1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements some loop unrolling utilities for loops with run-time 10 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 11 // trip counts. 12 // 13 // The functions in this file are used to generate extra code when the 14 // run-time trip count modulo the unroll factor is not 0. When this is the 15 // case, we need to generate code to execute these 'left over' iterations. 16 // 17 // The current strategy generates an if-then-else sequence prior to the 18 // unrolled loop to execute the 'left over' iterations before or after the 19 // unrolled loop. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include "llvm/Transforms/Utils/LoopUtils.h" 41 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 42 #include "llvm/Transforms/Utils/UnrollLoop.h" 43 #include <algorithm> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "loop-unroll" 48 49 STATISTIC(NumRuntimeUnrolled, 50 "Number of loops unrolled with run-time trip counts"); 51 static cl::opt<bool> UnrollRuntimeMultiExit( 52 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, 53 cl::desc("Allow runtime unrolling for loops with multiple exits, when " 54 "epilog is generated")); 55 static cl::opt<bool> UnrollRuntimeOtherExitPredictable( 56 "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden, 57 cl::desc("Assume the non latch exit block to be predictable")); 58 59 /// Connect the unrolling prolog code to the original loop. 60 /// The unrolling prolog code contains code to execute the 61 /// 'extra' iterations if the run-time trip count modulo the 62 /// unroll count is non-zero. 63 /// 64 /// This function performs the following: 65 /// - Create PHI nodes at prolog end block to combine values 66 /// that exit the prolog code and jump around the prolog. 67 /// - Add a PHI operand to a PHI node at the loop exit block 68 /// for values that exit the prolog and go around the loop. 69 /// - Branch around the original loop if the trip count is less 70 /// than the unroll factor. 71 /// 72 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 73 BasicBlock *PrologExit, 74 BasicBlock *OriginalLoopLatchExit, 75 BasicBlock *PreHeader, BasicBlock *NewPreHeader, 76 ValueToValueMapTy &VMap, DominatorTree *DT, 77 LoopInfo *LI, bool PreserveLCSSA) { 78 // Loop structure should be the following: 79 // Preheader 80 // PrologHeader 81 // ... 82 // PrologLatch 83 // PrologExit 84 // NewPreheader 85 // Header 86 // ... 87 // Latch 88 // LatchExit 89 BasicBlock *Latch = L->getLoopLatch(); 90 assert(Latch && "Loop must have a latch"); 91 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 92 93 // Create a PHI node for each outgoing value from the original loop 94 // (which means it is an outgoing value from the prolog code too). 95 // The new PHI node is inserted in the prolog end basic block. 96 // The new PHI node value is added as an operand of a PHI node in either 97 // the loop header or the loop exit block. 98 for (BasicBlock *Succ : successors(Latch)) { 99 for (PHINode &PN : Succ->phis()) { 100 // Add a new PHI node to the prolog end block and add the 101 // appropriate incoming values. 102 // TODO: This code assumes that the PrologExit (or the LatchExit block for 103 // prolog loop) contains only one predecessor from the loop, i.e. the 104 // PrologLatch. When supporting multiple-exiting block loops, we can have 105 // two or more blocks that have the LatchExit as the target in the 106 // original loop. 107 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 108 PrologExit->getFirstNonPHI()); 109 // Adding a value to the new PHI node from the original loop preheader. 110 // This is the value that skips all the prolog code. 111 if (L->contains(&PN)) { 112 // Succ is loop header. 113 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), 114 PreHeader); 115 } else { 116 // Succ is LatchExit. 117 NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader); 118 } 119 120 Value *V = PN.getIncomingValueForBlock(Latch); 121 if (Instruction *I = dyn_cast<Instruction>(V)) { 122 if (L->contains(I)) { 123 V = VMap.lookup(I); 124 } 125 } 126 // Adding a value to the new PHI node from the last prolog block 127 // that was created. 128 NewPN->addIncoming(V, PrologLatch); 129 130 // Update the existing PHI node operand with the value from the 131 // new PHI node. How this is done depends on if the existing 132 // PHI node is in the original loop block, or the exit block. 133 if (L->contains(&PN)) 134 PN.setIncomingValueForBlock(NewPreHeader, NewPN); 135 else 136 PN.addIncoming(NewPN, PrologExit); 137 } 138 } 139 140 // Make sure that created prolog loop is in simplified form 141 SmallVector<BasicBlock *, 4> PrologExitPreds; 142 Loop *PrologLoop = LI->getLoopFor(PrologLatch); 143 if (PrologLoop) { 144 for (BasicBlock *PredBB : predecessors(PrologExit)) 145 if (PrologLoop->contains(PredBB)) 146 PrologExitPreds.push_back(PredBB); 147 148 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, 149 nullptr, PreserveLCSSA); 150 } 151 152 // Create a branch around the original loop, which is taken if there are no 153 // iterations remaining to be executed after running the prologue. 