1 //===----------------- LoopRotationUtils.cpp -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides utilities to convert a loop into a loop with bottom test. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopRotationUtils.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/AssumptionCache.h" 16 #include "llvm/Analysis/CodeMetrics.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/MemorySSA.h" 21 #include "llvm/Analysis/MemorySSAUpdater.h" 22 #include "llvm/Analysis/ScalarEvolution.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/MDBuilder.h" 29 #include "llvm/IR/ProfDataUtils.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/Cloning.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/SSAUpdater.h" 37 #include "llvm/Transforms/Utils/ValueMapper.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "loop-rotate" 41 42 STATISTIC(NumNotRotatedDueToHeaderSize, 43 "Number of loops not rotated due to the header size"); 44 STATISTIC(NumInstrsHoisted, 45 "Number of instructions hoisted into loop preheader"); 46 STATISTIC(NumInstrsDuplicated, 47 "Number of instructions cloned into loop preheader"); 48 STATISTIC(NumRotated, "Number of loops rotated"); 49 50 static cl::opt<bool> 51 MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden, 52 cl::desc("Allow loop rotation multiple times in order to reach " 53 "a better latch exit")); 54 55 // Probability that a rotated loop has zero trip count / is never entered. 56 static constexpr uint32_t ZeroTripCountWeights[] = {1, 127}; 57 58 namespace { 59 /// A simple loop rotation transformation. 60 class LoopRotate { 61 const unsigned MaxHeaderSize; 62 LoopInfo *LI; 63 const TargetTransformInfo *TTI; 64 AssumptionCache *AC; 65 DominatorTree *DT; 66 ScalarEvolution *SE; 67 MemorySSAUpdater *MSSAU; 68 const SimplifyQuery &SQ; 69 bool RotationOnly; 70 bool IsUtilMode; 71 bool PrepareForLTO; 72 73 public: 74 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 75 const TargetTransformInfo *TTI, AssumptionCache *AC, 76 DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 77 const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode, 78 bool PrepareForLTO) 79 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), 80 MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly), 81 IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {} 82 bool processLoop(Loop *L); 83 84 private: 85 bool rotateLoop(Loop *L, bool SimplifiedLatch); 86 bool simplifyLoopLatch(Loop *L); 87 }; 88 } // end anonymous namespace 89 90 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not 91 /// previously exist in the map, and the value was inserted. 92 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) { 93 bool Inserted = VM.insert({K, V}).second; 94 assert(Inserted); 95 (void)Inserted; 96 } 97 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 98 /// old header into the preheader. If there were uses of the values produced by 99 /// these instruction that were outside of the loop, we have to insert PHI nodes 100 /// to merge the two values. Do this now. 101 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 102 BasicBlock *OrigPreheader, 103 ValueToValueMapTy &ValueMap, 104 ScalarEvolution *SE, 105 SmallVectorImpl<PHINode*> *InsertedPHIs) { 106 // Remove PHI node entries that are no longer live. 107 BasicBlock::iterator I, E = OrigHeader->end(); 108 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 109 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 110 111 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 112 // as necessary. 113 SSAUpdater SSA(InsertedPHIs); 114 for (I = OrigHeader->begin(); I != E; ++I) { 115 Value *OrigHeaderVal = &*I; 116 117 // If there are no uses of the value (e.g. because it returns void), there 118 // is nothing to rewrite. 119 if (OrigHeaderVal->use_empty()) 120 continue; 121 122 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 123 124 // The value now exits in two versions: the initial value in the preheader 125 // and the loop "next" value in the original header. 126 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 127 // Force re-computation of OrigHeaderVal, as some users now need to use the 128 // new PHI node. 129 if (SE) 130 SE->forgetValue(OrigHeaderVal); 131 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 132 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 133 134 // Visit each use of the OrigHeader instruction. 135 for (Use &U : llvm::make_early_inc_range(OrigHeaderVal->uses())) { 136 // SSAUpdater can't handle a non-PHI use in the same block as an 137 // earlier def. We can easily handle those cases manually. 138 Instruction *UserInst = cast<Instruction>(U.getUser()); 139 if (!isa<PHINode>(UserInst)) { 140 BasicBlock *UserBB = UserInst->getParent(); 141 142 // The original users in the OrigHeader are already using the 143 // original definitions. 144 if (UserBB == OrigHeader) 145 continue; 146 147 // Users in the OrigPreHeader need to use the value to which the 148 // original definitions are mapped. 149 if (UserBB == OrigPreheader) { 150 U = OrigPreHeaderVal; 151 continue; 152 } 153 } 154 155 // Anything else can be handled by SSAUpdater. 