xref: /llvm-project/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp (revision 360da83858655ad8297f3c0467c8c97ebedab5ed)
1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides utilities to convert a loop into a loop with bottom test.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AssumptionCache.h"
16 #include "llvm/Analysis/CodeMetrics.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/MemorySSA.h"
21 #include "llvm/Analysis/MemorySSAUpdater.h"
22 #include "llvm/Analysis/ScalarEvolution.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/ProfDataUtils.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/SSAUpdater.h"
37 #include "llvm/Transforms/Utils/ValueMapper.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "loop-rotate"
41 
42 STATISTIC(NumNotRotatedDueToHeaderSize,
43           "Number of loops not rotated due to the header size");
44 STATISTIC(NumInstrsHoisted,
45           "Number of instructions hoisted into loop preheader");
46 STATISTIC(NumInstrsDuplicated,
47           "Number of instructions cloned into loop preheader");
48 STATISTIC(NumRotated, "Number of loops rotated");
49 
50 static cl::opt<bool>
51     MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
52                 cl::desc("Allow loop rotation multiple times in order to reach "
53                          "a better latch exit"));
54 
55 // Probability that a rotated loop has zero trip count / is never entered.
56 static constexpr uint32_t ZeroTripCountWeights[] = {1, 127};
57 
58 namespace {
59 /// A simple loop rotation transformation.
60 class LoopRotate {
61   const unsigned MaxHeaderSize;
62   LoopInfo *LI;
63   const TargetTransformInfo *TTI;
64   AssumptionCache *AC;
65   DominatorTree *DT;
66   ScalarEvolution *SE;
67   MemorySSAUpdater *MSSAU;
68   const SimplifyQuery &SQ;
69   bool RotationOnly;
70   bool IsUtilMode;
71   bool PrepareForLTO;
72 
73 public:
74   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
75              const TargetTransformInfo *TTI, AssumptionCache *AC,
76              DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
77              const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode,
78              bool PrepareForLTO)
79       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
80         MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
81         IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {}
82   bool processLoop(Loop *L);
83 
84 private:
85   bool rotateLoop(Loop *L, bool SimplifiedLatch);
86   bool simplifyLoopLatch(Loop *L);
87 };
88 } // end anonymous namespace
89 
90 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
91 /// previously exist in the map, and the value was inserted.
92 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
93   bool Inserted = VM.insert({K, V}).second;
94   assert(Inserted);
95   (void)Inserted;
96 }
97 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
98 /// old header into the preheader.  If there were uses of the values produced by
99 /// these instruction that were outside of the loop, we have to insert PHI nodes
100 /// to merge the two values.  Do this now.
101 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
102                                             BasicBlock *OrigPreheader,
103                                             ValueToValueMapTy &ValueMap,
104                                             ScalarEvolution *SE,
105                                 SmallVectorImpl<PHINode*> *InsertedPHIs) {
106   // Remove PHI node entries that are no longer live.
107   BasicBlock::iterator I, E = OrigHeader->end();
108   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
109     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
110 
111   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
112   // as necessary.
113   SSAUpdater SSA(InsertedPHIs);
114   for (I = OrigHeader->begin(); I != E; ++I) {
115     Value *OrigHeaderVal = &*I;
116 
117     // If there are no uses of the value (e.g. because it returns void), there
118     // is nothing to rewrite.
119     if (OrigHeaderVal->use_empty())
120       continue;
121 
122     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
123 
124     // The value now exits in two versions: the initial value in the preheader
125     // and the loop "next" value in the original header.
126     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
127     // Force re-computation of OrigHeaderVal, as some users now need to use the
128     // new PHI node.
129     if (SE)
130       SE->forgetValue(OrigHeaderVal);
131     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
132     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
133 
134     // Visit each use of the OrigHeader instruction.
135     for (Use &U : llvm::make_early_inc_range(OrigHeaderVal->uses())) {
136       // SSAUpdater can't handle a non-PHI use in the same block as an
137       // earlier def. We can easily handle those cases manually.
138       Instruction *UserInst = cast<Instruction>(U.getUser());
139       if (!isa<PHINode>(UserInst)) {
140         BasicBlock *UserBB = UserInst->getParent();
141 
142         // The original users in the OrigHeader are already using the
143         // original definitions.
144         if (UserBB == OrigHeader)
145           continue;
146 
147         // Users in the OrigPreHeader need to use the value to which the
148         // original definitions are mapped.
149         if (UserBB == OrigPreheader) {
150           U = OrigPreHeaderVal;
151           continue;
152         }
153       }
154 
155       // Anything else can be handled by SSAUpdater.
156       SSA.RewriteUse(U);
157     }
158 
159     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
160     // intrinsics.
161     SmallVector<DbgValueInst *, 1> DbgValues;
162     SmallVector<DPValue *, 1> DPValues;
163     llvm::findDbgValues(DbgValues, OrigHeaderVal, &DPValues);
164     for (auto &DbgValue : DbgValues) {
165       // The original users in the OrigHeader are already using the original
166       // definitions.
167       BasicBlock *UserBB = DbgValue->getParent();
168       if (UserBB == OrigHeader)
169         continue;
170 
171       // Users in the OrigPreHeader need to use the value to which the
172       // original definitions are mapped and anything else can be handled by
173       // the SSAUpdater. To avoid adding PHINodes, check if the value is
174       // available in UserBB, if not substitute undef.