154 Instruction *InsertPt = PrologExit->getTerminator(); 155 IRBuilder<> B(InsertPt); 156 157 assert(Count != 0 && "nonsensical Count!"); 158 159 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 160 // This means %xtraiter is (BECount + 1) and all of the iterations of this 161 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 162 // then (BECount + 1) cannot unsigned-overflow. 163 Value *BrLoopExit = 164 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 165 // Split the exit to maintain loop canonicalization guarantees 166 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); 167 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, 168 nullptr, PreserveLCSSA); 169 // Add the branch to the exit block (around the unrolled loop) 170 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); 171 InsertPt->eraseFromParent(); 172 if (DT) { 173 auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit, 174 PrologExit); 175 DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom); 176 } 177 } 178 179 /// Connect the unrolling epilog code to the original loop. 180 /// The unrolling epilog code contains code to execute the 181 /// 'extra' iterations if the run-time trip count modulo the 182 /// unroll count is non-zero. 183 /// 184 /// This function performs the following: 185 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 186 /// - Create PHI nodes at the unrolling loop exit to combine 187 /// values that exit the unrolling loop code and jump around it. 188 /// - Update PHI operands in the epilog loop by the new PHI nodes 189 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 190 /// 191 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 192 BasicBlock *Exit, BasicBlock *PreHeader, 193 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 194 ValueToValueMapTy &VMap, DominatorTree *DT, 195 LoopInfo *LI, bool PreserveLCSSA) { 196 BasicBlock *Latch = L->getLoopLatch(); 197 assert(Latch && "Loop must have a latch"); 198 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 199 200 // Loop structure should be the following: 201 // 202 // PreHeader 203 // NewPreHeader 204 // Header 205 // ... 206 // Latch 207 // NewExit (PN) 208 // EpilogPreHeader 209 // EpilogHeader 210 // ... 211 // EpilogLatch 212 // Exit (EpilogPN) 213 214 // Update PHI nodes at NewExit and Exit. 215 for (PHINode &PN : NewExit->phis()) { 216 // PN should be used in another PHI located in Exit block as 217 // Exit was split by SplitBlockPredecessors into Exit and NewExit 218 // Basicaly it should look like: 219 // NewExit: 220 // PN = PHI [I, Latch] 221 // ... 222 // Exit: 223 // EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil] 224 // 225 // Exits from non-latch blocks point to the original exit block and the 226 // epilogue edges have already been added. 227 // 228 // There is EpilogPreHeader incoming block instead of NewExit as 229 // NewExit was spilt 1 more time to get EpilogPreHeader. 230 assert(PN.hasOneUse() && "The phi should have 1 use"); 231 PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser()); 232 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 233 234 // Add incoming PreHeader from branch around the Loop 235 PN.addIncoming(UndefValue::get(PN.getType()), PreHeader); 236 237 Value *V = PN.getIncomingValueForBlock(Latch); 238 Instruction *I = dyn_cast<Instruction>(V); 239 if (I && L->contains(I)) 240 // If value comes from an instruction in the loop add VMap value. 241 V = VMap.lookup(I); 242 // For the instruction out of the loop, constant or undefined value 243 // insert value itself. 244 EpilogPN->addIncoming(V, EpilogLatch); 245 246 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 247 "EpilogPN should have EpilogPreHeader incoming block"); 248 // Change EpilogPreHeader incoming block to NewExit. 249 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 250 NewExit); 251 // Now PHIs should look like: 252 // NewExit: 253 // PN = PHI [I, Latch], [undef, PreHeader] 254 // ... 255 // Exit: 256 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 257 } 258 259 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 260 // Update corresponding PHI nodes in epilog loop. 261 for (BasicBlock *Succ : successors(Latch)) { 262 // Skip this as we already updated phis in exit blocks. 263 if (!L->contains(Succ)) 264 continue; 265 for (PHINode &PN : Succ->phis()) { 266 // Add new PHI nodes to the loop exit block and update epilog 267 // PHIs with the new PHI values. 268 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", 269 NewExit->getFirstNonPHI()); 270 // Adding a value to the new PHI node from the unrolling loop preheader. 271 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); 272 // Adding a value to the new PHI node from the unrolling loop latch. 