xref: /llvm-project/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp (revision cb4627d15027e1ed0051f5e5af447602f0f60971)
1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides utilities to convert a loop into a loop with bottom test.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AssumptionCache.h"
16 #include "llvm/Analysis/CodeMetrics.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/MemorySSA.h"
21 #include "llvm/Analysis/MemorySSAUpdater.h"
22 #include "llvm/Analysis/ScalarEvolution.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/ProfDataUtils.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/SSAUpdater.h"
37 #include "llvm/Transforms/Utils/ValueMapper.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "loop-rotate"
41 
42 STATISTIC(NumNotRotatedDueToHeaderSize,
43           "Number of loops not rotated due to the header size");
44 STATISTIC(NumInstrsHoisted,
45           "Number of instructions hoisted into loop preheader");
46 STATISTIC(NumInstrsDuplicated,
47           "Number of instructions cloned into loop preheader");
48 STATISTIC(NumRotated, "Number of loops rotated");
49 
50 static cl::opt<bool>
51     MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
52                 cl::desc("Allow loop rotation multiple times in order to reach "
53                          "a better latch exit"));
54 
55 // Probability that a rotated loop has zero trip count / is never entered.
56 static constexpr uint32_t ZeroTripCountWeights[] = {1, 127};
57 
58 namespace {
59 /// A simple loop rotation transformation.
60 class LoopRotate {
61   const unsigned MaxHeaderSize;
62   LoopInfo *LI;
63   const TargetTransformInfo *TTI;
64   AssumptionCache *AC;
65   DominatorTree *DT;
66   ScalarEvolution *SE;
67   MemorySSAUpdater *MSSAU;
68   const SimplifyQuery &SQ;
69   bool RotationOnly;
70   bool IsUtilMode;
71   bool PrepareForLTO;
72 
73 public:
74   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
75              const TargetTransformInfo *TTI, AssumptionCache *AC,
76              DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
77              const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode,
78              bool PrepareForLTO)
79       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
80         MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
81         IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {}
82   bool processLoop(Loop *L);
83 
84 private:
85   bool rotateLoop(Loop *L, bool SimplifiedLatch);
86   bool simplifyLoopLatch(Loop *L);
87 };
88 } // end anonymous namespace
89 
90 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
91 /// previously exist in the map, and the value was inserted.
92 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
93   bool Inserted = VM.insert({K, V}).second;
94   assert(Inserted);
95   (void)Inserted;
96 }
97 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
98 /// old header into the preheader.  If there were uses of the values produced by
99 /// these instruction that were outside of the loop, we have to insert PHI nodes
100 /// to merge the two values.  Do this now.
101 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
102                                             BasicBlock *OrigPreheader,
103                                             ValueToValueMapTy &ValueMap,
104                                             ScalarEvolution *SE,
105                                 SmallVectorImpl<PHINode*> *InsertedPHIs) {
106   // Remove PHI node entries that are no longer live.
107   BasicBlock::iterator I, E = OrigHeader->end();
108   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
109     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
110 
111   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
112   // as necessary.
113   SSAUpdater SSA(InsertedPHIs);
114   for (I = OrigHeader->begin(); I != E; ++I) {
115     Value *OrigHeaderVal = &*I;
116 
117     // If there are no uses of the value (e.g. because it returns void), there
118     // is nothing to rewrite.
119     if (OrigHeaderVal->use_empty())
120       continue;
121 
122     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
123 
124     // The value now exits in two versions: the initial value in the preheader
125     // and the loop "next" value in the original header.
126     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
127     // Force re-computation of OrigHeaderVal, as some users now need to use the
128     // new PHI node.
129     if (SE)
130       SE->forgetValue(OrigHeaderVal);
131     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
132     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
133 
134     // Visit each use of the OrigHeader instruction.
135     for (Use &U : llvm::make_early_inc_range(OrigHeaderVal->uses())) {
136       // SSAUpdater can't handle a non-PHI use in the same block as an
137       // earlier def. We can easily handle those cases manually.
138       Instruction *UserInst = cast<Instruction>(U.getUser());
139       if (!isa<PHINode>(UserInst)) {
140         BasicBlock *UserBB = UserInst->getParent();
141 
142         // The original users in the OrigHeader are already using the
143         // original definitions.
144         if (UserBB == OrigHeader)
145           continue;
146 
147         // Users in the OrigPreHeader need to use the value to which the
148         // original definitions are mapped.
149         if (UserBB == OrigPreheader) {
150           U = OrigPreHeaderVal;
151           continue;
152         }
153       }
154 
155       // Anything else can be handled by SSAUpdater.