175       Value *NewVal;
176       if (UserBB == OrigPreheader)
177         NewVal = OrigPreHeaderVal;
178       else if (SSA.HasValueForBlock(UserBB))
179         NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
180       else
181         NewVal = UndefValue::get(OrigHeaderVal->getType());
182       DbgValue->replaceVariableLocationOp(OrigHeaderVal, NewVal);
183     }
184 
185     // RemoveDIs: duplicate implementation for non-instruction debug-info
186     // storage in DPValues.
187     for (DPValue *DPV : DPValues) {
188       // The original users in the OrigHeader are already using the original
189       // definitions.
190       BasicBlock *UserBB = DPV->getMarker()->getParent();
191       if (UserBB == OrigHeader)
192         continue;
193 
194       // Users in the OrigPreHeader need to use the value to which the
195       // original definitions are mapped and anything else can be handled by
196       // the SSAUpdater. To avoid adding PHINodes, check if the value is
197       // available in UserBB, if not substitute undef.
198       Value *NewVal;
199       if (UserBB == OrigPreheader)
200         NewVal = OrigPreHeaderVal;
201       else if (SSA.HasValueForBlock(UserBB))
202         NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
203       else
204         NewVal = UndefValue::get(OrigHeaderVal->getType());
205       DPV->replaceVariableLocationOp(OrigHeaderVal, NewVal);
206     }
207   }
208 }
209 
210 // Assuming both header and latch are exiting, look for a phi which is only
211 // used outside the loop (via a LCSSA phi) in the exit from the header.
212 // This means that rotating the loop can remove the phi.
213 static bool profitableToRotateLoopExitingLatch(Loop *L) {
214   BasicBlock *Header = L->getHeader();
215   BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
216   assert(BI && BI->isConditional() && "need header with conditional exit");
217   BasicBlock *HeaderExit = BI->getSuccessor(0);
218   if (L->contains(HeaderExit))
219     HeaderExit = BI->getSuccessor(1);
220 
221   for (auto &Phi : Header->phis()) {
222     // Look for uses of this phi in the loop/via exits other than the header.
223     if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
224           return cast<Instruction>(U)->getParent() != HeaderExit;
225         }))
226       continue;
227     return true;
228   }
229   return false;
230 }
231 
232 // Check that latch exit is deoptimizing (which means - very unlikely to happen)
233 // and there is another exit from the loop which is non-deoptimizing.
234 // If we rotate latch to that exit our loop has a better chance of being fully
235 // canonical.
236 //
237 // It can give false positives in some rare cases.
238 static bool canRotateDeoptimizingLatchExit(Loop *L) {
239   BasicBlock *Latch = L->getLoopLatch();
240   assert(Latch && "need latch");
241   BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
242   // Need normal exiting latch.
243   if (!BI || !BI->isConditional())
244     return false;
245 
246   BasicBlock *Exit = BI->getSuccessor(1);
247   if (L->contains(Exit))
248     Exit = BI->getSuccessor(0);
249 
250   // Latch exit is non-deoptimizing, no need to rotate.
251   if (!Exit->getPostdominatingDeoptimizeCall())
252     return false;
253 
254   SmallVector<BasicBlock *, 4> Exits;
255   L->getUniqueExitBlocks(Exits);
256   if (!Exits.empty()) {
257     // There is at least one non-deoptimizing exit.
258     //
259     // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
260     // as it can conservatively return false for deoptimizing exits with
261     // complex enough control flow down to deoptimize call.
262     //
263     // That means here we can report success for a case where
264     // all exits are deoptimizing but one of them has complex enough
265     // control flow (e.g. with loops).
266     //
267     // That should be a very rare case and false positives for this function
268     // have compile-time effect only.
269     return any_of(Exits, [](const BasicBlock *BB) {
270       return !BB->getPostdominatingDeoptimizeCall();
271     });
272   }
273   return false;
274 }
275 
276 static void updateBranchWeights(BranchInst &PreHeaderBI, BranchInst &LoopBI,
277                                 bool HasConditionalPreHeader,
278                                 bool SuccsSwapped) {
279   MDNode *WeightMD = getBranchWeightMDNode(PreHeaderBI);
280   if (WeightMD == nullptr)
281     return;
282 
283   // LoopBI should currently be a clone of PreHeaderBI with the same
284   // metadata. But we double check to make sure we don't have a degenerate case
285   // where instsimplify changed the instructions.
286   if (WeightMD != getBranchWeightMDNode(LoopBI))
287     return;
288 
289   SmallVector<uint32_t, 2> Weights;
290   extractFromBranchWeightMD(WeightMD, Weights);
291   if (Weights.size() != 2)
292     return;
293   uint32_t OrigLoopExitWeight = Weights[0];
294   uint32_t OrigLoopBackedgeWeight = Weights[1];
295 
296   if (SuccsSwapped)
297     std::swap(OrigLoopExitWeight, OrigLoopBackedgeWeight);
298 
299   // Update branch weights. Consider the following edge-counts:
300   //
301   //    |  |--------             |
302   //    V  V       |             V
303   //   Br i1 ...   |            Br i1 ...
