1 //===- LoopPeel.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loop Peeling Utilities. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/Transforms/Utils/LoopPeel.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/Optional.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/LoopIterator.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/InstrTypes.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/ProfDataUtils.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/LoopSimplify.h" 40 #include "llvm/Transforms/Utils/LoopUtils.h" 41 #include "llvm/Transforms/Utils/ValueMapper.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstdint> 45 46 using namespace llvm; 47 using namespace llvm::PatternMatch; 48 49 #define DEBUG_TYPE "loop-peel" 50 51 STATISTIC(NumPeeled, "Number of loops peeled"); 52 53 static cl::opt<unsigned> UnrollPeelCount( 54 "unroll-peel-count", cl::Hidden, 55 cl::desc("Set the unroll peeling count, for testing purposes")); 56 57 static cl::opt<bool> 58 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 59 cl::desc("Allows loops to be peeled when the dynamic " 60 "trip count is known to be low.")); 61 62 static cl::opt<bool> 63 UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling", 64 cl::init(false), cl::Hidden, 65 cl::desc("Allows loop nests to be peeled.")); 66 67 static cl::opt<unsigned> UnrollPeelMaxCount( 68 "unroll-peel-max-count", cl::init(7), cl::Hidden, 69 cl::desc("Max average trip count which will cause loop peeling.")); 70 71 static cl::opt<unsigned> UnrollForcePeelCount( 72 "unroll-force-peel-count", cl::init(0), cl::Hidden, 73 cl::desc("Force a peel count regardless of profiling information.")); 74 75 static cl::opt<bool> DisableAdvancedPeeling( 76 "disable-advanced-peeling", cl::init(false), cl::Hidden, 77 cl::desc( 78 "Disable advance peeling. Issues for convergent targets (D134803).")); 79 80 static const char *PeeledCountMetaData = "llvm.loop.peeled.count"; 81 82 // Check whether we are capable of peeling this loop. 83 bool llvm::canPeel(Loop *L) { 84 // Make sure the loop is in simplified form 85 if (!L->isLoopSimplifyForm()) 86 return false; 87 if (!DisableAdvancedPeeling) 88 return true; 89 90 SmallVector<BasicBlock *, 4> Exits; 91 L->getUniqueNonLatchExitBlocks(Exits); 92 // The latch must either be the only exiting block or all non-latch exit 93 // blocks have either a deopt or unreachable terminator or compose a chain of 94 // blocks where the last one is either deopt or unreachable terminated. Both 95 // deopt and unreachable terminators are a strong indication they are not 96 // taken. Note that this is a profitability check, not a legality check. Also 97 // note that LoopPeeling currently can only update the branch weights of latch 98 // blocks and branch weights to blocks with deopt or unreachable do not need 99 // updating. 100 return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable); 101 } 102 103 // This function calculates the number of iterations after which the given Phi 104 // becomes an invariant. The pre-calculated values are memorized in the map. The 105 // function (shortcut is I) is calculated according to the following definition: 106 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. 107 // If %y is a loop invariant, then I(%x) = 1. 108 // If %y is a Phi from the loop header, I(%x) = I(%y) + 1. 109 // Otherwise, I(%x) is infinite. 110 // TODO: Actually if %y is an expression that depends only on Phi %z and some 111 // loop invariants, we can estimate I(%x) = I(%z) + 1. The example 112 // looks like: 113 // %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration. 114 // %y = phi(0, 5), 115 // %a = %y + 1. 