156       SSA.RewriteUse(U);
157     }
158 
159     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
160     // intrinsics.
161     SmallVector<DbgValueInst *, 1> DbgValues;
162     llvm::findDbgValues(DbgValues, OrigHeaderVal);
163     for (auto &DbgValue : DbgValues) {
164       // The original users in the OrigHeader are already using the original
165       // definitions.
166       BasicBlock *UserBB = DbgValue->getParent();
167       if (UserBB == OrigHeader)
168         continue;
169 
170       // Users in the OrigPreHeader need to use the value to which the
171       // original definitions are mapped and anything else can be handled by
172       // the SSAUpdater. To avoid adding PHINodes, check if the value is
173       // available in UserBB, if not substitute undef.
174       Value *NewVal;
175       if (UserBB == OrigPreheader)
176         NewVal = OrigPreHeaderVal;
177       else if (SSA.HasValueForBlock(UserBB))
178         NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
179       else
180         NewVal = UndefValue::get(OrigHeaderVal->getType());
181       DbgValue->replaceVariableLocationOp(OrigHeaderVal, NewVal);
182     }
183   }
184 }
185 
186 // Assuming both header and latch are exiting, look for a phi which is only
187 // used outside the loop (via a LCSSA phi) in the exit from the header.
188 // This means that rotating the loop can remove the phi.
189 static bool profitableToRotateLoopExitingLatch(Loop *L) {
190   BasicBlock *Header = L->getHeader();
191   BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
192   assert(BI && BI->isConditional() && "need header with conditional exit");
193   BasicBlock *HeaderExit = BI->getSuccessor(0);
194   if (L->contains(HeaderExit))
195     HeaderExit = BI->getSuccessor(1);
196 
197   for (auto &Phi : Header->phis()) {
198     // Look for uses of this phi in the loop/via exits other than the header.
199     if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
200           return cast<Instruction>(U)->getParent() != HeaderExit;
201         }))
202       continue;
203     return true;
204   }
205   return false;
206 }
207 
208 // Check that latch exit is deoptimizing (which means - very unlikely to happen)
209 // and there is another exit from the loop which is non-deoptimizing.
210 // If we rotate latch to that exit our loop has a better chance of being fully
211 // canonical.
212 //
213 // It can give false positives in some rare cases.
214 static bool canRotateDeoptimizingLatchExit(Loop *L) {
215   BasicBlock *Latch = L->getLoopLatch();
216   assert(Latch && "need latch");
217   BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
218   // Need normal exiting latch.
219   if (!BI || !BI->isConditional())
220     return false;
221 
222   BasicBlock *Exit = BI->getSuccessor(1);
223   if (L->contains(Exit))
224     Exit = BI->getSuccessor(0);
225 
226   // Latch exit is non-deoptimizing, no need to rotate.
227   if (!Exit->getPostdominatingDeoptimizeCall())
228     return false;
229 
230   SmallVector<BasicBlock *, 4> Exits;
231   L->getUniqueExitBlocks(Exits);
232   if (!Exits.empty()) {
233     // There is at least one non-deoptimizing exit.
234     //
235     // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
236     // as it can conservatively return false for deoptimizing exits with
237     // complex enough control flow down to deoptimize call.
238     //
239     // That means here we can report success for a case where
240     // all exits are deoptimizing but one of them has complex enough
241     // control flow (e.g. with loops).
242     //
243     // That should be a very rare case and false positives for this function
244     // have compile-time effect only.
245     return any_of(Exits, [](const BasicBlock *BB) {
246       return !BB->getPostdominatingDeoptimizeCall();
247     });
248   }
249   return false;
250 }
251 
252 static void updateBranchWeights(BranchInst &PreHeaderBI, BranchInst &LoopBI,
253                                 bool HasConditionalPreHeader,
254                                 bool SuccsSwapped) {
255   MDNode *WeightMD = getBranchWeightMDNode(PreHeaderBI);
256   if (WeightMD == nullptr)
257     return;
258 
259   // LoopBI should currently be a clone of PreHeaderBI with the same
260   // metadata. But we double check to make sure we don't have a degenerate case
261   // where instsimplify changed the instructions.
262   if (WeightMD != getBranchWeightMDNode(LoopBI))
263     return;
264 
265   SmallVector<uint32_t, 2> Weights;
266   extractFromBranchWeightMD(WeightMD, Weights);
267   if (Weights.size() != 2)
268     return;
269   uint32_t OrigLoopExitWeight = Weights[0];
270   uint32_t OrigLoopBackedgeWeight = Weights[1];
271 
272   if (SuccsSwapped)
273     std::swap(OrigLoopExitWeight, OrigLoopBackedgeWeight);
274 
275   // Update branch weights. Consider the following edge-counts:
276   //
277   //    |  |--------             |
278   //    V  V       |             V
279   //   Br i1 ...   |            Br i1 ...