304   //   |       |   |            |     |
305   //  x|      y|   |  becomes:  |   y0|  |-----
306   //   V       V   |            |     V  V    |
307   // Exit    Loop  |            |    Loop     |
308   //           |   |            |   Br i1 ... |
309   //           -----            |   |      |  |
310   //                          x0| x1|   y1 |  |
311   //                            V   V      ----
312   //                            Exit
313   //
314   // The following must hold:
315   //  -  x == x0 + x1        # counts to "exit" must stay the same.
316   //  - y0 == x - x0 == x1   # how often loop was entered at all.
317   //  - y1 == y - y0         # How often loop was repeated (after first iter.).
318   //
319   // We cannot generally deduce how often we had a zero-trip count loop so we
320   // have to make a guess for how to distribute x among the new x0 and x1.
321 
322   uint32_t ExitWeight0;    // aka x0
323   uint32_t ExitWeight1;    // aka x1
324   uint32_t EnterWeight;    // aka y0
325   uint32_t LoopBackWeight; // aka y1
326   if (OrigLoopExitWeight > 0 && OrigLoopBackedgeWeight > 0) {
327     ExitWeight0 = 0;
328     if (HasConditionalPreHeader) {
329       // Here we cannot know how many 0-trip count loops we have, so we guess:
330       if (OrigLoopBackedgeWeight >= OrigLoopExitWeight) {
331         // If the loop count is bigger than the exit count then we set
332         // probabilities as if 0-trip count nearly never happens.
333         ExitWeight0 = ZeroTripCountWeights[0];
334         // Scale up counts if necessary so we can match `ZeroTripCountWeights`
335         // for the `ExitWeight0`:`ExitWeight1` (aka `x0`:`x1` ratio`) ratio.
336         while (OrigLoopExitWeight < ZeroTripCountWeights[1] + ExitWeight0) {
337           // ... but don't overflow.
338           uint32_t const HighBit = uint32_t{1} << (sizeof(uint32_t) * 8 - 1);
339           if ((OrigLoopBackedgeWeight & HighBit) != 0 ||
340               (OrigLoopExitWeight & HighBit) != 0)
341             break;
342           OrigLoopBackedgeWeight <<= 1;
343           OrigLoopExitWeight <<= 1;
344         }
345       } else {
346         // If there's a higher exit-count than backedge-count then we set
347         // probabilities as if there are only 0-trip and 1-trip cases.
348         ExitWeight0 = OrigLoopExitWeight - OrigLoopBackedgeWeight;
349       }
350     }
351     ExitWeight1 = OrigLoopExitWeight - ExitWeight0;
352     EnterWeight = ExitWeight1;
353     LoopBackWeight = OrigLoopBackedgeWeight - EnterWeight;
354   } else if (OrigLoopExitWeight == 0) {
355     if (OrigLoopBackedgeWeight == 0) {
356       // degenerate case... keep everything zero...
357       ExitWeight0 = 0;
358       ExitWeight1 = 0;
359       EnterWeight = 0;
360       LoopBackWeight = 0;
361     } else {
362       // Special case "LoopExitWeight == 0" weights which behaves like an
363       // endless where we don't want loop-enttry (y0) to be the same as
364       // loop-exit (x1).
365       ExitWeight0 = 0;
366       ExitWeight1 = 0;
367       EnterWeight = 1;
368       LoopBackWeight = OrigLoopBackedgeWeight;
369     }
370   } else {
371     // loop is never entered.
372     assert(OrigLoopBackedgeWeight == 0 && "remaining case is backedge zero");
373     ExitWeight0 = 1;
374     ExitWeight1 = 1;
375     EnterWeight = 0;
376     LoopBackWeight = 0;
377   }
378 
379   const uint32_t LoopBIWeights[] = {
380       SuccsSwapped ? LoopBackWeight : ExitWeight1,
381       SuccsSwapped ? ExitWeight1 : LoopBackWeight,
382   };
383   setBranchWeights(LoopBI, LoopBIWeights);
384   if (HasConditionalPreHeader) {
385     const uint32_t PreHeaderBIWeights[] = {
386         SuccsSwapped ? EnterWeight : ExitWeight0,
387         SuccsSwapped ? ExitWeight0 : EnterWeight,
388     };
389     setBranchWeights(PreHeaderBI, PreHeaderBIWeights);
390   }
391 }
392 
393 /// Rotate loop LP. Return true if the loop is rotated.
394 ///
395 /// \param SimplifiedLatch is true if the latch was just folded into the final
396 /// loop exit. In this case we may want to rotate even though the new latch is
397 /// now an exiting branch. This rotation would have happened had the latch not
398 /// been simplified. However, if SimplifiedLatch is false, then we avoid
399 /// rotating loops in which the latch exits to avoid excessive or endless
400 /// rotation. LoopRotate should be repeatable and converge to a canonical
401 /// form. This property is satisfied because simplifying the loop latch can only
402 /// happen once across multiple invocations of the LoopRotate pass.
403 ///
404 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go
405 /// so to reach a suitable (non-deoptimizing) exit.
406 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
407   // If the loop has only one block then there is not much to rotate.
