xref: /llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp (revision 423da618354aa31ebc80681ad9ad71ddf6b0fcfd)
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities for loops with run-time
10 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
11 // trip counts.
12 //
13 // The functions in this file are used to generate extra code when the
14 // run-time trip count modulo the unroll factor is not 0.  When this is the
15 // case, we need to generate code to execute these 'left over' iterations.
16 //
17 // The current strategy generates an if-then-else sequence prior to the
18 // unrolled loop to execute the 'left over' iterations before or after the
19 // unrolled loop.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
42 #include "llvm/Transforms/Utils/UnrollLoop.h"
43 #include <algorithm>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "loop-unroll"
48 
49 STATISTIC(NumRuntimeUnrolled,
50           "Number of loops unrolled with run-time trip counts");
51 static cl::opt<bool> UnrollRuntimeMultiExit(
52     "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
53     cl::desc("Allow runtime unrolling for loops with multiple exits, when "
54              "epilog is generated"));
55 static cl::opt<bool> UnrollRuntimeOtherExitPredictable(
56     "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden,
57     cl::desc("Assume the non latch exit block to be predictable"));
58 
59 /// Connect the unrolling prolog code to the original loop.
60 /// The unrolling prolog code contains code to execute the
61 /// 'extra' iterations if the run-time trip count modulo the
62 /// unroll count is non-zero.
63 ///
64 /// This function performs the following:
65 /// - Create PHI nodes at prolog end block to combine values
66 ///   that exit the prolog code and jump around the prolog.
67 /// - Add a PHI operand to a PHI node at the loop exit block
68 ///   for values that exit the prolog and go around the loop.
69 /// - Branch around the original loop if the trip count is less
70 ///   than the unroll factor.
71 ///
72 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
73                           BasicBlock *PrologExit,
74                           BasicBlock *OriginalLoopLatchExit,
75                           BasicBlock *PreHeader, BasicBlock *NewPreHeader,
76                           ValueToValueMapTy &VMap, DominatorTree *DT,
77                           LoopInfo *LI, bool PreserveLCSSA) {
78   // Loop structure should be the following:
79   // Preheader
80   //  PrologHeader
81   //  ...
82   //  PrologLatch
83   //  PrologExit
84   //   NewPreheader
85   //    Header
86   //    ...
87   //    Latch
88   //      LatchExit
89   BasicBlock *Latch = L->getLoopLatch();
90   assert(Latch && "Loop must have a latch");
91   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
92 
93   // Create a PHI node for each outgoing value from the original loop
94   // (which means it is an outgoing value from the prolog code too).
95   // The new PHI node is inserted in the prolog end basic block.
96   // The new PHI node value is added as an operand of a PHI node in either
97   // the loop header or the loop exit block.
98   for (BasicBlock *Succ : successors(Latch)) {
99     for (PHINode &PN : Succ->phis()) {
100       // Add a new PHI node to the prolog end block and add the
101       // appropriate incoming values.
102       // TODO: This code assumes that the PrologExit (or the LatchExit block for
103       // prolog loop) contains only one predecessor from the loop, i.e. the
104       // PrologLatch. When supporting multiple-exiting block loops, we can have
105       // two or more blocks that have the LatchExit as the target in the
106       // original loop.
107       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
108                                        PrologExit->getFirstNonPHI());
109       // Adding a value to the new PHI node from the original loop preheader.
110       // This is the value that skips all the prolog code.
111       if (L->contains(&PN)) {
112         // Succ is loop header.
113         NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
114                            PreHeader);
115       } else {
116         // Succ is LatchExit.
117         NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
118       }
119 
120       Value *V = PN.getIncomingValueForBlock(Latch);
121       if (Instruction *I = dyn_cast<Instruction>(V)) {
122         if (L->contains(I)) {
123           V = VMap.lookup(I);
124         }
125       }
126       // Adding a value to the new PHI node from the last prolog block
127       // that was created.
128       NewPN->addIncoming(V, PrologLatch);
129 
130       // Update the existing PHI node operand with the value from the
131       // new PHI node.  How this is done depends on if the existing
132       // PHI node is in the original loop block, or the exit block.
133       if (L->contains(&PN))
134         PN.setIncomingValueForBlock(NewPreHeader, NewPN);
135       else
136         PN.addIncoming(NewPN, PrologExit);
137     }
138   }
139 
140   // Make sure that created prolog loop is in simplified form
141   SmallVector<BasicBlock *, 4> PrologExitPreds;
142   Loop *PrologLoop = LI->getLoopFor(PrologLatch);
143   if (PrologLoop) {
144     for (BasicBlock *PredBB : predecessors(PrologExit))
145       if (PrologLoop->contains(PredBB))
146         PrologExitPreds.push_back(PredBB);
147 
148     SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
149                            nullptr, PreserveLCSSA);
150   }
151 
152   // Create a branch around the original loop, which is taken if there are no
153   // iterations remaining to be executed after running the prologue.