280   //   |       |   |            |     |
281   //  x|      y|   |  becomes:  |   y0|  |-----
282   //   V       V   |            |     V  V    |
283   // Exit    Loop  |            |    Loop     |
284   //           |   |            |   Br i1 ... |
285   //           -----            |   |      |  |
286   //                          x0| x1|   y1 |  |
287   //                            V   V      ----
288   //                            Exit
289   //
290   // The following must hold:
291   //  -  x == x0 + x1        # counts to "exit" must stay the same.
292   //  - y0 == x - x0 == x1   # how often loop was entered at all.
293   //  - y1 == y - y0         # How often loop was repeated (after first iter.).
294   //
295   // We cannot generally deduce how often we had a zero-trip count loop so we
296   // have to make a guess for how to distribute x among the new x0 and x1.
297 
298   uint32_t ExitWeight0;    // aka x0
299   uint32_t ExitWeight1;    // aka x1
300   uint32_t EnterWeight;    // aka y0
301   uint32_t LoopBackWeight; // aka y1
302   if (OrigLoopExitWeight > 0 && OrigLoopBackedgeWeight > 0) {
303     ExitWeight0 = 0;
304     if (HasConditionalPreHeader) {
305       // Here we cannot know how many 0-trip count loops we have, so we guess:
306       if (OrigLoopBackedgeWeight >= OrigLoopExitWeight) {
307         // If the loop count is bigger than the exit count then we set
308         // probabilities as if 0-trip count nearly never happens.
309         ExitWeight0 = ZeroTripCountWeights[0];
310         // Scale up counts if necessary so we can match `ZeroTripCountWeights`
311         // for the `ExitWeight0`:`ExitWeight1` (aka `x0`:`x1` ratio`) ratio.
312         while (OrigLoopExitWeight < ZeroTripCountWeights[1] + ExitWeight0) {
313           // ... but don't overflow.
314           uint32_t const HighBit = uint32_t{1} << (sizeof(uint32_t) * 8 - 1);
315           if ((OrigLoopBackedgeWeight & HighBit) != 0 ||
316               (OrigLoopExitWeight & HighBit) != 0)
317             break;
318           OrigLoopBackedgeWeight <<= 1;
319           OrigLoopExitWeight <<= 1;
320         }
321       } else {
322         // If there's a higher exit-count than backedge-count then we set
323         // probabilities as if there are only 0-trip and 1-trip cases.
324         ExitWeight0 = OrigLoopExitWeight - OrigLoopBackedgeWeight;
325       }
326     }
327     ExitWeight1 = OrigLoopExitWeight - ExitWeight0;
328     EnterWeight = ExitWeight1;
329     LoopBackWeight = OrigLoopBackedgeWeight - EnterWeight;
330   } else if (OrigLoopExitWeight == 0) {
331     if (OrigLoopBackedgeWeight == 0) {
332       // degenerate case... keep everything zero...
333       ExitWeight0 = 0;
334       ExitWeight1 = 0;
335       EnterWeight = 0;
336       LoopBackWeight = 0;
337     } else {
338       // Special case "LoopExitWeight == 0" weights which behaves like an
339       // endless where we don't want loop-enttry (y0) to be the same as
340       // loop-exit (x1).
341       ExitWeight0 = 0;
342       ExitWeight1 = 0;
343       EnterWeight = 1;
344       LoopBackWeight = OrigLoopBackedgeWeight;
345     }
346   } else {
347     // loop is never entered.
348     assert(OrigLoopBackedgeWeight == 0 && "remaining case is backedge zero");
349     ExitWeight0 = 1;
350     ExitWeight1 = 1;
351     EnterWeight = 0;
352     LoopBackWeight = 0;
353   }
354 
355   const uint32_t LoopBIWeights[] = {
356       SuccsSwapped ? LoopBackWeight : ExitWeight1,
357       SuccsSwapped ? ExitWeight1 : LoopBackWeight,
358   };
359   setBranchWeights(LoopBI, LoopBIWeights);
360   if (HasConditionalPreHeader) {
361     const uint32_t PreHeaderBIWeights[] = {
362         SuccsSwapped ? EnterWeight : ExitWeight0,
363         SuccsSwapped ? ExitWeight0 : EnterWeight,
364     };
365     setBranchWeights(PreHeaderBI, PreHeaderBIWeights);
366   }
367 }
368 
369 /// Rotate loop LP. Return true if the loop is rotated.