408   if (L->getBlocks().size() == 1)
409     return false;
410 
411   bool Rotated = false;
412   do {
413     BasicBlock *OrigHeader = L->getHeader();
414     BasicBlock *OrigLatch = L->getLoopLatch();
415 
416     BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
417     if (!BI || BI->isUnconditional())
418       return Rotated;
419 
420     // If the loop header is not one of the loop exiting blocks then
421     // either this loop is already rotated or it is not
422     // suitable for loop rotation transformations.
423     if (!L->isLoopExiting(OrigHeader))
424       return Rotated;
425 
426     // If the loop latch already contains a branch that leaves the loop then the
427     // loop is already rotated.
428     if (!OrigLatch)
429       return Rotated;
430 
431     // Rotate if either the loop latch does *not* exit the loop, or if the loop
432     // latch was just simplified. Or if we think it will be profitable.
433     if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
434         !profitableToRotateLoopExitingLatch(L) &&
435         !canRotateDeoptimizingLatchExit(L))
436       return Rotated;
437 
438     // Check size of original header and reject loop if it is very big or we can't
439     // duplicate blocks inside it.
440     {
441       SmallPtrSet<const Value *, 32> EphValues;
442       CodeMetrics::collectEphemeralValues(L, AC, EphValues);
443 
444       CodeMetrics Metrics;
445       Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO);
446       if (Metrics.notDuplicatable) {
447         LLVM_DEBUG(
448                    dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
449                    << " instructions: ";
450                    L->dump());
451         return Rotated;
452       }
453       if (Metrics.convergent) {
454         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
455                    "instructions: ";
456                    L->dump());
457         return Rotated;
458       }
459       if (!Metrics.NumInsts.isValid()) {
460         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains instructions"
461                    " with invalid cost: ";
462                    L->dump());
463         return Rotated;
464       }
465       if (Metrics.NumInsts > MaxHeaderSize) {
466         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "
467                           << Metrics.NumInsts
468                           << " instructions, which is more than the threshold ("
469                           << MaxHeaderSize << " instructions): ";
470                    L->dump());
471         ++NumNotRotatedDueToHeaderSize;
472         return Rotated;
473       }
474 
475       // When preparing for LTO, avoid rotating loops with calls that could be
476       // inlined during the LTO stage.
477       if (PrepareForLTO && Metrics.NumInlineCandidates > 0)
478         return Rotated;
479     }
480 
481     // Now, this loop is suitable for rotation.
482     BasicBlock *OrigPreheader = L->getLoopPreheader();
483 
484     // If the loop could not be converted to canonical form, it must have an
485     // indirectbr in it, just give up.
486     if (!OrigPreheader || !L->hasDedicatedExits())
487       return Rotated;
488 
489     // Anything ScalarEvolution may know about this loop or the PHI nodes
490     // in its header will soon be invalidated. We should also invalidate
491     // all outer loops because insertion and deletion of blocks that happens
492     // during the rotation may violate invariants related to backedge taken
493     // infos in them.
494     if (SE) {
495       SE->forgetTopmostLoop(L);
496       // We may hoist some instructions out of loop. In case if they were cached
497       // as "loop variant" or "loop computable", these caches must be dropped.
498       // We also may fold basic blocks, so cached block dispositions also need
499       // to be dropped.
500       SE->forgetBlockAndLoopDispositions();
501     }
502 
503     LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
504     if (MSSAU && VerifyMemorySSA)
505       MSSAU->getMemorySSA()->verifyMemorySSA();
506 
507     // Find new Loop header. NewHeader is a Header's one and only successor
508     // that is inside loop.  Header's other successor is outside the
509     // loop.  Otherwise loop is not suitable for rotation.
510     BasicBlock *Exit = BI->getSuccessor(0);
511     BasicBlock *NewHeader = BI->getSuccessor(1);
512     bool BISuccsSwapped = L->contains(Exit);
513     if (BISuccsSwapped)
514       std::swap(Exit, NewHeader);
515     assert(NewHeader && "Unable to determine new loop header");
516     assert(L->contains(NewHeader) && !L->contains(Exit) &&
517            "Unable to determine loop header and exit blocks");
518 
519     // This code assumes that the new header has exactly one predecessor.
520     // Remove any single-entry PHI nodes in it.
521     assert(NewHeader->getSinglePredecessor() &&
522            "New header doesn't have one pred!");
523     FoldSingleEntryPHINodes(NewHeader);
524 
525     // Begin by walking OrigHeader and populating ValueMap with an entry for
526     // each Instruction.
527     BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
528     ValueToValueMapTy ValueMap, ValueMapMSSA;
529 
530     // For PHI nodes, the value available in OldPreHeader is just the
531     // incoming value from OldPreHeader.
532     for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
533       InsertNewValueIntoMap(ValueMap, PN,
534                             PN->getIncomingValueForBlock(OrigPreheader));
535 
536     // For the rest of the instructions, either hoist to the OrigPreheader if
537     // possible or create a clone in the OldPreHeader if not.
538     Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
539 
540     // Record all debug intrinsics preceding LoopEntryBranch to avoid
541     // duplication.