156 SSA.RewriteUse(U); 157 } 158 159 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 160 // intrinsics. 161 SmallVector<DbgValueInst *, 1> DbgValues; 162 SmallVector<DPValue *, 1> DPValues; 163 llvm::findDbgValues(DbgValues, OrigHeaderVal, &DPValues); 164 for (auto &DbgValue : DbgValues) { 165 // The original users in the OrigHeader are already using the original 166 // definitions. 167 BasicBlock *UserBB = DbgValue->getParent(); 168 if (UserBB == OrigHeader) 169 continue; 170 171 // Users in the OrigPreHeader need to use the value to which the 172 // original definitions are mapped and anything else can be handled by 173 // the SSAUpdater. To avoid adding PHINodes, check if the value is 174 // available in UserBB, if not substitute undef. 175 Value *NewVal; 176 if (UserBB == OrigPreheader) 177 NewVal = OrigPreHeaderVal; 178 else if (SSA.HasValueForBlock(UserBB)) 179 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 180 else 181 NewVal = UndefValue::get(OrigHeaderVal->getType()); 182 DbgValue->replaceVariableLocationOp(OrigHeaderVal, NewVal); 183 } 184 185 // RemoveDIs: duplicate implementation for non-instruction debug-info 186 // storage in DPValues. 187 for (DPValue *DPV : DPValues) { 188 // The original users in the OrigHeader are already using the original 189 // definitions. 190 BasicBlock *UserBB = DPV->getMarker()->getParent(); 191 if (UserBB == OrigHeader) 192 continue; 193 194 // Users in the OrigPreHeader need to use the value to which the 195 // original definitions are mapped and anything else can be handled by 196 // the SSAUpdater. To avoid adding PHINodes, check if the value is 197 // available in UserBB, if not substitute undef. 198 Value *NewVal; 199 if (UserBB == OrigPreheader) 200 NewVal = OrigPreHeaderVal; 201 else if (SSA.HasValueForBlock(UserBB)) 202 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 203 else 204 NewVal = UndefValue::get(OrigHeaderVal->getType()); 205 DPV->replaceVariableLocationOp(OrigHeaderVal, NewVal); 206 } 207 } 208 } 209 210 // Assuming both header and latch are exiting, look for a phi which is only 211 // used outside the loop (via a LCSSA phi) in the exit from the header. 212 // This means that rotating the loop can remove the phi. 213 static bool profitableToRotateLoopExitingLatch(Loop *L) { 214 BasicBlock *Header = L->getHeader(); 215 BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator()); 216 assert(BI && BI->isConditional() && "need header with conditional exit"); 217 BasicBlock *HeaderExit = BI->getSuccessor(0); 218 if (L->contains(HeaderExit)) 219 HeaderExit = BI->getSuccessor(1); 220 221 for (auto &Phi : Header->phis()) { 222 // Look for uses of this phi in the loop/via exits other than the header. 223 if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) { 224 return cast<Instruction>(U)->getParent() != HeaderExit; 225 })) 226 continue; 227 return true; 228 } 229 return false; 230 } 231 232 // Check that latch exit is deoptimizing (which means - very unlikely to happen) 233 // and there is another exit from the loop which is non-deoptimizing. 234 // If we rotate latch to that exit our loop has a better chance of being fully 235 // canonical. 236 // 237 // It can give false positives in some rare cases. 238 static bool canRotateDeoptimizingLatchExit(Loop *L) { 239 BasicBlock *Latch = L->getLoopLatch(); 240 assert(Latch && "need latch"); 241 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 242 // Need normal exiting latch. 243 if (!BI || !BI->isConditional()) 244 return false; 245 246 BasicBlock *Exit = BI->getSuccessor(1); 247 if (L->contains(Exit)) 248 Exit = BI->getSuccessor(0); 249 250 // Latch exit is non-deoptimizing, no need to rotate. 251 if (!Exit->getPostdominatingDeoptimizeCall()) 252 return false; 253 254 SmallVector<BasicBlock *, 4> Exits; 255 L->getUniqueExitBlocks(Exits); 256 if (!Exits.empty()) { 257 // There is at least one non-deoptimizing exit. 258 // 259 // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact, 260 // as it can conservatively return false for deoptimizing exits with 261 // complex enough control flow down to deoptimize call. 262 // 263 // That means here we can report success for a case where 264 // all exits are deoptimizing but one of them has complex enough 265 // control flow (e.g. with loops). 266 // 267 // That should be a very rare case and false positives for this function 268 // have compile-time effect only. 269 return any_of(Exits, [](const BasicBlock *BB) { 270 return !BB->getPostdominatingDeoptimizeCall(); 271 }); 272 } 273 return false; 274 } 275 276 static void updateBranchWeights(BranchInst &PreHeaderBI, BranchInst &LoopBI, 277 bool HasConditionalPreHeader, 278 bool SuccsSwapped) { 279 MDNode *WeightMD = getBranchWeightMDNode(PreHeaderBI); 280 if (WeightMD == nullptr) 281 return; 282 283 // LoopBI should currently be a clone of PreHeaderBI with the same 284 // metadata. But we double check to make sure we don't have a degenerate case 285 // where instsimplify changed the instructions. 