116 static Optional<unsigned> calculateIterationsToInvariance( 117 PHINode *Phi, Loop *L, BasicBlock *BackEdge, 118 SmallDenseMap<PHINode *, Optional<unsigned> > &IterationsToInvariance) { 119 assert(Phi->getParent() == L->getHeader() && 120 "Non-loop Phi should not be checked for turning into invariant."); 121 assert(BackEdge == L->getLoopLatch() && "Wrong latch?"); 122 // If we already know the answer, take it from the map. 123 auto I = IterationsToInvariance.find(Phi); 124 if (I != IterationsToInvariance.end()) 125 return I->second; 126 127 // Otherwise we need to analyze the input from the back edge. 128 Value *Input = Phi->getIncomingValueForBlock(BackEdge); 129 // Place infinity to map to avoid infinite recursion for cycled Phis. Such 130 // cycles can never stop on an invariant. 131 IterationsToInvariance[Phi] = None; 132 Optional<unsigned> ToInvariance; 133 134 if (L->isLoopInvariant(Input)) 135 ToInvariance = 1u; 136 else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) { 137 // Only consider Phis in header block. 138 if (IncPhi->getParent() != L->getHeader()) 139 return None; 140 // If the input becomes an invariant after X iterations, then our Phi 141 // becomes an invariant after X + 1 iterations. 142 auto InputToInvariance = calculateIterationsToInvariance( 143 IncPhi, L, BackEdge, IterationsToInvariance); 144 if (InputToInvariance) 145 ToInvariance = *InputToInvariance + 1u; 146 } 147 148 // If we found that this Phi lies in an invariant chain, update the map. 149 if (ToInvariance) 150 IterationsToInvariance[Phi] = ToInvariance; 151 return ToInvariance; 152 } 153 154 // Try to find any invariant memory reads that will become dereferenceable in 155 // the remainder loop after peeling. The load must also be used (transitively) 156 // by an exit condition. Returns the number of iterations to peel off (at the 157 // moment either 0 or 1). 158 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L, 159 DominatorTree &DT, 160 AssumptionCache *AC) { 161 // Skip loops with a single exiting block, because there should be no benefit 162 // for the heuristic below. 163 if (L.getExitingBlock()) 164 return 0; 165 166 // All non-latch exit blocks must have an UnreachableInst terminator. 167 // Otherwise the heuristic below may not be profitable. 168 SmallVector<BasicBlock *, 4> Exits; 169 L.getUniqueNonLatchExitBlocks(Exits); 170 if (any_of(Exits, [](const BasicBlock *BB) { 171 return !isa<UnreachableInst>(BB->getTerminator()); 172 })) 173 return 0; 174 175 // Now look for invariant loads that dominate the latch and are not known to 176 // be dereferenceable. If there are such loads and no writes, they will become 177 // dereferenceable in the loop if the first iteration is peeled off. Also 178 // collect the set of instructions controlled by such loads. Only peel if an 179 // exit condition uses (transitively) such a load. 180 BasicBlock *Header = L.getHeader(); 181 BasicBlock *Latch = L.getLoopLatch(); 182 SmallPtrSet<Value *, 8> LoadUsers; 183 const DataLayout &DL = L.getHeader()->getModule()->getDataLayout(); 184 for (BasicBlock *BB : L.blocks()) { 185 for (Instruction &I : *BB) { 186 if (I.mayWriteToMemory()) 187 return 0; 188 189 auto Iter = LoadUsers.find(&I); 190 if (Iter != LoadUsers.end()) { 191 for (Value *U : I.users()) 192 LoadUsers.insert(U); 193 } 194 // Do not look for reads in the header; they can already be hoisted 195 // without peeling. 196 if (BB == Header) 197 continue; 198 if (auto *LI = dyn_cast<LoadInst>(&I)) { 199 Value *Ptr = LI->getPointerOperand(); 200 if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) && 201 !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT)) 202 for (Value *U : I.users()) 203 LoadUsers.insert(U); 204 } 205 } 206 } 207 SmallVector<BasicBlock *> ExitingBlocks; 208 L.getExitingBlocks(ExitingBlocks); 209 if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) { 210 return LoadUsers.contains(Exiting->getTerminator()); 211 })) 212 return 1; 213 return 0; 214 } 215 216 // Return the number of iterations to peel off that make conditions in the 217 // body true/false. For example, if we peel 2 iterations off the loop below, 218 // the condition i < 2 can be evaluated at compile time. 219 // for (i = 0; i < n; i++) 220 // if (i < 2) 221 // .. 222 // else 223 // .. 