542     using DbgIntrinsicHash =
543         std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>;
544     auto makeHash = [](auto *D) -> DbgIntrinsicHash {
545       auto VarLocOps = D->location_ops();
546       return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()),
547                D->getVariable()},
548               D->getExpression()};
549     };
550 
551     SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
552     for (Instruction &I : llvm::drop_begin(llvm::reverse(*OrigPreheader))) {
553       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
554         DbgIntrinsics.insert(makeHash(DII));
555         // Until RemoveDIs supports dbg.declares in DPValue format, we'll need
556         // to collect DPValues attached to any other debug intrinsics.
557         for (const DPValue &DPV : DPValue::filter(DII->getDbgRecordRange()))
558           DbgIntrinsics.insert(makeHash(&DPV));
559       } else {
560         break;
561       }
562     }
563 
564     // Build DPValue hashes for DPValues attached to the terminator, which isn't
565     // considered in the loop above.
566     for (const DPValue &DPV :
567          DPValue::filter(OrigPreheader->getTerminator()->getDbgRecordRange()))
568       DbgIntrinsics.insert(makeHash(&DPV));
569 
570     // Remember the local noalias scope declarations in the header. After the
571     // rotation, they must be duplicated and the scope must be cloned. This
572     // avoids unwanted interaction across iterations.
573     SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions;
574     for (Instruction &I : *OrigHeader)
575       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
576         NoAliasDeclInstructions.push_back(Decl);
577 
578     Module *M = OrigHeader->getModule();
579 
580     // Track the next DbgRecord to clone. If we have a sequence where an
581     // instruction is hoisted instead of being cloned:
582     //    DbgRecord blah
583     //    %foo = add i32 0, 0
584     //    DbgRecord xyzzy
585     //    %bar = call i32 @foobar()
586     // where %foo is hoisted, then the DbgRecord "blah" will be seen twice, once
587     // attached to %foo, then when %foo his hoisted it will "fall down" onto the
588     // function call:
589     //    DbgRecord blah
590     //    DbgRecord xyzzy
591     //    %bar = call i32 @foobar()
592     // causing it to appear attached to the call too.
593     //
594     // To avoid this, cloneDebugInfoFrom takes an optional "start cloning from
595     // here" position to account for this behaviour. We point it at any
596     // DbgRecords on the next instruction, here labelled xyzzy, before we hoist
597     // %foo. Later, we only only clone DbgRecords from that position (xyzzy)
598     // onwards, which avoids cloning DbgRecord "blah" multiple times. (Stored as
599     // a range because it gives us a natural way of testing whether
600     //  there were DbgRecords on the next instruction before we hoisted things).
601     iterator_range<DbgRecord::self_iterator> NextDbgInsts =
602         (I != E) ? I->getDbgRecordRange() : DPMarker::getEmptyDbgRecordRange();
603 
604     while (I != E) {
605       Instruction *Inst = &*I++;
606 
607       // If the instruction's operands are invariant and it doesn't read or write
608       // memory, then it is safe to hoist.  Doing this doesn't change the order of
609       // execution in the preheader, but does prevent the instruction from
610       // executing in each iteration of the loop.  This means it is safe to hoist
611       // something that might trap, but isn't safe to hoist something that reads
612       // memory (without proving that the loop doesn't write).
613       if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
614           !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
615           !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst) &&
616           // It is not safe to hoist the value of these instructions in
617           // coroutines, as the addresses of otherwise eligible variables (e.g.
618           // thread-local variables and errno) may change if the coroutine is
619           // resumed in a different thread.Therefore, we disable this
620           // optimization for correctness. However, this may block other correct
621           // optimizations.
622           // FIXME: This should be reverted once we have a better model for
623           // memory access in coroutines.
624           !Inst->getFunction()->isPresplitCoroutine()) {
625 
626         if (LoopEntryBranch->getParent()->IsNewDbgInfoFormat &&
627             !NextDbgInsts.empty()) {
628           auto DbgValueRange =
629               LoopEntryBranch->cloneDebugInfoFrom(Inst, NextDbgInsts.begin());
630           RemapDPValueRange(M, DbgValueRange, ValueMap,
631                             RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
632           // Erase anything we've seen before.
633           for (DPValue &DPV :
634                make_early_inc_range(DPValue::filter(DbgValueRange)))
635             if (DbgIntrinsics.count(makeHash(&DPV)))
636               DPV.eraseFromParent();
637         }
638 
639         NextDbgInsts = I->getDbgRecordRange();
640 
641         Inst->moveBefore(LoopEntryBranch);
642 
643         ++NumInstrsHoisted;
644         continue;
645       }
646 
647       // Otherwise, create a duplicate of the instruction.
648       Instruction *C = Inst->clone();
649       C->insertBefore(LoopEntryBranch);
650 
651       ++NumInstrsDuplicated;
652 
653       if (LoopEntryBranch->getParent()->IsNewDbgInfoFormat &&
654           !NextDbgInsts.empty()) {
655         auto Range = C->cloneDebugInfoFrom(Inst, NextDbgInsts.begin());
656         RemapDPValueRange(M, Range, ValueMap,
657                           RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
658         NextDbgInsts = DPMarker::getEmptyDbgRecordRange();
659         // Erase anything we've seen before.
660         for (DPValue &DPV : make_early_inc_range(DPValue::filter(Range)))
661           if (DbgIntrinsics.count(makeHash(&DPV)))
662             DPV.eraseFromParent();
663       }
664 
665       // Eagerly remap the operands of the instruction.