286 if (WeightMD != getBranchWeightMDNode(LoopBI)) 287 return; 288 289 SmallVector<uint32_t, 2> Weights; 290 extractFromBranchWeightMD(WeightMD, Weights); 291 if (Weights.size() != 2) 292 return; 293 uint32_t OrigLoopExitWeight = Weights[0]; 294 uint32_t OrigLoopBackedgeWeight = Weights[1]; 295 296 if (SuccsSwapped) 297 std::swap(OrigLoopExitWeight, OrigLoopBackedgeWeight); 298 299 // Update branch weights. Consider the following edge-counts: 300 // 301 // | |-------- | 302 // V V | V 303 // Br i1 ... | Br i1 ... 304 // | | | | | 305 // x| y| | becomes: | y0| |----- 306 // V V | | V V | 307 // Exit Loop | | Loop | 308 // | | | Br i1 ... | 309 // ----- | | | | 310 // x0| x1| y1 | | 311 // V V ---- 312 // Exit 313 // 314 // The following must hold: 315 // - x == x0 + x1 # counts to "exit" must stay the same. 316 // - y0 == x - x0 == x1 # how often loop was entered at all. 317 // - y1 == y - y0 # How often loop was repeated (after first iter.). 318 // 319 // We cannot generally deduce how often we had a zero-trip count loop so we 320 // have to make a guess for how to distribute x among the new x0 and x1. 321 322 uint32_t ExitWeight0; // aka x0 323 uint32_t ExitWeight1; // aka x1 324 uint32_t EnterWeight; // aka y0 325 uint32_t LoopBackWeight; // aka y1 326 if (OrigLoopExitWeight > 0 && OrigLoopBackedgeWeight > 0) { 327 ExitWeight0 = 0; 328 if (HasConditionalPreHeader) { 329 // Here we cannot know how many 0-trip count loops we have, so we guess: 330 if (OrigLoopBackedgeWeight >= OrigLoopExitWeight) { 331 // If the loop count is bigger than the exit count then we set 332 // probabilities as if 0-trip count nearly never happens. 333 ExitWeight0 = ZeroTripCountWeights[0]; 334 // Scale up counts if necessary so we can match `ZeroTripCountWeights` 335 // for the `ExitWeight0`:`ExitWeight1` (aka `x0`:`x1` ratio`) ratio. 336 while (OrigLoopExitWeight < ZeroTripCountWeights[1] + ExitWeight0) { 337 // ... but don't overflow. 338 uint32_t const HighBit = uint32_t{1} << (sizeof(uint32_t) * 8 - 1); 339 if ((OrigLoopBackedgeWeight & HighBit) != 0 || 340 (OrigLoopExitWeight & HighBit) != 0) 341 break; 342 OrigLoopBackedgeWeight <<= 1; 343 OrigLoopExitWeight <<= 1; 344 } 345 } else { 346 // If there's a higher exit-count than backedge-count then we set 347 // probabilities as if there are only 0-trip and 1-trip cases. 348 ExitWeight0 = OrigLoopExitWeight - OrigLoopBackedgeWeight; 349 } 350 } 351 ExitWeight1 = OrigLoopExitWeight - ExitWeight0; 352 EnterWeight = ExitWeight1; 353 LoopBackWeight = OrigLoopBackedgeWeight - EnterWeight; 354 } else if (OrigLoopExitWeight == 0) { 355 if (OrigLoopBackedgeWeight == 0) { 356 // degenerate case... keep everything zero... 357 ExitWeight0 = 0; 358 ExitWeight1 = 0; 359 EnterWeight = 0; 360 LoopBackWeight = 0; 361 } else { 362 // Special case "LoopExitWeight == 0" weights which behaves like an 363 // endless where we don't want loop-enttry (y0) to be the same as 364 // loop-exit (x1). 365 ExitWeight0 = 0; 366 ExitWeight1 = 0; 367 EnterWeight = 1; 368 LoopBackWeight = OrigLoopBackedgeWeight; 369 } 370 } else { 371 // loop is never entered. 372 assert(OrigLoopBackedgeWeight == 0 && "remaining case is backedge zero"); 373 ExitWeight0 = 1; 374 ExitWeight1 = 1; 375 EnterWeight = 0; 376 LoopBackWeight = 0; 377 } 378 379 const uint32_t LoopBIWeights[] = { 380 SuccsSwapped ? LoopBackWeight : ExitWeight1, 381 SuccsSwapped ? ExitWeight1 : LoopBackWeight, 382 }; 383 setBranchWeights(LoopBI, LoopBIWeights); 384 if (HasConditionalPreHeader) { 385 const uint32_t PreHeaderBIWeights[] = { 386 SuccsSwapped ? EnterWeight : ExitWeight0, 387 SuccsSwapped ? ExitWeight0 : EnterWeight, 388 }; 389 setBranchWeights(PreHeaderBI, PreHeaderBIWeights); 390 } 391 } 392 393 /// Rotate loop LP. Return true if the loop is rotated. 394 /// 395 /// \param SimplifiedLatch is true if the latch was just folded into the final 396 /// loop exit. In this case we may want to rotate even though the new latch is 397 /// now an exiting branch. This rotation would have happened had the latch not 398 /// been simplified. However, if SimplifiedLatch is false, then we avoid 399 /// rotating loops in which the latch exits to avoid excessive or endless 400 /// rotation. LoopRotate should be repeatable and converge to a canonical 401 /// form. This property is satisfied because simplifying the loop latch can only 402 /// happen once across multiple invocations of the LoopRotate pass. 403 /// 404 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go 405 /// so to reach a suitable (non-deoptimizing) exit. 406 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 407 // If the loop has only one block then there is not much to rotate. 408 if (L->getBlocks().size() == 1) 409 return false; 410 411 bool Rotated = false; 412 do { 413 BasicBlock *OrigHeader = L->getHeader(); 414 BasicBlock *OrigLatch = L->getLoopLatch(); 415 416 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 417 if (!BI || BI->isUnconditional()) 418 return Rotated; 419 420 // If the loop header is not one of the loop exiting blocks then 421 // either this loop is already rotated or it is not 422 // suitable for loop rotation transformations. 