370 ///
371 /// \param SimplifiedLatch is true if the latch was just folded into the final
372 /// loop exit. In this case we may want to rotate even though the new latch is
373 /// now an exiting branch. This rotation would have happened had the latch not
374 /// been simplified. However, if SimplifiedLatch is false, then we avoid
375 /// rotating loops in which the latch exits to avoid excessive or endless
376 /// rotation. LoopRotate should be repeatable and converge to a canonical
377 /// form. This property is satisfied because simplifying the loop latch can only
378 /// happen once across multiple invocations of the LoopRotate pass.
379 ///
380 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go
381 /// so to reach a suitable (non-deoptimizing) exit.
382 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
383   // If the loop has only one block then there is not much to rotate.
384   if (L->getBlocks().size() == 1)
385     return false;
386 
387   bool Rotated = false;
388   do {
389     BasicBlock *OrigHeader = L->getHeader();
390     BasicBlock *OrigLatch = L->getLoopLatch();
391 
392     BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
393     if (!BI || BI->isUnconditional())
394       return Rotated;
395 
396     // If the loop header is not one of the loop exiting blocks then
397     // either this loop is already rotated or it is not
398     // suitable for loop rotation transformations.
399     if (!L->isLoopExiting(OrigHeader))
400       return Rotated;
401 
402     // If the loop latch already contains a branch that leaves the loop then the
403     // loop is already rotated.
404     if (!OrigLatch)
405       return Rotated;
406 
407     // Rotate if either the loop latch does *not* exit the loop, or if the loop
408     // latch was just simplified. Or if we think it will be profitable.
409     if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
410         !profitableToRotateLoopExitingLatch(L) &&
411         !canRotateDeoptimizingLatchExit(L))
412       return Rotated;
413 
414     // Check size of original header and reject loop if it is very big or we can't
415     // duplicate blocks inside it.
416     {
417       SmallPtrSet<const Value *, 32> EphValues;
418       CodeMetrics::collectEphemeralValues(L, AC, EphValues);
419 
420       CodeMetrics Metrics;
421       Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO);
422       if (Metrics.notDuplicatable) {
423         LLVM_DEBUG(
424                    dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
425                    << " instructions: ";
426                    L->dump());
427         return Rotated;
428       }
429       if (Metrics.convergent) {
430         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
431                    "instructions: ";
432                    L->dump());
433         return Rotated;
434       }
435       if (!Metrics.NumInsts.isValid()) {
436         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains instructions"
437                    " with invalid cost: ";
438                    L->dump());
439         return Rotated;
440       }
441       if (Metrics.NumInsts > MaxHeaderSize) {
442         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "
443                           << Metrics.NumInsts
444                           << " instructions, which is more than the threshold ("
445                           << MaxHeaderSize << " instructions): ";
446                    L->dump());
447         ++NumNotRotatedDueToHeaderSize;
448         return Rotated;
449       }
450 
451       // When preparing for LTO, avoid rotating loops with calls that could be
452       // inlined during the LTO stage.
453       if (PrepareForLTO && Metrics.NumInlineCandidates > 0)
454         return Rotated;
455     }
456 
457     // Now, this loop is suitable for rotation.
458     BasicBlock *OrigPreheader = L->getLoopPreheader();
459 
460     // If the loop could not be converted to canonical form, it must have an
461     // indirectbr in it, just give up.
462     if (!OrigPreheader || !L->hasDedicatedExits())
463       return Rotated;
464 
465     // Anything ScalarEvolution may know about this loop or the PHI nodes
466     // in its header will soon be invalidated. We should also invalidate
467     // all outer loops because insertion and deletion of blocks that happens
468     // during the rotation may violate invariants related to backedge taken
469     // infos in them.
470     if (SE) {
471       SE->forgetTopmostLoop(L);
472       // We may hoist some instructions out of loop. In case if they were cached
473       // as "loop variant" or "loop computable", these caches must be dropped.
474       // We also may fold basic blocks, so cached block dispositions also need
475       // to be dropped.
476       SE->forgetBlockAndLoopDispositions();
477     }
478 
479     LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
480     if (MSSAU && VerifyMemorySSA)
481       MSSAU->getMemorySSA()->verifyMemorySSA();
482 
483     // Find new Loop header. NewHeader is a Header's one and only successor
484     // that is inside loop.  Header's other successor is outside the
485     // loop.  Otherwise loop is not suitable for rotation.