154   Instruction *InsertPt = PrologExit->getTerminator();
155   IRBuilder<> B(InsertPt);
156 
157   assert(Count != 0 && "nonsensical Count!");
158 
159   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
160   // This means %xtraiter is (BECount + 1) and all of the iterations of this
161   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
162   // then (BECount + 1) cannot unsigned-overflow.
163   Value *BrLoopExit =
164       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
165   // Split the exit to maintain loop canonicalization guarantees
166   SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
167   SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
168                          nullptr, PreserveLCSSA);
169   // Add the branch to the exit block (around the unrolled loop)
170   B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
171   InsertPt->eraseFromParent();
172   if (DT) {
173     auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit,
174                                                   PrologExit);
175     DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom);
176   }
177 }
178 
179 /// Connect the unrolling epilog code to the original loop.
180 /// The unrolling epilog code contains code to execute the
181 /// 'extra' iterations if the run-time trip count modulo the
182 /// unroll count is non-zero.
183 ///
184 /// This function performs the following:
185 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
186 /// - Create PHI nodes at the unrolling loop exit to combine
187 ///   values that exit the unrolling loop code and jump around it.
188 /// - Update PHI operands in the epilog loop by the new PHI nodes
189 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
190 ///
191 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
192                           BasicBlock *Exit, BasicBlock *PreHeader,
193                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
194                           ValueToValueMapTy &VMap, DominatorTree *DT,
195                           LoopInfo *LI, bool PreserveLCSSA)  {
196   BasicBlock *Latch = L->getLoopLatch();
197   assert(Latch && "Loop must have a latch");
198   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
199 
200   // Loop structure should be the following:
201   //
202   // PreHeader
203   // NewPreHeader
204   //   Header
205   //   ...
206   //   Latch
207   // NewExit (PN)
208   // EpilogPreHeader
209   //   EpilogHeader
210   //   ...
211   //   EpilogLatch
212   // Exit (EpilogPN)
213 
214   // Update PHI nodes at NewExit and Exit.
215   for (PHINode &PN : NewExit->phis()) {
216     // PN should be used in another PHI located in Exit block as
217     // Exit was split by SplitBlockPredecessors into Exit and NewExit
218     // Basicaly it should look like:
219     // NewExit:
220     //   PN = PHI [I, Latch]
221     // ...
222     // Exit:
223     //   EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil]
224     //
225     // Exits from non-latch blocks point to the original exit block and the
226     // epilogue edges have already been added.
227     //
228     // There is EpilogPreHeader incoming block instead of NewExit as
229     // NewExit was spilt 1 more time to get EpilogPreHeader.
230     assert(PN.hasOneUse() && "The phi should have 1 use");
231     PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
232     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
233 
234     // Add incoming PreHeader from branch around the Loop
235     PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
236 
237     Value *V = PN.getIncomingValueForBlock(Latch);
238     Instruction *I = dyn_cast<Instruction>(V);
239     if (I && L->contains(I))
240       // If value comes from an instruction in the loop add VMap value.
241       V = VMap.lookup(I);
242     // For the instruction out of the loop, constant or undefined value
243     // insert value itself.
244     EpilogPN->addIncoming(V, EpilogLatch);
245 
246     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
247           "EpilogPN should have EpilogPreHeader incoming block");
248     // Change EpilogPreHeader incoming block to NewExit.
249     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
250                                NewExit);
251     // Now PHIs should look like:
252     // NewExit:
253     //   PN = PHI [I, Latch], [undef, PreHeader]
254     // ...
255     // Exit:
256     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
257   }
258 
259   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
260   // Update corresponding PHI nodes in epilog loop.
261   for (BasicBlock *Succ : successors(Latch)) {
262     // Skip this as we already updated phis in exit blocks.
263     if (!L->contains(Succ))
264       continue;
265     for (PHINode &PN : Succ->phis()) {
266       // Add new PHI nodes to the loop exit block and update epilog
267       // PHIs with the new PHI values.
268       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
269                                        NewExit->getFirstNonPHI());
270       // Adding a value to the new PHI node from the unrolling loop preheader.
271       NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
272       // Adding a value to the new PHI node from the unrolling loop latch.
273       NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
274 
275       // Update the existing PHI node operand with the value from the new PHI
276       // node.  Corresponding instruction in epilog loop should be PHI.