423 if (!L->isLoopExiting(OrigHeader)) 424 return Rotated; 425 426 // If the loop latch already contains a branch that leaves the loop then the 427 // loop is already rotated. 428 if (!OrigLatch) 429 return Rotated; 430 431 // Rotate if either the loop latch does *not* exit the loop, or if the loop 432 // latch was just simplified. Or if we think it will be profitable. 433 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false && 434 !profitableToRotateLoopExitingLatch(L) && 435 !canRotateDeoptimizingLatchExit(L)) 436 return Rotated; 437 438 // Check size of original header and reject loop if it is very big or we can't 439 // duplicate blocks inside it. 440 { 441 SmallPtrSet<const Value *, 32> EphValues; 442 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 443 444 CodeMetrics Metrics; 445 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO); 446 if (Metrics.notDuplicatable) { 447 LLVM_DEBUG( 448 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 449 << " instructions: "; 450 L->dump()); 451 return Rotated; 452 } 453 if (Metrics.convergent) { 454 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 455 "instructions: "; 456 L->dump()); 457 return Rotated; 458 } 459 if (!Metrics.NumInsts.isValid()) { 460 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains instructions" 461 " with invalid cost: "; 462 L->dump()); 463 return Rotated; 464 } 465 if (Metrics.NumInsts > MaxHeaderSize) { 466 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains " 467 << Metrics.NumInsts 468 << " instructions, which is more than the threshold (" 469 << MaxHeaderSize << " instructions): "; 470 L->dump()); 471 ++NumNotRotatedDueToHeaderSize; 472 return Rotated; 473 } 474 475 // When preparing for LTO, avoid rotating loops with calls that could be 476 // inlined during the LTO stage. 477 if (PrepareForLTO && Metrics.NumInlineCandidates > 0) 478 return Rotated; 479 } 480 481 // Now, this loop is suitable for rotation. 482 BasicBlock *OrigPreheader = L->getLoopPreheader(); 483 484 // If the loop could not be converted to canonical form, it must have an 485 // indirectbr in it, just give up. 486 if (!OrigPreheader || !L->hasDedicatedExits()) 487 return Rotated; 488 489 // Anything ScalarEvolution may know about this loop or the PHI nodes 490 // in its header will soon be invalidated. We should also invalidate 491 // all outer loops because insertion and deletion of blocks that happens 492 // during the rotation may violate invariants related to backedge taken 493 // infos in them. 494 if (SE) { 495 SE->forgetTopmostLoop(L); 496 // We may hoist some instructions out of loop. In case if they were cached 497 // as "loop variant" or "loop computable", these caches must be dropped. 498 // We also may fold basic blocks, so cached block dispositions also need 499 // to be dropped. 500 SE->forgetBlockAndLoopDispositions(); 501 } 502 503 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 504 if (MSSAU && VerifyMemorySSA) 505 MSSAU->getMemorySSA()->verifyMemorySSA(); 506 507 // Find new Loop header. NewHeader is a Header's one and only successor 508 // that is inside loop. Header's other successor is outside the 509 // loop. Otherwise loop is not suitable for rotation. 510 BasicBlock *Exit = BI->getSuccessor(0); 511 BasicBlock *NewHeader = BI->getSuccessor(1); 512 bool BISuccsSwapped = L->contains(Exit); 513 if (BISuccsSwapped) 514 std::swap(Exit, NewHeader); 515 assert(NewHeader && "Unable to determine new loop header"); 516 assert(L->contains(NewHeader) && !L->contains(Exit) && 517 "Unable to determine loop header and exit blocks"); 518 519 // This code assumes that the new header has exactly one predecessor. 520 // Remove any single-entry PHI nodes in it. 521 assert(NewHeader->getSinglePredecessor() && 522 "New header doesn't have one pred!"); 523 FoldSingleEntryPHINodes(NewHeader); 524 525 // Begin by walking OrigHeader and populating ValueMap with an entry for 526 // each Instruction. 527 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 528 ValueToValueMapTy ValueMap, ValueMapMSSA; 529 530 // For PHI nodes, the value available in OldPreHeader is just the 531 // incoming value from OldPreHeader. 532 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 533 InsertNewValueIntoMap(ValueMap, PN, 534 PN->getIncomingValueForBlock(OrigPreheader)); 535 536 // For the rest of the instructions, either hoist to the OrigPreheader if 537 // possible or create a clone in the OldPreHeader if not. 538 Instruction *LoopEntryBranch = OrigPreheader->getTerminator(); 539 540 // Record all debug intrinsics preceding LoopEntryBranch to avoid 541 // duplication. 542 using DbgIntrinsicHash = 543 std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>; 544 auto makeHash = [](auto *D) -> DbgIntrinsicHash { 545 auto VarLocOps = D->location_ops(); 546 return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()), 547 D->getVariable()}, 548 D->getExpression()}; 549 }; 550 551 SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; 552 for (Instruction &I : llvm::drop_begin(llvm::reverse(*OrigPreheader))) { 553 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 554 DbgIntrinsics.insert(makeHash(DII)); 555 // Until RemoveDIs supports dbg.declares in DPValue format, we'll need 556 // to collect DPValues attached to any other debug intrinsics. 