273 NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch); 274 275 // Update the existing PHI node operand with the value from the new PHI 276 // node. Corresponding instruction in epilog loop should be PHI. 277 PHINode *VPN = cast<PHINode>(VMap[&PN]); 278 VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN); 279 } 280 } 281 282 Instruction *InsertPt = NewExit->getTerminator(); 283 IRBuilder<> B(InsertPt); 284 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 285 assert(Exit && "Loop must have a single exit block only"); 286 // Split the epilogue exit to maintain loop canonicalization guarantees 287 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 288 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr, 289 PreserveLCSSA); 290 // Add the branch to the exit block (around the unrolling loop) 291 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 292 InsertPt->eraseFromParent(); 293 if (DT) { 294 auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit); 295 DT->changeImmediateDominator(Exit, NewDom); 296 } 297 298 // Split the main loop exit to maintain canonicalization guarantees. 299 SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; 300 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr, 301 PreserveLCSSA); 302 } 303 304 /// Create a clone of the blocks in a loop and connect them together. A new 305 /// loop will be created including all cloned blocks, and the iterator of the 306 /// new loop switched to count NewIter down to 0. 307 /// The cloned blocks should be inserted between InsertTop and InsertBot. 308 /// InsertTop should be new preheader, InsertBot new loop exit. 309 /// Returns the new cloned loop that is created. 310 static Loop * 311 CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder, 312 const bool UnrollRemainder, 313 BasicBlock *InsertTop, 314 BasicBlock *InsertBot, BasicBlock *Preheader, 315 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 316 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { 317 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 318 BasicBlock *Header = L->getHeader(); 319 BasicBlock *Latch = L->getLoopLatch(); 320 Function *F = Header->getParent(); 321 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 322 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 323 Loop *ParentLoop = L->getParentLoop(); 324 NewLoopsMap NewLoops; 325 NewLoops[ParentLoop] = ParentLoop; 326 327 // For each block in the original loop, create a new copy, 328 // and update the value map with the newly created values. 329 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 330 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 331 NewBlocks.push_back(NewBB); 332 333 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); 334 335 VMap[*BB] = NewBB; 336 if (Header == *BB) { 337 // For the first block, add a CFG connection to this newly 338 // created block. 339 InsertTop->getTerminator()->setSuccessor(0, NewBB); 340 } 341 342 if (DT) { 343 if (Header == *BB) { 344 // The header is dominated by the preheader. 345 DT->addNewBlock(NewBB, InsertTop); 346 } else { 347 // Copy information from original loop to unrolled loop. 348 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); 349 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 350 } 351 } 352 353 if (Latch == *BB) { 354 // For the last block, create a loop back to cloned head. 355 VMap.erase((*BB)->getTerminator()); 356 // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count. 357 // Subtle: NewIter can be 0 if we wrapped when computing the trip count, 358 // thus we must compare the post-increment (wrapping) value. 359 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 360 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 361 IRBuilder<> Builder(LatchBR); 362 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 363 suffix + ".iter", 364 FirstLoopBB->getFirstNonPHI()); 365 auto *Zero = ConstantInt::get(NewIdx->getType(), 0); 366 auto *One = ConstantInt::get(NewIdx->getType(), 1); 367 Value *IdxNext = Builder.CreateAdd(NewIdx, One, NewIdx->getName() + ".next"); 368 Value *IdxCmp = Builder.CreateICmpNE(IdxNext, NewIter, NewIdx->getName() + ".cmp"); 369 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 370 NewIdx->addIncoming(Zero, InsertTop); 371 NewIdx->addIncoming(IdxNext, NewBB); 372 LatchBR->eraseFromParent(); 373 } 374 } 375 376 // Change the incoming values to the ones defined in the preheader or 377 // cloned loop. 378 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 379 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 380 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 381 NewPHI->setIncomingBlock(idx, InsertTop); 382 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 383 idx = NewPHI->getBasicBlockIndex(Latch); 384 Value *InVal = NewPHI->getIncomingValue(idx); 385 NewPHI->setIncomingBlock(idx, NewLatch); 386 if (Value *V = VMap.lookup(InVal)) 387 NewPHI->setIncomingValue(idx, V); 388 } 389 390 Loop *NewLoop = NewLoops[L]; 391 assert(NewLoop && "L should have been cloned"); 392 MDNode *LoopID = NewLoop->getLoopID(); 393 394 // Only add loop metadata if the loop is not going to be completely 395 // unrolled. 