277       PHINode *VPN = cast<PHINode>(VMap[&PN]);
278       VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN);
279     }
280   }
281 
282   Instruction *InsertPt = NewExit->getTerminator();
283   IRBuilder<> B(InsertPt);
284   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
285   assert(Exit && "Loop must have a single exit block only");
286   // Split the epilogue exit to maintain loop canonicalization guarantees
287   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
288   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
289                          PreserveLCSSA);
290   // Add the branch to the exit block (around the unrolling loop)
291   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
292   InsertPt->eraseFromParent();
293   if (DT) {
294     auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit);
295     DT->changeImmediateDominator(Exit, NewDom);
296   }
297 
298   // Split the main loop exit to maintain canonicalization guarantees.
299   SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
300   SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
301                          PreserveLCSSA);
302 }
303 
304 /// Create a clone of the blocks in a loop and connect them together. A new
305 /// loop will be created including all cloned blocks, and the iterator of the
306 /// new loop switched to count NewIter down to 0.
307 /// The cloned blocks should be inserted between InsertTop and InsertBot.
308 /// InsertTop should be new preheader, InsertBot new loop exit.
309 /// Returns the new cloned loop that is created.
310 static Loop *
311 CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder,
312                 const bool UnrollRemainder,
313                 BasicBlock *InsertTop,
314                 BasicBlock *InsertBot, BasicBlock *Preheader,
315                 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
316                 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
317   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
318   BasicBlock *Header = L->getHeader();
319   BasicBlock *Latch = L->getLoopLatch();
320   Function *F = Header->getParent();
321   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
322   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
323   Loop *ParentLoop = L->getParentLoop();
324   NewLoopsMap NewLoops;
325   NewLoops[ParentLoop] = ParentLoop;
326 
327   // For each block in the original loop, create a new copy,
328   // and update the value map with the newly created values.
329   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
330     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
331     NewBlocks.push_back(NewBB);
332 
333     addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
334 
335     VMap[*BB] = NewBB;
336     if (Header == *BB) {
337       // For the first block, add a CFG connection to this newly
338       // created block.
339       InsertTop->getTerminator()->setSuccessor(0, NewBB);
340     }
341 
342     if (DT) {
343       if (Header == *BB) {
344         // The header is dominated by the preheader.
345         DT->addNewBlock(NewBB, InsertTop);
346       } else {
347         // Copy information from original loop to unrolled loop.
348         BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
349         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
350       }
351     }
352 
353     if (Latch == *BB) {
354       // For the last block, create a loop back to cloned head.
355       VMap.erase((*BB)->getTerminator());
356       // Use an incrementing IV.  Pre-incr/post-incr is backedge/trip count.
357       // Subtle: NewIter can be 0 if we wrapped when computing the trip count,
358       // thus we must compare the post-increment (wrapping) value.
359       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
360       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
361       IRBuilder<> Builder(LatchBR);
362       PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
363                                         suffix + ".iter",
364                                         FirstLoopBB->getFirstNonPHI());
365       auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
366       auto *One = ConstantInt::get(NewIdx->getType(), 1);
367       Value *IdxNext = Builder.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
368       Value *IdxCmp = Builder.CreateICmpNE(IdxNext, NewIter, NewIdx->getName() + ".cmp");
369       Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
370       NewIdx->addIncoming(Zero, InsertTop);
371       NewIdx->addIncoming(IdxNext, NewBB);
372       LatchBR->eraseFromParent();
373     }
374   }
375 
376   // Change the incoming values to the ones defined in the preheader or
377   // cloned loop.
378   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
379     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
380     unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
381     NewPHI->setIncomingBlock(idx, InsertTop);
382     BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
383     idx = NewPHI->getBasicBlockIndex(Latch);
384     Value *InVal = NewPHI->getIncomingValue(idx);
385     NewPHI->setIncomingBlock(idx, NewLatch);
386     if (Value *V = VMap.lookup(InVal))
387       NewPHI->setIncomingValue(idx, V);
388   }
389 
390   Loop *NewLoop = NewLoops[L];
391   assert(NewLoop && "L should have been cloned");
392   MDNode *LoopID = NewLoop->getLoopID();
393 
394   // Only add loop metadata if the loop is not going to be completely
395   // unrolled.
396   if (UnrollRemainder)
397     return NewLoop;
398 
399   Optional<MDNode *> NewLoopID = makeFollowupLoopID(
400       LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
401   if (NewLoopID.hasValue()) {
402     NewLoop->setLoopID(NewLoopID.getValue());
403 
404     // Do not setLoopAlreadyUnrolled if loop attributes have been defined
405     // explicitly.
406     return NewLoop;
407   }
408 
409   // Add unroll disable metadata to disable future unrolling for this loop.