486     BasicBlock *Exit = BI->getSuccessor(0);
487     BasicBlock *NewHeader = BI->getSuccessor(1);
488     bool BISuccsSwapped = L->contains(Exit);
489     if (BISuccsSwapped)
490       std::swap(Exit, NewHeader);
491     assert(NewHeader && "Unable to determine new loop header");
492     assert(L->contains(NewHeader) && !L->contains(Exit) &&
493            "Unable to determine loop header and exit blocks");
494 
495     // This code assumes that the new header has exactly one predecessor.
496     // Remove any single-entry PHI nodes in it.
497     assert(NewHeader->getSinglePredecessor() &&
498            "New header doesn't have one pred!");
499     FoldSingleEntryPHINodes(NewHeader);
500 
501     // Begin by walking OrigHeader and populating ValueMap with an entry for
502     // each Instruction.
503     BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
504     ValueToValueMapTy ValueMap, ValueMapMSSA;
505 
506     // For PHI nodes, the value available in OldPreHeader is just the
507     // incoming value from OldPreHeader.
508     for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
509       InsertNewValueIntoMap(ValueMap, PN,
510                             PN->getIncomingValueForBlock(OrigPreheader));
511 
512     // For the rest of the instructions, either hoist to the OrigPreheader if
513     // possible or create a clone in the OldPreHeader if not.
514     Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
515 
516     // Record all debug intrinsics preceding LoopEntryBranch to avoid
517     // duplication.
518     using DbgIntrinsicHash =
519         std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>;
520     auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
521       auto VarLocOps = D->location_ops();
522       return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()),
523                D->getVariable()},
524               D->getExpression()};
525     };
526     SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
527     for (Instruction &I : llvm::drop_begin(llvm::reverse(*OrigPreheader))) {
528       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I))
529         DbgIntrinsics.insert(makeHash(DII));
530       else
531         break;
532     }
533 
534     // Remember the local noalias scope declarations in the header. After the
535     // rotation, they must be duplicated and the scope must be cloned. This
536     // avoids unwanted interaction across iterations.
537     SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions;
538     for (Instruction &I : *OrigHeader)
539       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
540         NoAliasDeclInstructions.push_back(Decl);
541 
542     while (I != E) {
543       Instruction *Inst = &*I++;
544 
545       // If the instruction's operands are invariant and it doesn't read or write
546       // memory, then it is safe to hoist.  Doing this doesn't change the order of
547       // execution in the preheader, but does prevent the instruction from
548       // executing in each iteration of the loop.  This means it is safe to hoist
549       // something that might trap, but isn't safe to hoist something that reads
550       // memory (without proving that the loop doesn't write).
551       if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
552           !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
553           !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
554         Inst->moveBefore(LoopEntryBranch);
555         ++NumInstrsHoisted;
556         continue;
557       }
558 
559       // Otherwise, create a duplicate of the instruction.
560       Instruction *C = Inst->clone();
561       C->insertBefore(LoopEntryBranch);
562 
563       ++NumInstrsDuplicated;
564 
565       // Eagerly remap the operands of the instruction.
566       RemapInstruction(C, ValueMap,
567                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
568 
569       // Avoid inserting the same intrinsic twice.
570       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
571         if (DbgIntrinsics.count(makeHash(DII))) {
572           C->eraseFromParent();
573           continue;
574         }
575 
576       // With the operands remapped, see if the instruction constant folds or is
577       // otherwise simplifyable.  This commonly occurs because the entry from PHI
578       // nodes allows icmps and other instructions to fold.
579       Value *V = simplifyInstruction(C, SQ);
580       if (V && LI->replacementPreservesLCSSAForm(C, V)) {
581         // If so, then delete the temporary instruction and stick the folded value
582         // in the map.
583         InsertNewValueIntoMap(ValueMap, Inst, V);
584         if (!C->mayHaveSideEffects()) {
585           C->eraseFromParent();
586           C = nullptr;
587         }
588       } else {
589         InsertNewValueIntoMap(ValueMap, Inst, C);
590       }
591       if (C) {
592         // Otherwise, stick the new instruction into the new block!
593         C->setName(Inst->getName());
594 
595         if (auto *II = dyn_cast<AssumeInst>(C))
596           AC->registerAssumption(II);
597         // MemorySSA cares whether the cloned instruction was inserted or not, and
598         // not whether it can be remapped to a simplified value.