396 if (UnrollRemainder) 397 return NewLoop; 398 399 Optional<MDNode *> NewLoopID = makeFollowupLoopID( 400 LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder}); 401 if (NewLoopID.hasValue()) { 402 NewLoop->setLoopID(NewLoopID.getValue()); 403 404 // Do not setLoopAlreadyUnrolled if loop attributes have been defined 405 // explicitly. 406 return NewLoop; 407 } 408 409 // Add unroll disable metadata to disable future unrolling for this loop. 410 NewLoop->setLoopAlreadyUnrolled(); 411 return NewLoop; 412 } 413 414 /// Returns true if we can profitably unroll the multi-exit loop L. Currently, 415 /// we return true only if UnrollRuntimeMultiExit is set to true. 416 static bool canProfitablyUnrollMultiExitLoop( 417 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, 418 bool UseEpilogRemainder) { 419 420 // Priority goes to UnrollRuntimeMultiExit if it's supplied. 421 if (UnrollRuntimeMultiExit.getNumOccurrences()) 422 return UnrollRuntimeMultiExit; 423 424 // TODO: We used to bail out for correctness (now fixed). Under what 425 // circumstances is this case profitable to allow? 426 if (!LatchExit->getSinglePredecessor()) 427 return false; 428 429 // TODO: We used to bail out for correctness (now fixed). Under what 430 // circumstances is this case profitable to allow? 431 if (UseEpilogRemainder && L->getParentLoop()) 432 return false; 433 434 // The main pain point with multi-exit loop unrolling is that once unrolled, 435 // we will not be able to merge all blocks into a straight line code. 436 // There are branches within the unrolled loop that go to the OtherExits. 437 // The second point is the increase in code size, but this is true 438 // irrespective of multiple exits. 439 440 // Note: Both the heuristics below are coarse grained. We are essentially 441 // enabling unrolling of loops that have a single side exit other than the 442 // normal LatchExit (i.e. exiting into a deoptimize block). 443 // The heuristics considered are: 444 // 1. low number of branches in the unrolled version. 445 // 2. high predictability of these extra branches. 446 // We avoid unrolling loops that have more than two exiting blocks. This 447 // limits the total number of branches in the unrolled loop to be atmost 448 // the unroll factor (since one of the exiting blocks is the latch block). 449 SmallVector<BasicBlock*, 4> ExitingBlocks; 450 L->getExitingBlocks(ExitingBlocks); 451 if (ExitingBlocks.size() > 2) 452 return false; 453 454 // Allow unrolling of loops with no non latch exit blocks. 455 if (OtherExits.size() == 0) 456 return true; 457 458 // The second heuristic is that L has one exit other than the latchexit and 459 // that exit is a deoptimize block. We know that deoptimize blocks are rarely 460 // taken, which also implies the branch leading to the deoptimize block is 461 // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we 462 // assume the other exit branch is predictable even if it has no deoptimize 463 // call. 464 return (OtherExits.size() == 1 && 465 (UnrollRuntimeOtherExitPredictable || 466 OtherExits[0]->getTerminatingDeoptimizeCall())); 467 // TODO: These can be fine-tuned further to consider code size or deopt states 468 // that are captured by the deoptimize exit block. 469 // Also, we can extend this to support more cases, if we actually 470 // know of kinds of multiexit loops that would benefit from unrolling. 471 } 472 473 // Assign the maximum possible trip count as the back edge weight for the 474 // remainder loop if the original loop comes with a branch weight. 475 static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop, 476 Loop *RemainderLoop, 477 uint64_t UnrollFactor) { 478 uint64_t TrueWeight, FalseWeight; 479 BranchInst *LatchBR = 480 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 481 if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) 482 return; 483 uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader() 484 ? FalseWeight 485 : TrueWeight; 486 assert(UnrollFactor > 1); 487 uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight; 488 BasicBlock *Header = RemainderLoop->getHeader(); 489 BasicBlock *Latch = RemainderLoop->getLoopLatch(); 490 auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator()); 491 unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1); 492 MDBuilder MDB(RemainderLatchBR->getContext()); 493 MDNode *WeightNode = 494 HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight) 495 : MDB.createBranchWeights(BackEdgeWeight, ExitWeight); 496 RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 497 } 498 499 /// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain 500 /// accounting for the possibility of unsigned overflow in the 2s complement 501 /// domain. Preconditions: 502 /// 1) TripCount = BECount + 1 (allowing overflow) 503 /// 2) Log2(Count) <= BitWidth(BECount) 504 static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount, 505 Value *TripCount, unsigned Count) { 506 // Note that TripCount is BECount + 1. 