410   NewLoop->setLoopAlreadyUnrolled();
411   return NewLoop;
412 }
413 
414 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
415 /// we return true only if UnrollRuntimeMultiExit is set to true.
416 static bool canProfitablyUnrollMultiExitLoop(
417     Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
418     bool UseEpilogRemainder) {
419 
420   // Priority goes to UnrollRuntimeMultiExit if it's supplied.
421   if (UnrollRuntimeMultiExit.getNumOccurrences())
422     return UnrollRuntimeMultiExit;
423 
424   // TODO: We used to bail out for correctness (now fixed).  Under what
425   // circumstances is this case profitable to allow?
426   if (!LatchExit->getSinglePredecessor())
427     return false;
428 
429   // TODO: We used to bail out for correctness (now fixed).  Under what
430   // circumstances is this case profitable to allow?
431   if (UseEpilogRemainder && L->getParentLoop())
432     return false;
433 
434   // The main pain point with multi-exit loop unrolling is that once unrolled,
435   // we will not be able to merge all blocks into a straight line code.
436   // There are branches within the unrolled loop that go to the OtherExits.
437   // The second point is the increase in code size, but this is true
438   // irrespective of multiple exits.
439 
440   // Note: Both the heuristics below are coarse grained. We are essentially
441   // enabling unrolling of loops that have a single side exit other than the
442   // normal LatchExit (i.e. exiting into a deoptimize block).
443   // The heuristics considered are:
444   // 1. low number of branches in the unrolled version.
445   // 2. high predictability of these extra branches.
446   // We avoid unrolling loops that have more than two exiting blocks. This
447   // limits the total number of branches in the unrolled loop to be atmost
448   // the unroll factor (since one of the exiting blocks is the latch block).
449   SmallVector<BasicBlock*, 4> ExitingBlocks;
450   L->getExitingBlocks(ExitingBlocks);
451   if (ExitingBlocks.size() > 2)
452     return false;
453 
454   // Allow unrolling of loops with no non latch exit blocks.
455   if (OtherExits.size() == 0)
456     return true;
457 
458   // The second heuristic is that L has one exit other than the latchexit and
459   // that exit is a deoptimize block. We know that deoptimize blocks are rarely
460   // taken, which also implies the branch leading to the deoptimize block is
461   // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we
462   // assume the other exit branch is predictable even if it has no deoptimize
463   // call.
464   return (OtherExits.size() == 1 &&
465           (UnrollRuntimeOtherExitPredictable ||
466            OtherExits[0]->getTerminatingDeoptimizeCall()));
467   // TODO: These can be fine-tuned further to consider code size or deopt states
468   // that are captured by the deoptimize exit block.
469   // Also, we can extend this to support more cases, if we actually
470   // know of kinds of multiexit loops that would benefit from unrolling.
471 }
472 
473 // Assign the maximum possible trip count as the back edge weight for the
474 // remainder loop if the original loop comes with a branch weight.
475 static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop,
476                                                      Loop *RemainderLoop,
477                                                      uint64_t UnrollFactor) {
478   uint64_t TrueWeight, FalseWeight;
479   BranchInst *LatchBR =
480       cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
481   if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
482     return;
483   uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader()
484                             ? FalseWeight
485                             : TrueWeight;
486   assert(UnrollFactor > 1);
487   uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight;
488   BasicBlock *Header = RemainderLoop->getHeader();
489   BasicBlock *Latch = RemainderLoop->getLoopLatch();
490   auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator());
491   unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1);
492   MDBuilder MDB(RemainderLatchBR->getContext());
493   MDNode *WeightNode =
494     HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight)
495                 : MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
496   RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
497 }
498 
499 /// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain
500 /// accounting for the possibility of unsigned overflow in the 2s complement
501 /// domain. Preconditions:
502 /// 1) TripCount = BECount + 1 (allowing overflow)
503 /// 2) Log2(Count) <= BitWidth(BECount)
504 static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount,
505                                   Value *TripCount, unsigned Count) {
506   // Note that TripCount is BECount + 1.
507   if (isPowerOf2_32(Count))
508     // If the expression is zero, then either:
509     //  1. There are no iterations to be run in the prolog/epilog loop.
510     // OR
511     //  2. The addition computing TripCount overflowed.
512     //
513     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
514     // the number of iterations that remain to be run in the original loop is a
515     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a
516     // precondition of this method).
