Latch)
868          // The latch exit is handled seperately, see connectX
869          continue;
870        if (!L->contains(PredBB))
871          // Even if we had dedicated exits, the code above inserted an
872          // extra branch which can reach the latch exit.
873          continue;
874 
875        auto *V = PN.getIncomingValue(i);
876        if (Instruction *I = dyn_cast<Instruction>(V))
877          if (L->contains(I))
878            V = VMap.lookup(I);
879        PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB]));
880      }
881    }
882 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
883     for (BasicBlock *SuccBB : successors(BB)) {
884       assert(!(any_of(OtherExits,
885                       [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
886                SuccBB == LatchExit) &&
887              "Breaks the definition of dedicated exits!");
888     }
889 #endif
890   }
891 
892   // Update the immediate dominator of the exit blocks and blocks that are
893   // reachable from the exit blocks. This is needed because we now have paths
894   // from both the original loop and the remainder code reaching the exit
895   // blocks. While the IDom of these exit blocks were from the original loop,
896   // now the IDom is the preheader (which decides whether the original loop or
897   // remainder code should run).
898   if (DT && !L->getExitingBlock()) {
899     SmallVector<BasicBlock *, 16> ChildrenToUpdate;
900     // NB! We have to examine the dom children of all loop blocks, not just
901     // those which are the IDom of the exit blocks. This is because blocks
902     // reachable from the exit blocks can have their IDom as the nearest common
903     // dominator of the exit blocks.
904     for (auto *BB : L->blocks()) {
905       auto *DomNodeBB = DT->getNode(BB);
906       for (auto *DomChild : DomNodeBB->children()) {
907         auto *DomChildBB = DomChild->getBlock();
908         if (!L->contains(LI->getLoopFor(DomChildBB)))
909           ChildrenToUpdate.push_back(DomChildBB);
910       }
911     }
912     for (auto *BB : ChildrenToUpdate)
913       DT->changeImmediateDominator(BB, PreHeader);
914   }
915 
916   // Loop structure should be the following:
917   //  Epilog             Prolog
918   //
919   // PreHeader         PreHeader
920   // NewPreHeader      PrologPreHeader
921   //   Header            PrologHeader
922   //   ...               ...
923   //   Latch             PrologLatch
924   // NewExit           PrologExit
925   // EpilogPreHeader   NewPreHeader
926   //   EpilogHeader      Header
927   //   ...               ...
928   //   EpilogLatch       Latch
929   // LatchExit              LatchExit
930 
931   // Rewrite the cloned instruction operands to use the values created when the
932   // clone is created.
933   for (BasicBlock *BB : NewBlocks) {
934     for (Instruction &I : *BB) {
935       RemapInstruction(&I, VMap,
936                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
937     }
938   }
939 
940   if (UseEpilogRemainder) {
941     // Connect the epilog code to the original loop and update the
942     // PHI functions.
943     ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
944                   EpilogPreHeader, NewPreHeader, VMap, DT, LI,
945                   PreserveLCSSA);
946 
947     // Update counter in loop for unrolling.
948     // I should be multiply of Count.
949     IRBuilder<> B2(NewPreHeader->getTerminator());
950     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
951     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
952     B2.SetInsertPoint(LatchBR);
953     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
954                                       Header->getFirstNonPHI());
955     Value *IdxSub =
956         B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
957                      NewIdx->getName() + ".nsub");
958     Value *IdxCmp;
959     if (LatchBR->getSuccessor(0) == Header)
960       IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
961     else
962       IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
963     NewIdx->addIncoming(TestVal, NewPreHeader);
964     NewIdx->addIncoming(IdxSub, Latch);
965     LatchBR->setCondition(IdxCmp);
966   } else {
967     // Connect the prolog code to the original loop and update the
968     // PHI functions.
969     ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
970                   NewPreHeader, VMap, DT, LI, PreserveLCSSA);
971   }
972 
973   // If this loop is nested, then the loop unroller changes the code in the any
974   // of its parent loops, so the Scalar Evolution pass needs to be run again.
975   SE->forgetTopmostLoop(L);
976 
977   // Verify that the Dom Tree is correct.
978 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
979   if (DT)
980     assert(DT->verify(DominatorTree::VerificationLevel::Full));
981 #endif
982 
983   // Canonicalize to LoopSimplifyForm both original and remainder loops. We
984   // cannot rely on the LoopUnrollPass to do this because it only does
985   // canonicalization for parent/subloops and not the sibling loops.
986   if (OtherExits.size() > 0) {
987     // Generate dedicated exit blocks for the original loop, to preserve
988     // LoopSimplifyForm.
989     formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
990     // Generate dedicated exit blocks for the remainder loop if one exists, to
991     // preserve LoopSimplifyForm.
992     if (remainderLoop)
993       formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA);
994   }
995 
996   auto UnrollResult = LoopUnrollResult::Unmodified;
997   if (remainderLoop && UnrollRemainder) {
998     LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
999     UnrollResult =
1000         UnrollLoop(remainderLoop,
1001                    {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false,
1002                     /*AllowExpensiveTripCount*/ false,
1003                     /*UnrollRemainder*/ false, ForgetAllSCEV},
1004                    LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA);
1005   }
1006 
1007   if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
1008     *ResultLoop = remainderLoop;
1009   NumRuntimeUnrolled++;
1010   return true;
1011 }
1012