507 if (isPowerOf2_32(Count)) 508 // If the expression is zero, then either: 509 // 1. There are no iterations to be run in the prolog/epilog loop. 510 // OR 511 // 2. The addition computing TripCount overflowed. 512 // 513 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 514 // the number of iterations that remain to be run in the original loop is a 515 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a 516 // precondition of this method). 517 return B.CreateAnd(TripCount, Count - 1, "xtraiter"); 518 519 // As (BECount + 1) can potentially unsigned overflow we count 520 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 521 Constant *CountC = ConstantInt::get(BECount->getType(), Count); 522 Value *ModValTmp = B.CreateURem(BECount, CountC); 523 Value *ModValAdd = B.CreateAdd(ModValTmp, 524 ConstantInt::get(ModValTmp->getType(), 1)); 525 // At that point (BECount % Count) + 1 could be equal to Count. 526 // To handle this case we need to take mod by Count one more time. 527 return B.CreateURem(ModValAdd, CountC, "xtraiter"); 528 } 529 530 531 /// Insert code in the prolog/epilog code when unrolling a loop with a 532 /// run-time trip-count. 533 /// 534 /// This method assumes that the loop unroll factor is total number 535 /// of loop bodies in the loop after unrolling. (Some folks refer 536 /// to the unroll factor as the number of *extra* copies added). 537 /// We assume also that the loop unroll factor is a power-of-two. So, after 538 /// unrolling the loop, the number of loop bodies executed is 2, 539 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 540 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 541 /// the switch instruction is generated. 542 /// 543 /// ***Prolog case*** 544 /// extraiters = tripcount % loopfactor 545 /// if (extraiters == 0) jump Loop: 546 /// else jump Prol: 547 /// Prol: LoopBody; 548 /// extraiters -= 1 // Omitted if unroll factor is 2. 549 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 550 /// if (tripcount < loopfactor) jump End: 551 /// Loop: 552 /// ... 553 /// End: 554 /// 555 /// ***Epilog case*** 556 /// extraiters = tripcount % loopfactor 557 /// if (tripcount < loopfactor) jump LoopExit: 558 /// unroll_iters = tripcount - extraiters 559 /// Loop: LoopBody; (executes unroll_iter times); 560 /// unroll_iter -= 1 561 /// if (unroll_iter != 0) jump Loop: 562 /// LoopExit: 563 /// if (extraiters == 0) jump EpilExit: 564 /// Epil: LoopBody; (executes extraiters times) 565 /// extraiters -= 1 // Omitted if unroll factor is 2. 566 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 567 /// EpilExit: 568 569 bool llvm::UnrollRuntimeLoopRemainder( 570 Loop *L, unsigned Count, bool AllowExpensiveTripCount, 571 bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV, 572 LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 573 const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) { 574 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); 575 LLVM_DEBUG(L->dump()); 576 LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" 577 : dbgs() << "Using prolog remainder.\n"); 578 579 // Make sure the loop is in canonical form. 580 if (!L->isLoopSimplifyForm()) { 581 LLVM_DEBUG(dbgs() << "Not in simplify form!\n"); 582 return false; 583 } 584 585 // Guaranteed by LoopSimplifyForm. 586 BasicBlock *Latch = L->getLoopLatch(); 587 BasicBlock *Header = L->getHeader(); 588 589 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 590 591 if (!LatchBR || LatchBR->isUnconditional()) { 592 // The loop-rotate pass can be helpful to avoid this in many cases. 593 LLVM_DEBUG( 594 dbgs() 595 << "Loop latch not terminated by a conditional branch.\n"); 596 return false; 597 } 598 599 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; 600 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); 601 602 if (L->contains(LatchExit)) { 603 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the 604 // targets of the Latch be an exit block out of the loop. 605 LLVM_DEBUG( 606 dbgs() 607 << "One of the loop latch successors must be the exit block.\n"); 608 return false; 609 } 610 611 // These are exit blocks other than the target of the latch exiting block. 612 SmallVector<BasicBlock *, 4> OtherExits; 613 L->getUniqueNonLatchExitBlocks(OtherExits); 614 // Support only single exit and exiting block unless multi-exit loop 615 // unrolling is enabled. 616 if (!L->getExitingBlock() || OtherExits.size()) { 617 // We rely on LCSSA form being preserved when the exit blocks are transformed. 618 // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.) 619 if (!PreserveLCSSA) 620 return false; 621 622 if (!canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, 623 UseEpilogRemainder)) { 624 LLVM_DEBUG( 625 dbgs() 626 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " 627 "enabled!\n"); 628 return false; 629 } 630 } 631 // Use Scalar Evolution to compute the trip count. This allows more loops to 632 // be unrolled than relying on induction var simplification. 633 if (!SE) 634 return false; 635 636 // Only unroll loops with a computable trip count, and the trip count needs 637 // to be an int value (allowing a pointer type is a TODO item). 