517     return B.CreateAnd(TripCount, Count - 1, "xtraiter");
518 
519   // As (BECount + 1) can potentially unsigned overflow we count
520   // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
521   Constant *CountC = ConstantInt::get(BECount->getType(), Count);
522   Value *ModValTmp = B.CreateURem(BECount, CountC);
523   Value *ModValAdd = B.CreateAdd(ModValTmp,
524                                  ConstantInt::get(ModValTmp->getType(), 1));
525   // At that point (BECount % Count) + 1 could be equal to Count.
526   // To handle this case we need to take mod by Count one more time.
527   return B.CreateURem(ModValAdd, CountC, "xtraiter");
528 }
529 
530 
531 /// Insert code in the prolog/epilog code when unrolling a loop with a
532 /// run-time trip-count.
533 ///
534 /// This method assumes that the loop unroll factor is total number
535 /// of loop bodies in the loop after unrolling. (Some folks refer
536 /// to the unroll factor as the number of *extra* copies added).
537 /// We assume also that the loop unroll factor is a power-of-two. So, after
538 /// unrolling the loop, the number of loop bodies executed is 2,
539 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
540 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
541 /// the switch instruction is generated.
542 ///
543 /// ***Prolog case***
544 ///        extraiters = tripcount % loopfactor
545 ///        if (extraiters == 0) jump Loop:
546 ///        else jump Prol:
547 /// Prol:  LoopBody;
548 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
549 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
550 ///        if (tripcount < loopfactor) jump End:
551 /// Loop:
552 /// ...
553 /// End:
554 ///
555 /// ***Epilog case***
556 ///        extraiters = tripcount % loopfactor
557 ///        if (tripcount < loopfactor) jump LoopExit:
558 ///        unroll_iters = tripcount - extraiters
559 /// Loop:  LoopBody; (executes unroll_iter times);
560 ///        unroll_iter -= 1
561 ///        if (unroll_iter != 0) jump Loop:
562 /// LoopExit:
563 ///        if (extraiters == 0) jump EpilExit:
564 /// Epil:  LoopBody; (executes extraiters times)
565 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
566 ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
567 /// EpilExit:
568 
569 bool llvm::UnrollRuntimeLoopRemainder(
570     Loop *L, unsigned Count, bool AllowExpensiveTripCount,
571     bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV,
572     LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
573     const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) {
574   LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
575   LLVM_DEBUG(L->dump());
576   LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
577                                 : dbgs() << "Using prolog remainder.\n");
578 
579   // Make sure the loop is in canonical form.
580   if (!L->isLoopSimplifyForm()) {
581     LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
582     return false;
583   }
584 
585   // Guaranteed by LoopSimplifyForm.
586   BasicBlock *Latch = L->getLoopLatch();
587   BasicBlock *Header = L->getHeader();
588 
589   BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
590 
591   if (!LatchBR || LatchBR->isUnconditional()) {
592     // The loop-rotate pass can be helpful to avoid this in many cases.
593     LLVM_DEBUG(
594         dbgs()
595         << "Loop latch not terminated by a conditional branch.\n");
596     return false;
597   }
598 
599   unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
600   BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
601 
602   if (L->contains(LatchExit)) {
603     // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
604     // targets of the Latch be an exit block out of the loop.
605     LLVM_DEBUG(
606         dbgs()
607         << "One of the loop latch successors must be the exit block.\n");
608     return false;
609   }
610 
611   // These are exit blocks other than the target of the latch exiting block.
612   SmallVector<BasicBlock *, 4> OtherExits;
613   L->getUniqueNonLatchExitBlocks(OtherExits);
614   // Support only single exit and exiting block unless multi-exit loop
615   // unrolling is enabled.
616   if (!L->getExitingBlock() || OtherExits.size()) {
617     // We rely on LCSSA form being preserved when the exit blocks are transformed.
618     // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.)
619     if (!PreserveLCSSA)
620       return false;
621 
622     if (!canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit,
623                                           UseEpilogRemainder)) {
624       LLVM_DEBUG(
625           dbgs()
626           << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
627              "enabled!\n");
628       return false;
629     }
630   }
631   // Use Scalar Evolution to compute the trip count. This allows more loops to
632   // be unrolled than relying on induction var simplification.
633   if (!SE)
634     return false;
635 
636   // Only unroll loops with a computable trip count, and the trip count needs
637   // to be an int value (allowing a pointer type is a TODO item).
638   // We calculate the backedge count by using getExitCount on the Latch block,
639   // which is proven to be the only exiting block in this loop. This is same as
640   // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
641   // exiting blocks).
642   const SCEV *BECountSC = SE->getExitCount(L, Latch);
643   if (isa<SCEVCouldNotCompute>(BECountSC) ||
644       !BECountSC->getType()->isIntegerTy()) {
645     LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
646     return false;
647   }
648 
649   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
650 
651   // Add 1 since the backedge count doesn't include the first loop iteration.