557 for (const DPValue &DPV : DPValue::filter(DII->getDbgRecordRange())) 558 DbgIntrinsics.insert(makeHash(&DPV)); 559 } else { 560 break; 561 } 562 } 563 564 // Build DPValue hashes for DPValues attached to the terminator, which isn't 565 // considered in the loop above. 566 for (const DPValue &DPV : 567 DPValue::filter(OrigPreheader->getTerminator()->getDbgRecordRange())) 568 DbgIntrinsics.insert(makeHash(&DPV)); 569 570 // Remember the local noalias scope declarations in the header. After the 571 // rotation, they must be duplicated and the scope must be cloned. This 572 // avoids unwanted interaction across iterations. 573 SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions; 574 for (Instruction &I : *OrigHeader) 575 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 576 NoAliasDeclInstructions.push_back(Decl); 577 578 Module *M = OrigHeader->getModule(); 579 580 // Track the next DbgRecord to clone. If we have a sequence where an 581 // instruction is hoisted instead of being cloned: 582 // DbgRecord blah 583 // %foo = add i32 0, 0 584 // DbgRecord xyzzy 585 // %bar = call i32 @foobar() 586 // where %foo is hoisted, then the DbgRecord "blah" will be seen twice, once 587 // attached to %foo, then when %foo his hoisted it will "fall down" onto the 588 // function call: 589 // DbgRecord blah 590 // DbgRecord xyzzy 591 // %bar = call i32 @foobar() 592 // causing it to appear attached to the call too. 593 // 594 // To avoid this, cloneDebugInfoFrom takes an optional "start cloning from 595 // here" position to account for this behaviour. We point it at any 596 // DbgRecords on the next instruction, here labelled xyzzy, before we hoist 597 // %foo. Later, we only only clone DbgRecords from that position (xyzzy) 598 // onwards, which avoids cloning DbgRecord "blah" multiple times. (Stored as 599 // a range because it gives us a natural way of testing whether 600 // there were DbgRecords on the next instruction before we hoisted things). 601 iterator_range<DbgRecord::self_iterator> NextDbgInsts = 602 (I != E) ? I->getDbgRecordRange() : DPMarker::getEmptyDbgRecordRange(); 603 604 while (I != E) { 605 Instruction *Inst = &*I++; 606 607 // If the instruction's operands are invariant and it doesn't read or write 608 // memory, then it is safe to hoist. Doing this doesn't change the order of 609 // execution in the preheader, but does prevent the instruction from 610 // executing in each iteration of the loop. This means it is safe to hoist 611 // something that might trap, but isn't safe to hoist something that reads 612 // memory (without proving that the loop doesn't write). 613 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 614 !Inst->mayWriteToMemory() && !Inst->isTerminator() && 615 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst) && 616 // It is not safe to hoist the value of these instructions in 617 // coroutines, as the addresses of otherwise eligible variables (e.g. 618 // thread-local variables and errno) may change if the coroutine is 619 // resumed in a different thread.Therefore, we disable this 620 // optimization for correctness. However, this may block other correct 621 // optimizations. 622 // FIXME: This should be reverted once we have a better model for 623 // memory access in coroutines. 624 !Inst->getFunction()->isPresplitCoroutine()) { 625 626 if (LoopEntryBranch->getParent()->IsNewDbgInfoFormat && 627 !NextDbgInsts.empty()) { 628 auto DbgValueRange = 629 LoopEntryBranch->cloneDebugInfoFrom(Inst, NextDbgInsts.begin()); 630 RemapDPValueRange(M, DbgValueRange, ValueMap, 631 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 632 // Erase anything we've seen before. 633 for (DPValue &DPV : 634 make_early_inc_range(DPValue::filter(DbgValueRange))) 635 if (DbgIntrinsics.count(makeHash(&DPV))) 636 DPV.eraseFromParent(); 637 } 638 639 NextDbgInsts = I->getDbgRecordRange(); 640 641 Inst->moveBefore(LoopEntryBranch); 642 643 ++NumInstrsHoisted; 644 continue; 645 } 646 647 // Otherwise, create a duplicate of the instruction. 648 Instruction *C = Inst->clone(); 649 C->insertBefore(LoopEntryBranch); 650 651 ++NumInstrsDuplicated; 652 653 if (LoopEntryBranch->getParent()->IsNewDbgInfoFormat && 654 !NextDbgInsts.empty()) { 655 auto Range = C->cloneDebugInfoFrom(Inst, NextDbgInsts.begin()); 656 RemapDPValueRange(M, Range, ValueMap, 657 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 658 NextDbgInsts = DPMarker::getEmptyDbgRecordRange(); 659 // Erase anything we've seen before. 660 for (DPValue &DPV : make_early_inc_range(DPValue::filter(Range))) 661 if (DbgIntrinsics.count(makeHash(&DPV))) 662 DPV.eraseFromParent(); 663 } 664 665 // Eagerly remap the operands of the instruction. 666 RemapInstruction(C, ValueMap, 667 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 668 669 // Avoid inserting the same intrinsic twice. 