638 // We calculate the backedge count by using getExitCount on the Latch block, 639 // which is proven to be the only exiting block in this loop. This is same as 640 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all 641 // exiting blocks). 642 const SCEV *BECountSC = SE->getExitCount(L, Latch); 643 if (isa<SCEVCouldNotCompute>(BECountSC) || 644 !BECountSC->getType()->isIntegerTy()) { 645 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n"); 646 return false; 647 } 648 649 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 650 651 // Add 1 since the backedge count doesn't include the first loop iteration. 652 // (Note that overflow can occur, this is handled explicitly below) 653 const SCEV *TripCountSC = 654 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 655 if (isa<SCEVCouldNotCompute>(TripCountSC)) { 656 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); 657 return false; 658 } 659 660 BasicBlock *PreHeader = L->getLoopPreheader(); 661 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 662 const DataLayout &DL = Header->getModule()->getDataLayout(); 663 SCEVExpander Expander(*SE, DL, "loop-unroll"); 664 if (!AllowExpensiveTripCount && 665 Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget, 666 TTI, PreHeaderBR)) { 667 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); 668 return false; 669 } 670 671 // This constraint lets us deal with an overflowing trip count easily; see the 672 // comment on ModVal below. 673 if (Log2_32(Count) > BEWidth) { 674 LLVM_DEBUG( 675 dbgs() 676 << "Count failed constraint on overflow trip count calculation.\n"); 677 return false; 678 } 679 680 // Loop structure is the following: 681 // 682 // PreHeader 683 // Header 684 // ... 685 // Latch 686 // LatchExit 687 688 BasicBlock *NewPreHeader; 689 BasicBlock *NewExit = nullptr; 690 BasicBlock *PrologExit = nullptr; 691 BasicBlock *EpilogPreHeader = nullptr; 692 BasicBlock *PrologPreHeader = nullptr; 693 694 if (UseEpilogRemainder) { 695 // If epilog remainder 696 // Split PreHeader to insert a branch around loop for unrolling. 697 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 698 NewPreHeader->setName(PreHeader->getName() + ".new"); 699 // Split LatchExit to create phi nodes from branch above. 700 NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI, 701 nullptr, PreserveLCSSA); 702 // NewExit gets its DebugLoc from LatchExit, which is not part of the 703 // original Loop. 704 // Fix this by setting Loop's DebugLoc to NewExit. 705 auto *NewExitTerminator = NewExit->getTerminator(); 706 NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc()); 707 // Split NewExit to insert epilog remainder loop. 708 EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI); 709 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 710 711 // If the latch exits from multiple level of nested loops, then 712 // by assumption there must be another loop exit which branches to the 713 // outer loop and we must adjust the loop for the newly inserted blocks 714 // to account for the fact that our epilogue is still in the same outer 715 // loop. Note that this leaves loopinfo temporarily out of sync with the 716 // CFG until the actual epilogue loop is inserted. 717 if (auto *ParentL = L->getParentLoop()) 718 if (LI->getLoopFor(LatchExit) != ParentL) { 719 LI->removeBlock(NewExit); 720 ParentL->addBasicBlockToLoop(NewExit, *LI); 721 LI->removeBlock(EpilogPreHeader); 722 ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI); 723 } 724 725 } else { 726 // If prolog remainder 727 // Split the original preheader twice to insert prolog remainder loop 728 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 729 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 730 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 731 DT, LI); 732 PrologExit->setName(Header->getName() + ".prol.loopexit"); 733 // Split PrologExit to get NewPreHeader. 734 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 735 NewPreHeader->setName(PreHeader->getName() + ".new"); 736 } 737 // Loop structure should be the following: 738 // Epilog Prolog 739 // 740 // PreHeader PreHeader 741 // *NewPreHeader *PrologPreHeader 742 // Header *PrologExit 743 // ... *NewPreHeader 744 // Latch Header 745 // *NewExit ... 