599         if (MSSAU)
600           InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
601       }
602     }
603 
604     if (!NoAliasDeclInstructions.empty()) {
605       // There are noalias scope declarations:
606       // (general):
607       // Original:    OrigPre              { OrigHeader NewHeader ... Latch }
608       // after:      (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader }
609       //
610       // with D: llvm.experimental.noalias.scope.decl,
611       //      U: !noalias or !alias.scope depending on D
612       //       ... { D U1 U2 }   can transform into:
613       // (0) : ... { D U1 U2 }        // no relevant rotation for this part
614       // (1) : ... D' { U1 U2 D }     // D is part of OrigHeader
615       // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader
616       //
617       // We now want to transform:
618       // (1) -> : ... D' { D U1 U2 D'' }
619       // (2) -> : ... D' U1' { D U2 D'' U1'' }
620       // D: original llvm.experimental.noalias.scope.decl
621       // D', U1': duplicate with replaced scopes
622       // D'', U1'': different duplicate with replaced scopes
623       // This ensures a safe fallback to 'may_alias' introduced by the rotate,
624       // as U1'' and U1' scopes will not be compatible wrt to the local restrict
625 
626       // Clone the llvm.experimental.noalias.decl again for the NewHeader.
627       Instruction *NewHeaderInsertionPoint = &(*NewHeader->getFirstNonPHI());
628       for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) {
629         LLVM_DEBUG(dbgs() << "  Cloning llvm.experimental.noalias.scope.decl:"
630                           << *NAD << "\n");
631         Instruction *NewNAD = NAD->clone();
632         NewNAD->insertBefore(NewHeaderInsertionPoint);
633       }
634 
635       // Scopes must now be duplicated, once for OrigHeader and once for
636       // OrigPreHeader'.
637       {
638         auto &Context = NewHeader->getContext();
639 
640         SmallVector<MDNode *, 8> NoAliasDeclScopes;
641         for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions)
642           NoAliasDeclScopes.push_back(NAD->getScopeList());
643 
644         LLVM_DEBUG(dbgs() << "  Updating OrigHeader scopes\n");
645         cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context,
646                                    "h.rot");
647         LLVM_DEBUG(OrigHeader->dump());
648 
649         // Keep the compile time impact low by only adapting the inserted block
650         // of instructions in the OrigPreHeader. This might result in slightly
651         // more aliasing between these instructions and those that were already
652         // present, but it will be much faster when the original PreHeader is
653         // large.
654         LLVM_DEBUG(dbgs() << "  Updating part of OrigPreheader scopes\n");
655         auto *FirstDecl =
656             cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]);
657         auto *LastInst = &OrigPreheader->back();
658         cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst,
659                                    Context, "pre.rot");
660         LLVM_DEBUG(OrigPreheader->dump());
661 
662         LLVM_DEBUG(dbgs() << "  Updated NewHeader:\n");
663         LLVM_DEBUG(NewHeader->dump());
664       }
665     }
666 
667     // Along with all the other instructions, we just cloned OrigHeader's
668     // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
669     // successors by duplicating their incoming values for OrigHeader.
670     for (BasicBlock *SuccBB : successors(OrigHeader))
671       for (BasicBlock::iterator BI = SuccBB->begin();
672            PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
673         PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
674 
675     // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
676     // OrigPreHeader's old terminator (the original branch into the loop), and
677     // remove the corresponding incoming values from the PHI nodes in OrigHeader.
678     LoopEntryBranch->eraseFromParent();
679 
680     // Update MemorySSA before the rewrite call below changes the 1:1
681     // instruction:cloned_instruction_or_value mapping.
682     if (MSSAU) {
683       InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
684       MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
685                                           ValueMapMSSA);
686     }
687 
688     SmallVector<PHINode*, 2> InsertedPHIs;
689     // If there were any uses of instructions in the duplicated block outside the
690     // loop, update them, inserting PHI nodes as required
691     RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, SE,
692                                     &InsertedPHIs);
693 
694     // Attach dbg.value intrinsics to the new phis if that phi uses a value that
695     // previously had debug metadata attached. This keeps the debug info
696     // up-to-date in the loop body.
697     if (!InsertedPHIs.empty())
698       insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
699 
700     // NewHeader is now the header of the loop.
701     L->moveToHeader(NewHeader);
702     assert(L->getHeader() == NewHeader && "Latch block is our new header");
703 
704     // Inform DT about changes to the CFG.
705     if (DT) {
706       // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
707       // the DT about the removed edge to the OrigHeader (that got removed).