666       RemapInstruction(C, ValueMap,
667                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
668 
669       // Avoid inserting the same intrinsic twice.
670       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
671         if (DbgIntrinsics.count(makeHash(DII))) {
672           C->eraseFromParent();
673           continue;
674         }
675 
676       // With the operands remapped, see if the instruction constant folds or is
677       // otherwise simplifyable.  This commonly occurs because the entry from PHI
678       // nodes allows icmps and other instructions to fold.
679       Value *V = simplifyInstruction(C, SQ);
680       if (V && LI->replacementPreservesLCSSAForm(C, V)) {
681         // If so, then delete the temporary instruction and stick the folded value
682         // in the map.
683         InsertNewValueIntoMap(ValueMap, Inst, V);
684         if (!C->mayHaveSideEffects()) {
685           C->eraseFromParent();
686           C = nullptr;
687         }
688       } else {
689         InsertNewValueIntoMap(ValueMap, Inst, C);
690       }
691       if (C) {
692         // Otherwise, stick the new instruction into the new block!
693         C->setName(Inst->getName());
694 
695         if (auto *II = dyn_cast<AssumeInst>(C))
696           AC->registerAssumption(II);
697         // MemorySSA cares whether the cloned instruction was inserted or not, and
698         // not whether it can be remapped to a simplified value.
699         if (MSSAU)
700           InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
701       }
702     }
703 
704     if (!NoAliasDeclInstructions.empty()) {
705       // There are noalias scope declarations:
706       // (general):
707       // Original:    OrigPre              { OrigHeader NewHeader ... Latch }
708       // after:      (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader }
709       //
710       // with D: llvm.experimental.noalias.scope.decl,
711       //      U: !noalias or !alias.scope depending on D
712       //       ... { D U1 U2 }   can transform into:
713       // (0) : ... { D U1 U2 }        // no relevant rotation for this part
714       // (1) : ... D' { U1 U2 D }     // D is part of OrigHeader
715       // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader
716       //
717       // We now want to transform:
718       // (1) -> : ... D' { D U1 U2 D'' }
719       // (2) -> : ... D' U1' { D U2 D'' U1'' }
720       // D: original llvm.experimental.noalias.scope.decl
721       // D', U1': duplicate with replaced scopes
722       // D'', U1'': different duplicate with replaced scopes
723       // This ensures a safe fallback to 'may_alias' introduced by the rotate,
724       // as U1'' and U1' scopes will not be compatible wrt to the local restrict
725 
726       // Clone the llvm.experimental.noalias.decl again for the NewHeader.
727       BasicBlock::iterator NewHeaderInsertionPoint =
728           NewHeader->getFirstNonPHIIt();
729       for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) {
730         LLVM_DEBUG(dbgs() << "  Cloning llvm.experimental.noalias.scope.decl:"
731                           << *NAD << "\n");
732         Instruction *NewNAD = NAD->clone();
733         NewNAD->insertBefore(*NewHeader, NewHeaderInsertionPoint);
734       }
735 
736       // Scopes must now be duplicated, once for OrigHeader and once for
737       // OrigPreHeader'.
738       {
739         auto &Context = NewHeader->getContext();
740 
741         SmallVector<MDNode *, 8> NoAliasDeclScopes;
742         for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions)
743           NoAliasDeclScopes.push_back(NAD->getScopeList());
744 
745         LLVM_DEBUG(dbgs() << "  Updating OrigHeader scopes\n");
746         cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context,
747                                    "h.rot");
748         LLVM_DEBUG(OrigHeader->dump());
749 
750         // Keep the compile time impact low by only adapting the inserted block
751         // of instructions in the OrigPreHeader. This might result in slightly
752         // more aliasing between these instructions and those that were already
753         // present, but it will be much faster when the original PreHeader is
754         // large.
755         LLVM_DEBUG(dbgs() << "  Updating part of OrigPreheader scopes\n");
756         auto *FirstDecl =
757             cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]);
758         auto *LastInst = &OrigPreheader->back();
759         cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst,
760                                    Context, "pre.rot");
761         LLVM_DEBUG(OrigPreheader->dump());
762 
763         LLVM_DEBUG(dbgs() << "  Updated NewHeader:\n");
764         LLVM_DEBUG(NewHeader->dump());
765       }
766     }
767 
768     // Along with all the other instructions, we just cloned OrigHeader's
769     // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
770     // successors by duplicating their incoming values for OrigHeader.
771     for (BasicBlock *SuccBB : successors(OrigHeader))
772       for (BasicBlock::iterator BI = SuccBB->begin();
773            PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
774         PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
775 
776     // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
777     // OrigPreHeader's old terminator (the original branch into the loop), and
778     // remove the corresponding incoming values from the PHI nodes in OrigHeader.
779     LoopEntryBranch->eraseFromParent();
780     OrigPreheader->flushTerminatorDbgRecords();
781 
782     // Update MemorySSA before the rewrite call below changes the 1:1
783     // instruction:cloned_instruction_or_value mapping.