670 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C)) 671 if (DbgIntrinsics.count(makeHash(DII))) { 672 C->eraseFromParent(); 673 continue; 674 } 675 676 // With the operands remapped, see if the instruction constant folds or is 677 // otherwise simplifyable. This commonly occurs because the entry from PHI 678 // nodes allows icmps and other instructions to fold. 679 Value *V = simplifyInstruction(C, SQ); 680 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 681 // If so, then delete the temporary instruction and stick the folded value 682 // in the map. 683 InsertNewValueIntoMap(ValueMap, Inst, V); 684 if (!C->mayHaveSideEffects()) { 685 C->eraseFromParent(); 686 C = nullptr; 687 } 688 } else { 689 InsertNewValueIntoMap(ValueMap, Inst, C); 690 } 691 if (C) { 692 // Otherwise, stick the new instruction into the new block! 693 C->setName(Inst->getName()); 694 695 if (auto *II = dyn_cast<AssumeInst>(C)) 696 AC->registerAssumption(II); 697 // MemorySSA cares whether the cloned instruction was inserted or not, and 698 // not whether it can be remapped to a simplified value. 699 if (MSSAU) 700 InsertNewValueIntoMap(ValueMapMSSA, Inst, C); 701 } 702 } 703 704 if (!NoAliasDeclInstructions.empty()) { 705 // There are noalias scope declarations: 706 // (general): 707 // Original: OrigPre { OrigHeader NewHeader ... Latch } 708 // after: (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader } 709 // 710 // with D: llvm.experimental.noalias.scope.decl, 711 // U: !noalias or !alias.scope depending on D 712 // ... { D U1 U2 } can transform into: 713 // (0) : ... { D U1 U2 } // no relevant rotation for this part 714 // (1) : ... D' { U1 U2 D } // D is part of OrigHeader 715 // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader 716 // 717 // We now want to transform: 718 // (1) -> : ... D' { D U1 U2 D'' } 719 // (2) -> : ... D' U1' { D U2 D'' U1'' } 720 // D: original llvm.experimental.noalias.scope.decl 721 // D', U1': duplicate with replaced scopes 722 // D'', U1'': different duplicate with replaced scopes 723 // This ensures a safe fallback to 'may_alias' introduced by the rotate, 724 // as U1'' and U1' scopes will not be compatible wrt to the local restrict 725 726 // Clone the llvm.experimental.noalias.decl again for the NewHeader. 727 BasicBlock::iterator NewHeaderInsertionPoint = 728 NewHeader->getFirstNonPHIIt(); 729 for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) { 730 LLVM_DEBUG(dbgs() << " Cloning llvm.experimental.noalias.scope.decl:" 731 << *NAD << "\n"); 732 Instruction *NewNAD = NAD->clone(); 733 NewNAD->insertBefore(*NewHeader, NewHeaderInsertionPoint); 734 } 735 736 // Scopes must now be duplicated, once for OrigHeader and once for 737 // OrigPreHeader'. 738 { 739 auto &Context = NewHeader->getContext(); 740 741 SmallVector<MDNode *, 8> NoAliasDeclScopes; 742 for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) 743 NoAliasDeclScopes.push_back(NAD->getScopeList()); 744 745 LLVM_DEBUG(dbgs() << " Updating OrigHeader scopes\n"); 746 cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context, 747 "h.rot"); 748 LLVM_DEBUG(OrigHeader->dump()); 749 750 // Keep the compile time impact low by only adapting the inserted block 751 // of instructions in the OrigPreHeader. This might result in slightly 752 // more aliasing between these instructions and those that were already 753 // present, but it will be much faster when the original PreHeader is 754 // large. 755 LLVM_DEBUG(dbgs() << " Updating part of OrigPreheader scopes\n"); 756 auto *FirstDecl = 757 cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]); 758 auto *LastInst = &OrigPreheader->back(); 759 cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst, 760 Context, "pre.rot"); 761 LLVM_DEBUG(OrigPreheader->dump()); 762 763 LLVM_DEBUG(dbgs() << " Updated NewHeader:\n"); 764 LLVM_DEBUG(NewHeader->dump()); 765 } 766 } 767 768 // Along with all the other instructions, we just cloned OrigHeader's 769 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 770 // successors by duplicating their incoming values for OrigHeader. 771 for (BasicBlock *SuccBB : successors(OrigHeader)) 772 for (BasicBlock::iterator BI = SuccBB->begin(); 773 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 774 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 775 776 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 777 // OrigPreHeader's old terminator (the original branch into the loop), and 778 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 779 LoopEntryBranch->eraseFromParent(); 780 OrigPreheader->flushTerminatorDbgRecords(); 781 782 // Update MemorySSA before the rewrite call below changes the 1:1 783 // instruction:cloned_instruction_or_value mapping. 784 if (MSSAU) { 785 InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader); 786 MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader, 787 ValueMapMSSA); 788 } 789 790 SmallVector<PHINode*, 2> InsertedPHIs; 791 // If there were any uses of instructions in the duplicated block outside the 792 // loop, update them, inserting PHI nodes as required 793 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, SE, 794 &InsertedPHIs); 795 796 // Attach dbg.value intrinsics to the new phis if that phi uses a value that 797 // previously had debug metadata attached. This keeps the debug info 798 // up-to-date in the loop body. 799 if (!InsertedPHIs.empty()) 800 insertDebugValuesForPHIs(OrigHeader, InsertedPHIs); 801 802 // NewHeader is now the header of the loop. 803 L->moveToHeader(NewHeader); 804 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 805 806 // Inform DT about changes to the CFG. 807 if (DT) { 808 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform 809 // the DT about the removed edge to the OrigHeader (that got removed). 