746 // *EpilogPreHeader Latch 747 // LatchExit LatchExit 748 749 // Calculate conditions for branch around loop for unrolling 750 // in epilog case and around prolog remainder loop in prolog case. 751 // Compute the number of extra iterations required, which is: 752 // extra iterations = run-time trip count % loop unroll factor 753 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 754 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 755 PreHeaderBR); 756 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 757 PreHeaderBR); 758 IRBuilder<> B(PreHeaderBR); 759 Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count); 760 761 Value *BranchVal = 762 UseEpilogRemainder ? B.CreateICmpULT(BECount, 763 ConstantInt::get(BECount->getType(), 764 Count - 1)) : 765 B.CreateIsNotNull(ModVal, "lcmp.mod"); 766 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 767 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 768 // Branch to either remainder (extra iterations) loop or unrolling loop. 769 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 770 PreHeaderBR->eraseFromParent(); 771 if (DT) { 772 if (UseEpilogRemainder) 773 DT->changeImmediateDominator(NewExit, PreHeader); 774 else 775 DT->changeImmediateDominator(PrologExit, PreHeader); 776 } 777 Function *F = Header->getParent(); 778 // Get an ordered list of blocks in the loop to help with the ordering of the 779 // cloned blocks in the prolog/epilog code 780 LoopBlocksDFS LoopBlocks(L); 781 LoopBlocks.perform(LI); 782 783 // 784 // For each extra loop iteration, create a copy of the loop's basic blocks 785 // and generate a condition that branches to the copy depending on the 786 // number of 'left over' iterations. 787 // 788 std::vector<BasicBlock *> NewBlocks; 789 ValueToValueMapTy VMap; 790 791 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 792 // the loop, otherwise we create a cloned loop to execute the extra 793 // iterations. This function adds the appropriate CFG connections. 794 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; 795 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 796 Loop *remainderLoop = CloneLoopBlocks( 797 L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot, 798 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); 799 800 // Assign the maximum possible trip count as the back edge weight for the 801 // remainder loop if the original loop comes with a branch weight. 802 if (remainderLoop && !UnrollRemainder) 803 updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count); 804 805 // Insert the cloned blocks into the function. 806 F->getBasicBlockList().splice(InsertBot->getIterator(), 807 F->getBasicBlockList(), 808 NewBlocks[0]->getIterator(), 809 F->end()); 810 811 // Now the loop blocks are cloned and the other exiting blocks from the 812 // remainder are connected to the original Loop's exit blocks. The remaining 813 // work is to update the phi nodes in the original loop, and take in the 814 // values from the cloned region. 815 for (auto *BB : OtherExits) { 816 // Given we preserve LCSSA form, we know that the values used outside the 817 // loop will be used through these phi nodes at the exit blocks that are 818 // transformed below. 819 for (PHINode &PN : BB->phis()) { 820 unsigned oldNumOperands = PN.getNumIncomingValues(); 821 // Add the incoming values from the remainder code to the end of the phi 822 // node. 823 for (unsigned i = 0; i < oldNumOperands; i++){ 824 auto *PredBB =PN.getIncomingBlock(i); 825 if (PredBB == Latch) 826 // The latch exit is handled seperately, see connectX 827 continue; 828 if (!L->contains(PredBB)) 829 // Even if we had dedicated exits, the code above inserted an 830 // extra branch which can reach the latch exit. 831 continue; 832 833 auto *V = PN.getIncomingValue(i); 834 if (Instruction *I = dyn_cast<Instruction>(V)) 835 if (L->contains(I)) 836 V = VMap.lookup(I); 837 PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB])); 838 } 839 } 840 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 841 for (BasicBlock *SuccBB : successors(BB)) { 842 assert(!(llvm::is_contained(OtherExits, SuccBB) || SuccBB == LatchExit) && 843 "Breaks the definition of dedicated exits!"); 844 } 845 #endif 846 } 847 848 // Update the immediate dominator of the exit blocks and blocks that are 849 // reachable from the exit blocks. This is needed because we now have paths 850 // from both the original loop and the remainder code reaching the exit 851 // blocks. While the IDom of these exit blocks were from the original loop, 852 // now the IDom is the preheader (which decides whether the original loop or 853 // remainder code should run). 854 if (DT && !L->getExitingBlock()) { 855 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 856 // NB! We have to examine the dom children of all loop blocks, not just 857 // those which are the IDom of the exit blocks. This is because blocks 858 // reachable from the exit blocks can have their IDom as the nearest common 859 // dominator of the exit blocks. 860 for (auto *BB : L->blocks()) { 861 auto *DomNodeBB = DT->getNode(BB); 862 for (auto *DomChild : DomNodeBB->children()) { 863 auto *DomChildBB = DomChild->getBlock(); 864 if (!L->contains(LI->getLoopFor(DomChildBB))) 865 ChildrenToUpdate.push_back(DomChildBB); 866 } 867 } 868 for (auto *BB : ChildrenToUpdate) 869 DT->changeImmediateDominator(BB, PreHeader); 870 } 871 872 // Loop structure should be the following: 873 // Epilog Prolog 874 // 875 // PreHeader PreHeader 876 // NewPreHeader PrologPreHeader 877 // Header PrologHeader 878 // ... ... 879 // Latch PrologLatch 880 // NewExit PrologExit 881 // EpilogPreHeader NewPreHeader 882 // EpilogHeader Header 883 // ... ... 