784     if (MSSAU) {
785       InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
786       MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
787                                           ValueMapMSSA);
788     }
789 
790     SmallVector<PHINode*, 2> InsertedPHIs;
791     // If there were any uses of instructions in the duplicated block outside the
792     // loop, update them, inserting PHI nodes as required
793     RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, SE,
794                                     &InsertedPHIs);
795 
796     // Attach dbg.value intrinsics to the new phis if that phi uses a value that
797     // previously had debug metadata attached. This keeps the debug info
798     // up-to-date in the loop body.
799     if (!InsertedPHIs.empty())
800       insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
801 
802     // NewHeader is now the header of the loop.
803     L->moveToHeader(NewHeader);
804     assert(L->getHeader() == NewHeader && "Latch block is our new header");
805 
806     // Inform DT about changes to the CFG.
807     if (DT) {
808       // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
809       // the DT about the removed edge to the OrigHeader (that got removed).
810       SmallVector<DominatorTree::UpdateType, 3> Updates;
811       Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
812       Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
813       Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
814 
815       if (MSSAU) {
816         MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true);
817         if (VerifyMemorySSA)
818           MSSAU->getMemorySSA()->verifyMemorySSA();
819       } else {
820         DT->applyUpdates(Updates);
821       }
822     }
823 
824     // At this point, we've finished our major CFG changes.  As part of cloning
825     // the loop into the preheader we've simplified instructions and the
826     // duplicated conditional branch may now be branching on a constant.  If it is
827     // branching on a constant and if that constant means that we enter the loop,
828     // then we fold away the cond branch to an uncond branch.  This simplifies the
829     // loop in cases important for nested loops, and it also means we don't have
830     // to split as many edges.
831     BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
832     assert(PHBI->isConditional() && "Should be clone of BI condbr!");
833     const Value *Cond = PHBI->getCondition();
834     const bool HasConditionalPreHeader =
835         !isa<ConstantInt>(Cond) ||
836         PHBI->getSuccessor(cast<ConstantInt>(Cond)->isZero()) != NewHeader;
837 
838     updateBranchWeights(*PHBI, *BI, HasConditionalPreHeader, BISuccsSwapped);
839 
840     if (HasConditionalPreHeader) {
841       // The conditional branch can't be folded, handle the general case.
842       // Split edges as necessary to preserve LoopSimplify form.
843 
844       // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
845       // thus is not a preheader anymore.
846       // Split the edge to form a real preheader.
847       BasicBlock *NewPH = SplitCriticalEdge(
848                                             OrigPreheader, NewHeader,
849                                             CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
850       NewPH->setName(NewHeader->getName() + ".lr.ph");
851 
852       // Preserve canonical loop form, which means that 'Exit' should have only
853       // one predecessor. Note that Exit could be an exit block for multiple
854       // nested loops, causing both of the edges to now be critical and need to
855       // be split.
856       SmallVector<BasicBlock *, 4> ExitPreds(predecessors(Exit));
857       bool SplitLatchEdge = false;
858       for (BasicBlock *ExitPred : ExitPreds) {
859         // We only need to split loop exit edges.
860         Loop *PredLoop = LI->getLoopFor(ExitPred);
861         if (!PredLoop || PredLoop->contains(Exit) ||
862             isa<IndirectBrInst>(ExitPred->getTerminator()))
863           continue;
864         SplitLatchEdge |= L->getLoopLatch() == ExitPred;
865         BasicBlock *ExitSplit = SplitCriticalEdge(
866                                                   ExitPred, Exit,
867                                                   CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
868         ExitSplit->moveBefore(Exit);
869       }
870       assert(SplitLatchEdge &&
871              "Despite splitting all preds, failed to split latch exit?");
872       (void)SplitLatchEdge;
873     } else {
874       // We can fold the conditional branch in the preheader, this makes things
875       // simpler. The first step is to remove the extra edge to the Exit block.
876       Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
877       BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI->getIterator());
878       NewBI->setDebugLoc(PHBI->getDebugLoc());
879       PHBI->eraseFromParent();
880 
881       // With our CFG finalized, update DomTree if it is available.
882       if (DT) DT->deleteEdge(OrigPreheader, Exit);
883 
884       // Update MSSA too, if available.
885       if (MSSAU)
886         MSSAU->removeEdge(OrigPreheader, Exit);
887     }
888 
889     assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
890     assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
891 
892     if (MSSAU && VerifyMemorySSA)
893       MSSAU->getMemorySSA()->verifyMemorySSA();
894 
895     // Now that the CFG and DomTree are in a consistent state again, try to merge
896     // the OrigHeader block into OrigLatch.  This will succeed if they are
897     // connected by an unconditional branch.  This is just a cleanup so the
898     // emitted code isn't too gross in this common case.
899     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
900     BasicBlock *PredBB = OrigHeader->getUniquePredecessor();
901     bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
902     if (DidMerge)
903       RemoveRedundantDbgInstrs(PredBB);
904 
905     if (MSSAU && VerifyMemorySSA)
906       MSSAU->getMemorySSA()->verifyMemorySSA();
907 
908     LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
909 
910     ++NumRotated;
911 
912     Rotated = true;
913     SimplifiedLatch = false;
914 
915     // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
916     // Deoptimizing latch exit is not a generally typical case, so we just loop over.