652   // (Note that overflow can occur, this is handled explicitly below)
653   const SCEV *TripCountSC =
654       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
655   if (isa<SCEVCouldNotCompute>(TripCountSC)) {
656     LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
657     return false;
658   }
659 
660   BasicBlock *PreHeader = L->getLoopPreheader();
661   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
662   const DataLayout &DL = Header->getModule()->getDataLayout();
663   SCEVExpander Expander(*SE, DL, "loop-unroll");
664   if (!AllowExpensiveTripCount &&
665       Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget,
666                                    TTI, PreHeaderBR)) {
667     LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
668     return false;
669   }
670 
671   // This constraint lets us deal with an overflowing trip count easily; see the
672   // comment on ModVal below.
673   if (Log2_32(Count) > BEWidth) {
674     LLVM_DEBUG(
675         dbgs()
676         << "Count failed constraint on overflow trip count calculation.\n");
677     return false;
678   }
679 
680   // Loop structure is the following:
681   //
682   // PreHeader
683   //   Header
684   //   ...
685   //   Latch
686   // LatchExit
687 
688   BasicBlock *NewPreHeader;
689   BasicBlock *NewExit = nullptr;
690   BasicBlock *PrologExit = nullptr;
691   BasicBlock *EpilogPreHeader = nullptr;
692   BasicBlock *PrologPreHeader = nullptr;
693 
694   if (UseEpilogRemainder) {
695     // If epilog remainder
696     // Split PreHeader to insert a branch around loop for unrolling.
697     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
698     NewPreHeader->setName(PreHeader->getName() + ".new");
699     // Split LatchExit to create phi nodes from branch above.
700     NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI,
701                                      nullptr, PreserveLCSSA);
702     // NewExit gets its DebugLoc from LatchExit, which is not part of the
703     // original Loop.
704     // Fix this by setting Loop's DebugLoc to NewExit.
705     auto *NewExitTerminator = NewExit->getTerminator();
706     NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
707     // Split NewExit to insert epilog remainder loop.
708     EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
709     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
710 
711     // If the latch exits from multiple level of nested loops, then
712     // by assumption there must be another loop exit which branches to the
713     // outer loop and we must adjust the loop for the newly inserted blocks
714     // to account for the fact that our epilogue is still in the same outer
715     // loop. Note that this leaves loopinfo temporarily out of sync with the
716     // CFG until the actual epilogue loop is inserted.
717     if (auto *ParentL = L->getParentLoop())
718       if (LI->getLoopFor(LatchExit) != ParentL) {
719         LI->removeBlock(NewExit);
720         ParentL->addBasicBlockToLoop(NewExit, *LI);
721         LI->removeBlock(EpilogPreHeader);
722         ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI);
723       }
724 
725   } else {
726     // If prolog remainder
727     // Split the original preheader twice to insert prolog remainder loop
728     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
729     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
730     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
731                             DT, LI);
732     PrologExit->setName(Header->getName() + ".prol.loopexit");
733     // Split PrologExit to get NewPreHeader.
734     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
735     NewPreHeader->setName(PreHeader->getName() + ".new");
736   }
737   // Loop structure should be the following:
738   //  Epilog             Prolog
739   //
740   // PreHeader         PreHeader
741   // *NewPreHeader     *PrologPreHeader
742   //   Header          *PrologExit
743   //   ...             *NewPreHeader
744   //   Latch             Header
745   // *NewExit            ...
746   // *EpilogPreHeader    Latch
747   // LatchExit              LatchExit
748 
749   // Calculate conditions for branch around loop for unrolling
750   // in epilog case and around prolog remainder loop in prolog case.
751   // Compute the number of extra iterations required, which is:
752   //  extra iterations = run-time trip count % loop unroll factor
753   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
754   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
755                                             PreHeaderBR);
756   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
757                                           PreHeaderBR);
758   IRBuilder<> B(PreHeaderBR);
759   Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count);
760 
761   Value *BranchVal =
762       UseEpilogRemainder ? B.CreateICmpULT(BECount,
763                                            ConstantInt::get(BECount->getType(),
764                                                             Count - 1)) :
765                            B.CreateIsNotNull(ModVal, "lcmp.mod");
766   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
767   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
768   // Branch to either remainder (extra iterations) loop or unrolling loop.
769   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
770   PreHeaderBR->eraseFromParent();
771   if (DT) {
772     if (UseEpilogRemainder)
773       DT->changeImmediateDominator(NewExit, PreHeader);
774     else
775       DT->changeImmediateDominator(PrologExit, PreHeader);
776   }
777   Function *F = Header->getParent();
778   // Get an ordered list of blocks in the loop to help with the ordering of the
779   // cloned blocks in the prolog/epilog code
780   LoopBlocksDFS LoopBlocks(L);
781   LoopBlocks.perform(LI);
782 
783   //
784   // For each extra loop iteration, create a copy of the loop's basic blocks
785   // and generate a condition that branches to the copy depending on the
786   // number of 'left over' iterations.