708       SmallVector<DominatorTree::UpdateType, 3> Updates;
709       Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
710       Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
711       Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
712 
713       if (MSSAU) {
714         MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true);
715         if (VerifyMemorySSA)
716           MSSAU->getMemorySSA()->verifyMemorySSA();
717       } else {
718         DT->applyUpdates(Updates);
719       }
720     }
721 
722     // At this point, we've finished our major CFG changes.  As part of cloning
723     // the loop into the preheader we've simplified instructions and the
724     // duplicated conditional branch may now be branching on a constant.  If it is
725     // branching on a constant and if that constant means that we enter the loop,
726     // then we fold away the cond branch to an uncond branch.  This simplifies the
727     // loop in cases important for nested loops, and it also means we don't have
728     // to split as many edges.
729     BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
730     assert(PHBI->isConditional() && "Should be clone of BI condbr!");
731     const Value *Cond = PHBI->getCondition();
732     const bool HasConditionalPreHeader =
733         !isa<ConstantInt>(Cond) ||
734         PHBI->getSuccessor(cast<ConstantInt>(Cond)->isZero()) != NewHeader;
735 
736     updateBranchWeights(*PHBI, *BI, HasConditionalPreHeader, BISuccsSwapped);
737 
738     if (HasConditionalPreHeader) {
739       // The conditional branch can't be folded, handle the general case.
740       // Split edges as necessary to preserve LoopSimplify form.
741 
742       // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
743       // thus is not a preheader anymore.
744       // Split the edge to form a real preheader.
745       BasicBlock *NewPH = SplitCriticalEdge(
746                                             OrigPreheader, NewHeader,
747                                             CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
748       NewPH->setName(NewHeader->getName() + ".lr.ph");
749 
750       // Preserve canonical loop form, which means that 'Exit' should have only
751       // one predecessor. Note that Exit could be an exit block for multiple
752       // nested loops, causing both of the edges to now be critical and need to
753       // be split.
754       SmallVector<BasicBlock *, 4> ExitPreds(predecessors(Exit));
755       bool SplitLatchEdge = false;
756       for (BasicBlock *ExitPred : ExitPreds) {
757         // We only need to split loop exit edges.
758         Loop *PredLoop = LI->getLoopFor(ExitPred);
759         if (!PredLoop || PredLoop->contains(Exit) ||
760             isa<IndirectBrInst>(ExitPred->getTerminator()))
761           continue;
762         SplitLatchEdge |= L->getLoopLatch() == ExitPred;
763         BasicBlock *ExitSplit = SplitCriticalEdge(
764                                                   ExitPred, Exit,
765                                                   CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
766         ExitSplit->moveBefore(Exit);
767       }
768       assert(SplitLatchEdge &&
769              "Despite splitting all preds, failed to split latch exit?");
770       (void)SplitLatchEdge;
771     } else {
772       // We can fold the conditional branch in the preheader, this makes things
773       // simpler. The first step is to remove the extra edge to the Exit block.
774       Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
775       BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
776       NewBI->setDebugLoc(PHBI->getDebugLoc());
777       PHBI->eraseFromParent();
778 
779       // With our CFG finalized, update DomTree if it is available.
780       if (DT) DT->deleteEdge(OrigPreheader, Exit);
781 
782       // Update MSSA too, if available.
783       if (MSSAU)
784         MSSAU->removeEdge(OrigPreheader, Exit);
785     }
786 
787     assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
788     assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
789 
790     if (MSSAU && VerifyMemorySSA)
791       MSSAU->getMemorySSA()->verifyMemorySSA();
792 
793     // Now that the CFG and DomTree are in a consistent state again, try to merge
794     // the OrigHeader block into OrigLatch.  This will succeed if they are
795     // connected by an unconditional branch.  This is just a cleanup so the
796     // emitted code isn't too gross in this common case.
797     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
798     BasicBlock *PredBB = OrigHeader->getUniquePredecessor();
799     bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
800     if (DidMerge)
801       RemoveRedundantDbgInstrs(PredBB);
802 
803     if (MSSAU && VerifyMemorySSA)
804       MSSAU->getMemorySSA()->verifyMemorySSA();
805 
806     LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
807 
808     ++NumRotated;
809 
810     Rotated = true;
811     SimplifiedLatch = false;
812 
813     // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
814     // Deoptimizing latch exit is not a generally typical case, so we just loop over.
815     // TODO: if it becomes a performance bottleneck extend rotation algorithm
816     // to handle multiple rotations in one go.
817   } while (MultiRotate && canRotateDeoptimizingLatchExit(L));
818 
819 
820   return true;
821 }
822 
823 /// Determine whether the instructions in this range may be safely and cheaply
824 /// speculated. This is not an important enough situation to develop complex
825 /// heuristics. We handle a single arithmetic instruction along with any type
826 /// conversions.