917     // TODO: if it becomes a performance bottleneck extend rotation algorithm
918     // to handle multiple rotations in one go.
919   } while (MultiRotate && canRotateDeoptimizingLatchExit(L));
920 
921 
922   return true;
923 }
924 
925 /// Determine whether the instructions in this range may be safely and cheaply
926 /// speculated. This is not an important enough situation to develop complex
927 /// heuristics. We handle a single arithmetic instruction along with any type
928 /// conversions.
929 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
930                                   BasicBlock::iterator End, Loop *L) {
931   bool seenIncrement = false;
932   bool MultiExitLoop = false;
933 
934   if (!L->getExitingBlock())
935     MultiExitLoop = true;
936 
937   for (BasicBlock::iterator I = Begin; I != End; ++I) {
938 
939     if (!isSafeToSpeculativelyExecute(&*I))
940       return false;
941 
942     if (isa<DbgInfoIntrinsic>(I))
943       continue;
944 
945     switch (I->getOpcode()) {
946     default:
947       return false;
948     case Instruction::GetElementPtr:
949       // GEPs are cheap if all indices are constant.
950       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
951         return false;
952       // fall-thru to increment case
953       [[fallthrough]];
954     case Instruction::Add:
955     case Instruction::Sub:
956     case Instruction::And:
957     case Instruction::Or:
958     case Instruction::Xor:
959     case Instruction::Shl:
960     case Instruction::LShr:
961     case Instruction::AShr: {
962       Value *IVOpnd =
963           !isa<Constant>(I->getOperand(0))
964               ? I->getOperand(0)
965               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
966       if (!IVOpnd)
967         return false;
968 
969       // If increment operand is used outside of the loop, this speculation
970       // could cause extra live range interference.
971       if (MultiExitLoop) {
972         for (User *UseI : IVOpnd->users()) {
973           auto *UserInst = cast<Instruction>(UseI);
974           if (!L->contains(UserInst))
975             return false;
976         }
977       }
978 
979       if (seenIncrement)
980         return false;
981       seenIncrement = true;
982       break;
983     }
984     case Instruction::Trunc:
985     case Instruction::ZExt:
986     case Instruction::SExt:
987       // ignore type conversions
988       break;
989     }
990   }
991   return true;
992 }
993 
994 /// Fold the loop tail into the loop exit by speculating the loop tail
995 /// instructions. Typically, this is a single post-increment. In the case of a
996 /// simple 2-block loop, hoisting the increment can be much better than
997 /// duplicating the entire loop header. In the case of loops with early exits,
998 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
999 /// canonical form so downstream passes can handle it.
1000 ///
1001 /// I don't believe this invalidates SCEV.
1002 bool LoopRotate::simplifyLoopLatch(Loop *L) {
1003   BasicBlock *Latch = L->getLoopLatch();
1004   if (!Latch || Latch->hasAddressTaken())
1005     return false;
1006 
1007   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
1008   if (!Jmp || !Jmp->isUnconditional())
1009     return false;
1010 
1011   BasicBlock *LastExit = Latch->getSinglePredecessor();
1012   if (!LastExit || !L->isLoopExiting(LastExit))
1013     return false;
1014 
1015   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
1016   if (!BI)
1017     return false;
1018 
1019   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
1020     return false;
1021 
1022   LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
1023                     << LastExit->getName() << "\n");
1024 
1025   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
1026   MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
1027                             /*PredecessorWithTwoSuccessors=*/true);
1028 
1029     if (SE) {
1030       // Merging blocks may remove blocks reference in the block disposition cache. Clear the cache.
1031       SE->forgetBlockAndLoopDispositions();
1032     }
1033 
1034   if (MSSAU && VerifyMemorySSA)
1035     MSSAU->getMemorySSA()->verifyMemorySSA();
1036 
1037   return true;
1038 }
1039 
1040 /// Rotate \c L, and return true if any modification was made.
1041 bool LoopRotate::processLoop(Loop *L) {
1042   // Save the loop metadata.
1043   MDNode *LoopMD = L->getLoopID();
1044 
1045   bool SimplifiedLatch = false;
1046 
1047   // Simplify the loop latch before attempting to rotate the header
1048   // upward. Rotation may not be needed if the loop tail can be folded into the
1049   // loop exit.
1050   if (!RotationOnly)
1051     SimplifiedLatch = simplifyLoopLatch(L);
1052 
1053   bool MadeChange = rotateLoop(L, SimplifiedLatch);
1054   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
1055          "Loop latch should be exiting after loop-rotate.");
1056 
1057   // Restore the loop metadata.
1058   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
1059   if ((MadeChange || SimplifiedLatch) && LoopMD)
1060     L->setLoopID(LoopMD);
1061 
1062   return MadeChange || SimplifiedLatch;
1063 }
1064 
1065 
1066 /// The utility to convert a loop into a loop with bottom test.
1067 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
1068                         AssumptionCache *AC, DominatorTree *DT,
1069                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
1070                         const SimplifyQuery &SQ, bool RotationOnly = true,
1071                         unsigned Threshold = unsigned(-1),
1072                         bool IsUtilMode = true, bool PrepareForLTO) {
1073   LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
1074                 IsUtilMode, PrepareForLTO);
1075   return LR.processLoop(L);
1076 }
1077