787   //
788   std::vector<BasicBlock *> NewBlocks;
789   ValueToValueMapTy VMap;
790 
791   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
792   // the loop, otherwise we create a cloned loop to execute the extra
793   // iterations. This function adds the appropriate CFG connections.
794   BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
795   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
796   Loop *remainderLoop = CloneLoopBlocks(
797       L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot,
798       NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
799 
800   // Assign the maximum possible trip count as the back edge weight for the
801   // remainder loop if the original loop comes with a branch weight.
802   if (remainderLoop && !UnrollRemainder)
803     updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count);
804 
805   // Insert the cloned blocks into the function.
806   F->getBasicBlockList().splice(InsertBot->getIterator(),
807                                 F->getBasicBlockList(),
808                                 NewBlocks[0]->getIterator(),
809                                 F->end());
810 
811   // Now the loop blocks are cloned and the other exiting blocks from the
812   // remainder are connected to the original Loop's exit blocks. The remaining
813   // work is to update the phi nodes in the original loop, and take in the
814   // values from the cloned region.
815   for (auto *BB : OtherExits) {
816     // Given we preserve LCSSA form, we know that the values used outside the
817     // loop will be used through these phi nodes at the exit blocks that are
818     // transformed below.
819     for (PHINode &PN : BB->phis()) {
820      unsigned oldNumOperands = PN.getNumIncomingValues();
821      // Add the incoming values from the remainder code to the end of the phi
822      // node.
823      for (unsigned i = 0; i < oldNumOperands; i++){
824        auto *PredBB =PN.getIncomingBlock(i);
825        if (PredBB == Latch)
826          // The latch exit is handled seperately, see connectX
827          continue;
828        if (!L->contains(PredBB))
829          // Even if we had dedicated exits, the code above inserted an
830          // extra branch which can reach the latch exit.
831          continue;
832 
833        auto *V = PN.getIncomingValue(i);
834        if (Instruction *I = dyn_cast<Instruction>(V))
835          if (L->contains(I))
836            V = VMap.lookup(I);
837        PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB]));
838      }
839    }
840 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
841     for (BasicBlock *SuccBB : successors(BB)) {
842       assert(!(llvm::is_contained(OtherExits, SuccBB) || SuccBB == LatchExit) &&
843              "Breaks the definition of dedicated exits!");
844     }
845 #endif
846   }
847 
848   // Update the immediate dominator of the exit blocks and blocks that are
849   // reachable from the exit blocks. This is needed because we now have paths
850   // from both the original loop and the remainder code reaching the exit
851   // blocks. While the IDom of these exit blocks were from the original loop,
852   // now the IDom is the preheader (which decides whether the original loop or
853   // remainder code should run).
854   if (DT && !L->getExitingBlock()) {
855     SmallVector<BasicBlock *, 16> ChildrenToUpdate;
856     // NB! We have to examine the dom children of all loop blocks, not just
857     // those which are the IDom of the exit blocks. This is because blocks
858     // reachable from the exit blocks can have their IDom as the nearest common
859     // dominator of the exit blocks.
860     for (auto *BB : L->blocks()) {
861       auto *DomNodeBB = DT->getNode(BB);
862       for (auto *DomChild : DomNodeBB->children()) {
863         auto *DomChildBB = DomChild->getBlock();
864         if (!L->contains(LI->getLoopFor(DomChildBB)))
865           ChildrenToUpdate.push_back(DomChildBB);
866       }
867     }
868     for (auto *BB : ChildrenToUpdate)
869       DT->changeImmediateDominator(BB, PreHeader);
870   }
871 
872   // Loop structure should be the following:
873   //  Epilog             Prolog
874   //
875   // PreHeader         PreHeader
876   // NewPreHeader      PrologPreHeader
877   //   Header            PrologHeader
878   //   ...               ...
879   //   Latch             PrologLatch
880   // NewExit           PrologExit
881   // EpilogPreHeader   NewPreHeader
882   //   EpilogHeader      Header
883   //   ...               ...
884   //   EpilogLatch       Latch
885   // LatchExit              LatchExit
886 
887   // Rewrite the cloned instruction operands to use the values created when the
888   // clone is created.