224 // } 225 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, 226 ScalarEvolution &SE) { 227 assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); 228 unsigned DesiredPeelCount = 0; 229 230 for (auto *BB : L.blocks()) { 231 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 232 if (!BI || BI->isUnconditional()) 233 continue; 234 235 // Ignore loop exit condition. 236 if (L.getLoopLatch() == BB) 237 continue; 238 239 Value *Condition = BI->getCondition(); 240 Value *LeftVal, *RightVal; 241 CmpInst::Predicate Pred; 242 if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) 243 continue; 244 245 const SCEV *LeftSCEV = SE.getSCEV(LeftVal); 246 const SCEV *RightSCEV = SE.getSCEV(RightVal); 247 248 // Do not consider predicates that are known to be true or false 249 // independently of the loop iteration. 250 if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV)) 251 continue; 252 253 // Check if we have a condition with one AddRec and one non AddRec 254 // expression. Normalize LeftSCEV to be the AddRec. 255 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 256 if (isa<SCEVAddRecExpr>(RightSCEV)) { 257 std::swap(LeftSCEV, RightSCEV); 258 Pred = ICmpInst::getSwappedPredicate(Pred); 259 } else 260 continue; 261 } 262 263 const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV); 264 265 // Avoid huge SCEV computations in the loop below, make sure we only 266 // consider AddRecs of the loop we are trying to peel. 267 if (!LeftAR->isAffine() || LeftAR->getLoop() != &L) 268 continue; 269 if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) && 270 !SE.getMonotonicPredicateType(LeftAR, Pred)) 271 continue; 272 273 // Check if extending the current DesiredPeelCount lets us evaluate Pred 274 // or !Pred in the loop body statically. 275 unsigned NewPeelCount = DesiredPeelCount; 276 277 const SCEV *IterVal = LeftAR->evaluateAtIteration( 278 SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); 279 280 // If the original condition is not known, get the negated predicate 281 // (which holds on the else branch) and check if it is known. This allows 282 // us to peel of iterations that make the original condition false. 283 if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 284 Pred = ICmpInst::getInversePredicate(Pred); 285 286 const SCEV *Step = LeftAR->getStepRecurrence(SE); 287 const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step); 288 auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step, 289 &NewPeelCount]() { 290 IterVal = NextIterVal; 291 NextIterVal = SE.getAddExpr(IterVal, Step); 292 NewPeelCount++; 293 }; 294 295 auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() { 296 return NewPeelCount < MaxPeelCount; 297 }; 298 299 while (CanPeelOneMoreIteration() && 300 SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 301 PeelOneMoreIteration(); 302 303 // With *that* peel count, does the predicate !Pred become known in the 304 // first iteration of the loop body after peeling? 305 if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, 306 RightSCEV)) 307 continue; // If not, give up. 308 309 // However, for equality comparisons, that isn't always sufficient to 310 // eliminate the comparsion in loop body, we may need to peel one more 311 // iteration. See if that makes !Pred become unknown again. 312 if (ICmpInst::isEquality(Pred) && 313 !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal, 314 RightSCEV) && 315 !SE.isKnownPredicate(Pred, IterVal, RightSCEV) && 316 SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) { 317 if (!CanPeelOneMoreIteration()) 318 continue; // Need to peel one more iteration, but can't. Give up. 319 PeelOneMoreIteration(); // Great! 320 } 321 322 DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount); 323 } 324 325 return DesiredPeelCount; 326 } 327 328 /// This "heuristic" exactly matches implicit behavior which used to exist 329 /// inside getLoopEstimatedTripCount. It was added here to keep an 330 /// improvement inside that API from causing peeling to become more aggressive. 331 /// This should probably be removed. 