827 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
828                                   BasicBlock::iterator End, Loop *L) {
829   bool seenIncrement = false;
830   bool MultiExitLoop = false;
831 
832   if (!L->getExitingBlock())
833     MultiExitLoop = true;
834 
835   for (BasicBlock::iterator I = Begin; I != End; ++I) {
836 
837     if (!isSafeToSpeculativelyExecute(&*I))
838       return false;
839 
840     if (isa<DbgInfoIntrinsic>(I))
841       continue;
842 
843     switch (I->getOpcode()) {
844     default:
845       return false;
846     case Instruction::GetElementPtr:
847       // GEPs are cheap if all indices are constant.
848       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
849         return false;
850       // fall-thru to increment case
851       [[fallthrough]];
852     case Instruction::Add:
853     case Instruction::Sub:
854     case Instruction::And:
855     case Instruction::Or:
856     case Instruction::Xor:
857     case Instruction::Shl:
858     case Instruction::LShr:
859     case Instruction::AShr: {
860       Value *IVOpnd =
861           !isa<Constant>(I->getOperand(0))
862               ? I->getOperand(0)
863               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
864       if (!IVOpnd)
865         return false;
866 
867       // If increment operand is used outside of the loop, this speculation
868       // could cause extra live range interference.
869       if (MultiExitLoop) {
870         for (User *UseI : IVOpnd->users()) {
871           auto *UserInst = cast<Instruction>(UseI);
872           if (!L->contains(UserInst))
873             return false;
874         }
875       }
876 
877       if (seenIncrement)
878         return false;
879       seenIncrement = true;
880       break;
881     }
882     case Instruction::Trunc:
883     case Instruction::ZExt:
884     case Instruction::SExt:
885       // ignore type conversions
886       break;
887     }
888   }
889   return true;
890 }
891 
892 /// Fold the loop tail into the loop exit by speculating the loop tail
893 /// instructions. Typically, this is a single post-increment. In the case of a
894 /// simple 2-block loop, hoisting the increment can be much better than
895 /// duplicating the entire loop header. In the case of loops with early exits,
896 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
897 /// canonical form so downstream passes can handle it.
898 ///
899 /// I don't believe this invalidates SCEV.
900 bool LoopRotate::simplifyLoopLatch(Loop *L) {
901   BasicBlock *Latch = L->getLoopLatch();
902   if (!Latch || Latch->hasAddressTaken())
903     return false;
904 
905   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
906   if (!Jmp || !Jmp->isUnconditional())
907     return false;
908 
909   BasicBlock *LastExit = Latch->getSinglePredecessor();
910   if (!LastExit || !L->isLoopExiting(LastExit))
911     return false;
912 
913   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
914   if (!BI)
915     return false;
916 
917   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
918     return false;
919 
920   LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
921                     << LastExit->getName() << "\n");
922 
923   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
924   MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
925                             /*PredecessorWithTwoSuccessors=*/true);
926 
927     if (SE) {
928       // Merging blocks may remove blocks reference in the block disposition cache. Clear the cache.
929       SE->forgetBlockAndLoopDispositions();
930     }
931 
932   if (MSSAU && VerifyMemorySSA)
933     MSSAU->getMemorySSA()->verifyMemorySSA();
934 
935   return true;
936 }
937 
938 /// Rotate \c L, and return true if any modification was made.
939 bool LoopRotate::processLoop(Loop *L) {
940   // Save the loop metadata.
941   MDNode *LoopMD = L->getLoopID();
942 
943   bool SimplifiedLatch = false;
944 
945   // Simplify the loop latch before attempting to rotate the header
946   // upward. Rotation may not be needed if the loop tail can be folded into the
947   // loop exit.
948   if (!RotationOnly)
949     SimplifiedLatch = simplifyLoopLatch(L);
950 
951   bool MadeChange = rotateLoop(L, SimplifiedLatch);
952   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
953          "Loop latch should be exiting after loop-rotate.");
954 
955   // Restore the loop metadata.
956   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
957   if ((MadeChange || SimplifiedLatch) && LoopMD)
958     L->setLoopID(LoopMD);
959 
960   return MadeChange || SimplifiedLatch;
961 }
962 
963 
964 /// The utility to convert a loop into a loop with bottom test.
965 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
966                         AssumptionCache *AC, DominatorTree *DT,
967                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
968                         const SimplifyQuery &SQ, bool RotationOnly = true,
969                         unsigned Threshold = unsigned(-1),
970                         bool IsUtilMode = true, bool PrepareForLTO) {
971   LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
972                 IsUtilMode, PrepareForLTO);
973   return LR.processLoop(L);
974 }
975