810 SmallVector<DominatorTree::UpdateType, 3> Updates; 811 Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit}); 812 Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader}); 813 Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader}); 814 815 if (MSSAU) { 816 MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true); 817 if (VerifyMemorySSA) 818 MSSAU->getMemorySSA()->verifyMemorySSA(); 819 } else { 820 DT->applyUpdates(Updates); 821 } 822 } 823 824 // At this point, we've finished our major CFG changes. As part of cloning 825 // the loop into the preheader we've simplified instructions and the 826 // duplicated conditional branch may now be branching on a constant. If it is 827 // branching on a constant and if that constant means that we enter the loop, 828 // then we fold away the cond branch to an uncond branch. This simplifies the 829 // loop in cases important for nested loops, and it also means we don't have 830 // to split as many edges. 831 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 832 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 833 const Value *Cond = PHBI->getCondition(); 834 const bool HasConditionalPreHeader = 835 !isa<ConstantInt>(Cond) || 836 PHBI->getSuccessor(cast<ConstantInt>(Cond)->isZero()) != NewHeader; 837 838 updateBranchWeights(*PHBI, *BI, HasConditionalPreHeader, BISuccsSwapped); 839 840 if (HasConditionalPreHeader) { 841 // The conditional branch can't be folded, handle the general case. 842 // Split edges as necessary to preserve LoopSimplify form. 843 844 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 845 // thus is not a preheader anymore. 846 // Split the edge to form a real preheader. 847 BasicBlock *NewPH = SplitCriticalEdge( 848 OrigPreheader, NewHeader, 849 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 850 NewPH->setName(NewHeader->getName() + ".lr.ph"); 851 852 // Preserve canonical loop form, which means that 'Exit' should have only 853 // one predecessor. Note that Exit could be an exit block for multiple 854 // nested loops, causing both of the edges to now be critical and need to 855 // be split. 856 SmallVector<BasicBlock *, 4> ExitPreds(predecessors(Exit)); 857 bool SplitLatchEdge = false; 858 for (BasicBlock *ExitPred : ExitPreds) { 859 // We only need to split loop exit edges. 860 Loop *PredLoop = LI->getLoopFor(ExitPred); 861 if (!PredLoop || PredLoop->contains(Exit) || 862 isa<IndirectBrInst>(ExitPred->getTerminator())) 863 continue; 864 SplitLatchEdge |= L->getLoopLatch() == ExitPred; 865 BasicBlock *ExitSplit = SplitCriticalEdge( 866 ExitPred, Exit, 867 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 868 ExitSplit->moveBefore(Exit); 869 } 870 assert(SplitLatchEdge && 871 "Despite splitting all preds, failed to split latch exit?"); 872 (void)SplitLatchEdge; 873 } else { 874 // We can fold the conditional branch in the preheader, this makes things 875 // simpler. The first step is to remove the extra edge to the Exit block. 876 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 877 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI->getIterator()); 878 NewBI->setDebugLoc(PHBI->getDebugLoc()); 879 PHBI->eraseFromParent(); 880 881 // With our CFG finalized, update DomTree if it is available. 882 if (DT) DT->deleteEdge(OrigPreheader, Exit); 883 884 // Update MSSA too, if available. 885 if (MSSAU) 886 MSSAU->removeEdge(OrigPreheader, Exit); 887 } 888 889 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 890 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 891 892 if (MSSAU && VerifyMemorySSA) 893 MSSAU->getMemorySSA()->verifyMemorySSA(); 894 895 // Now that the CFG and DomTree are in a consistent state again, try to merge 896 // the OrigHeader block into OrigLatch. This will succeed if they are 897 // connected by an unconditional branch. This is just a cleanup so the 898 // emitted code isn't too gross in this common case. 899 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 900 BasicBlock *PredBB = OrigHeader->getUniquePredecessor(); 901 bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU); 902 if (DidMerge) 903 RemoveRedundantDbgInstrs(PredBB); 904 905 if (MSSAU && VerifyMemorySSA) 906 MSSAU->getMemorySSA()->verifyMemorySSA(); 907 908 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 909 910 ++NumRotated; 911 912 Rotated = true; 913 SimplifiedLatch = false; 914 915 // Check that new latch is a deoptimizing exit and then repeat rotation if possible. 