332 static bool violatesLegacyMultiExitLoopCheck(Loop *L) { 333 BasicBlock *Latch = L->getLoopLatch(); 334 if (!Latch) 335 return true; 336 337 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 338 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 339 return true; 340 341 assert((LatchBR->getSuccessor(0) == L->getHeader() || 342 LatchBR->getSuccessor(1) == L->getHeader()) && 343 "At least one edge out of the latch must go to the header"); 344 345 SmallVector<BasicBlock *, 4> ExitBlocks; 346 L->getUniqueNonLatchExitBlocks(ExitBlocks); 347 return any_of(ExitBlocks, [](const BasicBlock *EB) { 348 return !EB->getTerminatingDeoptimizeCall(); 349 }); 350 } 351 352 353 // Return the number of iterations we want to peel off. 354 void llvm::computePeelCount(Loop *L, unsigned LoopSize, 355 TargetTransformInfo::PeelingPreferences &PP, 356 unsigned TripCount, DominatorTree &DT, 357 ScalarEvolution &SE, AssumptionCache *AC, 358 unsigned Threshold) { 359 assert(LoopSize > 0 && "Zero loop size is not allowed!"); 360 // Save the PP.PeelCount value set by the target in 361 // TTI.getPeelingPreferences or by the flag -unroll-peel-count. 362 unsigned TargetPeelCount = PP.PeelCount; 363 PP.PeelCount = 0; 364 if (!canPeel(L)) 365 return; 366 367 // Only try to peel innermost loops by default. 368 // The constraint can be relaxed by the target in TTI.getPeelingPreferences 369 // or by the flag -unroll-allow-loop-nests-peeling. 370 if (!PP.AllowLoopNestsPeeling && !L->isInnermost()) 371 return; 372 373 // If the user provided a peel count, use that. 374 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; 375 if (UserPeelCount) { 376 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount 377 << " iterations.\n"); 378 PP.PeelCount = UnrollForcePeelCount; 379 PP.PeelProfiledIterations = true; 380 return; 381 } 382 383 // Skip peeling if it's disabled. 384 if (!PP.AllowPeeling) 385 return; 386 387 // Check that we can peel at least one iteration. 388 if (2 * LoopSize > Threshold) 389 return; 390 391 unsigned AlreadyPeeled = 0; 392 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 393 AlreadyPeeled = *Peeled; 394 // Stop if we already peeled off the maximum number of iterations. 395 if (AlreadyPeeled >= UnrollPeelMaxCount) 396 return; 397 398 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N 399 // iterations of the loop. For this we compute the number for iterations after 400 // which every Phi is guaranteed to become an invariant, and try to peel the 401 // maximum number of iterations among these values, thus turning all those 402 // Phis into invariants. 403 404 // Store the pre-calculated values here. 405 SmallDenseMap<PHINode *, Optional<unsigned>> IterationsToInvariance; 406 // Now go through all Phis to calculate their the number of iterations they 407 // need to become invariants. 408 // Start the max computation with the PP.PeelCount value set by the target 409 // in TTI.getPeelingPreferences or by the flag -unroll-peel-count. 410 unsigned DesiredPeelCount = TargetPeelCount; 411 BasicBlock *BackEdge = L->getLoopLatch(); 412 assert(BackEdge && "Loop is not in simplified form?"); 413 for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) { 414 PHINode *Phi = cast<PHINode>(&*BI); 415 auto ToInvariance = calculateIterationsToInvariance(Phi, L, BackEdge, 416 IterationsToInvariance); 417 if (ToInvariance) 418 DesiredPeelCount = std::max(DesiredPeelCount, *ToInvariance); 419 } 420 421 // Pay respect to limitations implied by loop size and the max peel count. 422 unsigned MaxPeelCount = UnrollPeelMaxCount; 423 MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1); 424 425 DesiredPeelCount = std::max(DesiredPeelCount, 426 countToEliminateCompares(*L, MaxPeelCount, SE)); 427 428 if (DesiredPeelCount == 0) 429 DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC); 430 431 if (DesiredPeelCount > 0) { 432 DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); 433 // Consider max peel count limitation. 434 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); 435 if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) { 436 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount 437 << " iteration(s) to turn" 438 << " some Phis into invariants.