889   for (BasicBlock *BB : NewBlocks) {
890     for (Instruction &I : *BB) {
891       RemapInstruction(&I, VMap,
892                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
893     }
894   }
895 
896   if (UseEpilogRemainder) {
897     // Connect the epilog code to the original loop and update the
898     // PHI functions.
899     ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
900                   EpilogPreHeader, NewPreHeader, VMap, DT, LI,
901                   PreserveLCSSA);
902 
903     // Update counter in loop for unrolling.
904     // Use an incrementing IV.  Pre-incr/post-incr is backedge/trip count.
905     // Subtle: TestVal can be 0 if we wrapped when computing the trip count,
906     // thus we must compare the post-increment (wrapping) value.
907     IRBuilder<> B2(NewPreHeader->getTerminator());
908     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
909     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
910     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
911                                       Header->getFirstNonPHI());
912     B2.SetInsertPoint(LatchBR);
913     auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
914     auto *One = ConstantInt::get(NewIdx->getType(), 1);
915     Value *IdxNext = B2.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
916     auto Pred = LatchBR->getSuccessor(0) == Header ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
917     Value *IdxCmp = B2.CreateICmp(Pred, IdxNext, TestVal, NewIdx->getName() + ".ncmp");
918     NewIdx->addIncoming(Zero, NewPreHeader);
919     NewIdx->addIncoming(IdxNext, Latch);
920     LatchBR->setCondition(IdxCmp);
921   } else {
922     // Connect the prolog code to the original loop and update the
923     // PHI functions.
924     ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
925                   NewPreHeader, VMap, DT, LI, PreserveLCSSA);
926   }
927 
928   // If this loop is nested, then the loop unroller changes the code in the any
929   // of its parent loops, so the Scalar Evolution pass needs to be run again.
930   SE->forgetTopmostLoop(L);
931 
932   // Verify that the Dom Tree and Loop Info are correct.
933 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
934   if (DT) {
935     assert(DT->verify(DominatorTree::VerificationLevel::Full));
936     LI->verify(*DT);
937   }
938 #endif
939 
940   // For unroll factor 2 remainder loop will have 1 iteration.
941   if (Count == 2 && DT && LI && SE) {
942     // TODO: This code could probably be pulled out into a helper function
943     // (e.g. breakLoopBackedgeAndSimplify) and reused in loop-deletion.
944     BasicBlock *RemainderLatch = remainderLoop->getLoopLatch();
945     assert(RemainderLatch);
946     SmallVector<BasicBlock*> RemainderBlocks(remainderLoop->getBlocks().begin(),
947                                              remainderLoop->getBlocks().end());
948     breakLoopBackedge(remainderLoop, *DT, *SE, *LI, nullptr);
949     remainderLoop = nullptr;
950 
951     // Simplify loop values after breaking the backedge
952     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
953     SmallVector<WeakTrackingVH, 16> DeadInsts;
954     for (BasicBlock *BB : RemainderBlocks) {
955       for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
956         if (Value *V = SimplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
957           if (LI->replacementPreservesLCSSAForm(&Inst, V))
958             Inst.replaceAllUsesWith(V);
959         if (isInstructionTriviallyDead(&Inst))
960           DeadInsts.emplace_back(&Inst);
961       }
962       // We can't do recursive deletion until we're done iterating, as we might
963       // have a phi which (potentially indirectly) uses instructions later in
964       // the block we're iterating through.
965       RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
966     }
967 
968     // Merge latch into exit block.
969     auto *ExitBB = RemainderLatch->getSingleSuccessor();
970     assert(ExitBB && "required after breaking cond br backedge");
971     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
972     MergeBlockIntoPredecessor(ExitBB, &DTU, LI);
973   }
974 
975   // Canonicalize to LoopSimplifyForm both original and remainder loops. We
976   // cannot rely on the LoopUnrollPass to do this because it only does
977   // canonicalization for parent/subloops and not the sibling loops.
978   if (OtherExits.size() > 0) {
979     // Generate dedicated exit blocks for the original loop, to preserve
980     // LoopSimplifyForm.
981     formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
982     // Generate dedicated exit blocks for the remainder loop if one exists, to
983     // preserve LoopSimplifyForm.
984     if (remainderLoop)
985       formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA);
986   }
987 
988   auto UnrollResult = LoopUnrollResult::Unmodified;
989   if (remainderLoop && UnrollRemainder) {
990     LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
991     UnrollResult =
992         UnrollLoop(remainderLoop,
993                    {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false,
994                     /*AllowExpensiveTripCount*/ false,
995                     /*UnrollRemainder*/ false, ForgetAllSCEV},
996                    LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA);
997   }
998 
999   if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
1000     *ResultLoop = remainderLoop;
1001   NumRuntimeUnrolled++;
1002   return true;
1003 }
1004