884 // EpilogLatch Latch 885 // LatchExit LatchExit 886 887 // Rewrite the cloned instruction operands to use the values created when the 888 // clone is created. 889 for (BasicBlock *BB : NewBlocks) { 890 for (Instruction &I : *BB) { 891 RemapInstruction(&I, VMap, 892 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 893 } 894 } 895 896 if (UseEpilogRemainder) { 897 // Connect the epilog code to the original loop and update the 898 // PHI functions. 899 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, 900 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 901 PreserveLCSSA); 902 903 // Update counter in loop for unrolling. 904 // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count. 905 // Subtle: TestVal can be 0 if we wrapped when computing the trip count, 906 // thus we must compare the post-increment (wrapping) value. 907 IRBuilder<> B2(NewPreHeader->getTerminator()); 908 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 909 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 910 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 911 Header->getFirstNonPHI()); 912 B2.SetInsertPoint(LatchBR); 913 auto *Zero = ConstantInt::get(NewIdx->getType(), 0); 914 auto *One = ConstantInt::get(NewIdx->getType(), 1); 915 Value *IdxNext = B2.CreateAdd(NewIdx, One, NewIdx->getName() + ".next"); 916 auto Pred = LatchBR->getSuccessor(0) == Header ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 917 Value *IdxCmp = B2.CreateICmp(Pred, IdxNext, TestVal, NewIdx->getName() + ".ncmp"); 918 NewIdx->addIncoming(Zero, NewPreHeader); 919 NewIdx->addIncoming(IdxNext, Latch); 920 LatchBR->setCondition(IdxCmp); 921 } else { 922 // Connect the prolog code to the original loop and update the 923 // PHI functions. 924 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, 925 NewPreHeader, VMap, DT, LI, PreserveLCSSA); 926 } 927 928 // If this loop is nested, then the loop unroller changes the code in the any 929 // of its parent loops, so the Scalar Evolution pass needs to be run again. 930 SE->forgetTopmostLoop(L); 931 932 // Verify that the Dom Tree and Loop Info are correct. 933 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) 934 if (DT) { 935 assert(DT->verify(DominatorTree::VerificationLevel::Full)); 936 LI->verify(*DT); 937 } 938 #endif 939 940 // For unroll factor 2 remainder loop will have 1 iteration. 941 if (Count == 2 && DT && LI && SE) { 942 // TODO: This code could probably be pulled out into a helper function 943 // (e.g. breakLoopBackedgeAndSimplify) and reused in loop-deletion. 944 BasicBlock *RemainderLatch = remainderLoop->getLoopLatch(); 945 assert(RemainderLatch); 946 SmallVector<BasicBlock*> RemainderBlocks(remainderLoop->getBlocks().begin(), 947 remainderLoop->getBlocks().end()); 948 breakLoopBackedge(remainderLoop, *DT, *SE, *LI, nullptr); 949 remainderLoop = nullptr; 950 951 // Simplify loop values after breaking the backedge 952 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 953 SmallVector<WeakTrackingVH, 16> DeadInsts; 954 for (BasicBlock *BB : RemainderBlocks) { 955 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 956 if (Value *V = SimplifyInstruction(&Inst, {DL, nullptr, DT, AC})) 957 if (LI->replacementPreservesLCSSAForm(&Inst, V)) 958 Inst.replaceAllUsesWith(V); 959 if (isInstructionTriviallyDead(&Inst)) 960 DeadInsts.emplace_back(&Inst); 961 } 962 // We can't do recursive deletion until we're done iterating, as we might 963 // have a phi which (potentially indirectly) uses instructions later in 964 // the block we're iterating through. 965 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 966 } 967 968 // Merge latch into exit block. 969 auto *ExitBB = RemainderLatch->getSingleSuccessor(); 970 assert(ExitBB && "required after breaking cond br backedge"); 971 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 972 MergeBlockIntoPredecessor(ExitBB, &DTU, LI); 973 } 974 975 // Canonicalize to LoopSimplifyForm both original and remainder loops. We 976 // cannot rely on the LoopUnrollPass to do this because it only does 977 // canonicalization for parent/subloops and not the sibling loops. 978 if (OtherExits.size() > 0) { 979 // Generate dedicated exit blocks for the original loop, to preserve 980 // LoopSimplifyForm. 981 formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA); 982 // Generate dedicated exit blocks for the remainder loop if one exists, to 983 // preserve LoopSimplifyForm. 984 if (remainderLoop) 985 formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA); 986 } 987 988 auto UnrollResult = LoopUnrollResult::Unmodified; 989 if (remainderLoop && UnrollRemainder) { 990 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n"); 991 UnrollResult = 992 UnrollLoop(remainderLoop, 993 {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false, 994 /*AllowExpensiveTripCount*/ false, 995 /*UnrollRemainder*/ false, ForgetAllSCEV}, 996 LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA); 997 } 998 999 if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled) 1000 *ResultLoop = remainderLoop; 1001 NumRuntimeUnrolled++; 1002 return true; 1003 } 1004