916 // Deoptimizing latch exit is not a generally typical case, so we just loop over. 917 // TODO: if it becomes a performance bottleneck extend rotation algorithm 918 // to handle multiple rotations in one go. 919 } while (MultiRotate && canRotateDeoptimizingLatchExit(L)); 920 921 922 return true; 923 } 924 925 /// Determine whether the instructions in this range may be safely and cheaply 926 /// speculated. This is not an important enough situation to develop complex 927 /// heuristics. We handle a single arithmetic instruction along with any type 928 /// conversions. 929 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 930 BasicBlock::iterator End, Loop *L) { 931 bool seenIncrement = false; 932 bool MultiExitLoop = false; 933 934 if (!L->getExitingBlock()) 935 MultiExitLoop = true; 936 937 for (BasicBlock::iterator I = Begin; I != End; ++I) { 938 939 if (!isSafeToSpeculativelyExecute(&*I)) 940 return false; 941 942 if (isa<DbgInfoIntrinsic>(I)) 943 continue; 944 945 switch (I->getOpcode()) { 946 default: 947 return false; 948 case Instruction::GetElementPtr: 949 // GEPs are cheap if all indices are constant. 950 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 951 return false; 952 // fall-thru to increment case 953 [[fallthrough]]; 954 case Instruction::Add: 955 case Instruction::Sub: 956 case Instruction::And: 957 case Instruction::Or: 958 case Instruction::Xor: 959 case Instruction::Shl: 960 case Instruction::LShr: 961 case Instruction::AShr: { 962 Value *IVOpnd = 963 !isa<Constant>(I->getOperand(0)) 964 ? I->getOperand(0) 965 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 966 if (!IVOpnd) 967 return false; 968 969 // If increment operand is used outside of the loop, this speculation 970 // could cause extra live range interference. 971 if (MultiExitLoop) { 972 for (User *UseI : IVOpnd->users()) { 973 auto *UserInst = cast<Instruction>(UseI); 974 if (!L->contains(UserInst)) 975 return false; 976 } 977 } 978 979 if (seenIncrement) 980 return false; 981 seenIncrement = true; 982 break; 983 } 984 case Instruction::Trunc: 985 case Instruction::ZExt: 986 case Instruction::SExt: 987 // ignore type conversions 988 break; 989 } 990 } 991 return true; 992 } 993 994 /// Fold the loop tail into the loop exit by speculating the loop tail 995 /// instructions. Typically, this is a single post-increment. In the case of a 996 /// simple 2-block loop, hoisting the increment can be much better than 997 /// duplicating the entire loop header. In the case of loops with early exits, 998 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 999 /// canonical form so downstream passes can handle it. 1000 /// 1001 /// I don't believe this invalidates SCEV. 1002 bool LoopRotate::simplifyLoopLatch(Loop *L) { 1003 BasicBlock *Latch = L->getLoopLatch(); 1004 if (!Latch || Latch->hasAddressTaken()) 1005 return false; 1006 1007 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 1008 if (!Jmp || !Jmp->isUnconditional()) 1009 return false; 1010 1011 BasicBlock *LastExit = Latch->getSinglePredecessor(); 1012 if (!LastExit || !L->isLoopExiting(LastExit)) 1013 return false; 1014 1015 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 1016 if (!BI) 1017 return false; 1018 1019 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 1020 return false; 1021 1022 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 1023 << LastExit->getName() << "\n"); 1024 1025 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 1026 MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr, 1027 /*PredecessorWithTwoSuccessors=*/true); 1028 1029 if (SE) { 1030 // Merging blocks may remove blocks reference in the block disposition cache. Clear the cache. 1031 SE->forgetBlockAndLoopDispositions(); 1032 } 1033 1034 if (MSSAU && VerifyMemorySSA) 1035 MSSAU->getMemorySSA()->verifyMemorySSA(); 1036 1037 return true; 1038 } 1039 1040 /// Rotate \c L, and return true if any modification was made. 1041 bool LoopRotate::processLoop(Loop *L) { 1042 // Save the loop metadata. 1043 MDNode *LoopMD = L->getLoopID(); 1044 1045 bool SimplifiedLatch = false; 1046 1047 // Simplify the loop latch before attempting to rotate the header 1048 // upward. Rotation may not be needed if the loop tail can be folded into the 1049 // loop exit. 1050 if (!RotationOnly) 1051 SimplifiedLatch = simplifyLoopLatch(L); 1052 1053 bool MadeChange = rotateLoop(L, SimplifiedLatch); 1054 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 1055 "Loop latch should be exiting after loop-rotate."); 1056 1057 // Restore the loop metadata. 1058 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 1059 if ((MadeChange || SimplifiedLatch) && LoopMD) 1060 L->setLoopID(LoopMD); 1061 1062 return MadeChange || SimplifiedLatch; 1063 } 1064 1065 1066 /// The utility to convert a loop into a loop with bottom test. 1067 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI, 1068 AssumptionCache *AC, DominatorTree *DT, 1069 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 1070 const SimplifyQuery &SQ, bool RotationOnly = true, 1071 unsigned Threshold = unsigned(-1), 1072 bool IsUtilMode = true, bool PrepareForLTO) { 1073 LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly, 1074 IsUtilMode, PrepareForLTO); 1075 return LR.processLoop(L); 1076 } 1077