\n"); 439 PP.PeelCount = DesiredPeelCount; 440 PP.PeelProfiledIterations = false; 441 return; 442 } 443 } 444 445 // Bail if we know the statically calculated trip count. 446 // In this case we rather prefer partial unrolling. 447 if (TripCount) 448 return; 449 450 // Do not apply profile base peeling if it is disabled. 451 if (!PP.PeelProfiledIterations) 452 return; 453 // If we don't know the trip count, but have reason to believe the average 454 // trip count is low, peeling should be beneficial, since we will usually 455 // hit the peeled section. 456 // We only do this in the presence of profile information, since otherwise 457 // our estimates of the trip count are not reliable enough. 458 if (L->getHeader()->getParent()->hasProfileData()) { 459 if (violatesLegacyMultiExitLoopCheck(L)) 460 return; 461 Optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L); 462 if (!EstimatedTripCount) 463 return; 464 465 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " 466 << *EstimatedTripCount << "\n"); 467 468 if (*EstimatedTripCount) { 469 if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) { 470 unsigned PeelCount = *EstimatedTripCount; 471 LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n"); 472 PP.PeelCount = PeelCount; 473 return; 474 } 475 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n"); 476 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); 477 LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n"); 478 LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n"); 479 LLVM_DEBUG(dbgs() << "Max peel count by cost: " 480 << (Threshold / LoopSize - 1) << "\n"); 481 } 482 } 483 } 484 485 struct WeightInfo { 486 // Weights for current iteration. 487 SmallVector<uint32_t> Weights; 488 // Weights to subtract after each iteration. 489 const SmallVector<uint32_t> SubWeights; 490 }; 491 492 /// Update the branch weights of an exiting block of a peeled-off loop 493 /// iteration. 494 /// Let F is a weight of the edge to continue (fallthrough) into the loop. 495 /// Let E is a weight of the edge to an exit. 496 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to 497 /// go to exit. 498 /// Then, Estimated ExitCount = F / E. 499 /// For I-th (counting from 0) peeled off iteration we set the the weights for 500 /// the peeled exit as (EC - I, 1). It gives us reasonable distribution, 501 /// The probability to go to exit 1/(EC-I) increases. At the same time 502 /// the estimated exit count in the remainder loop reduces by I. 503 /// To avoid dealing with division rounding we can just multiple both part 504 /// of weights to E and use weight as (F - I * E, E). 505 static void updateBranchWeights(Instruction *Term, WeightInfo &Info) { 506 MDBuilder MDB(Term->getContext()); 507 Term->setMetadata(LLVMContext::MD_prof, 508 MDB.createBranchWeights(Info.Weights)); 509 for (auto [Idx, SubWeight] : enumerate(Info.SubWeights)) 510 if (SubWeight != 0) 511 Info.Weights[Idx] = Info.Weights[Idx] > SubWeight 512 ? Info.Weights[Idx] - SubWeight 513 : 1; 514 } 515 516 /// Initialize the weights for all exiting blocks. 517 static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos, 518 Loop *L) { 519 SmallVector<BasicBlock *> ExitingBlocks; 520 L->getExitingBlocks(ExitingBlocks); 521 for (BasicBlock *ExitingBlock : ExitingBlocks) { 522 Instruction *Term = ExitingBlock->getTerminator(); 523 SmallVector<uint32_t> Weights; 524 if (!extractBranchWeights(*Term, Weights)) 525 continue; 526 527 // See the comment on updateBranchWeights() for an explanation of what we 528 // do here. 529 uint32_t FallThroughWeights = 0; 530 uint32_t ExitWeights = 0; 531 for (auto [Succ, Weight] : zip(successors(Term), Weights)) { 532 if (L->contains(Succ)) 533 FallThroughWeights += Weight; 534 else 535 ExitWeights += Weight; 536 } 537 538 // Don't try to update weights for degenerate case. 539 if (FallThroughWeights == 0) 540 continue; 541 542 SmallVector<uint32_t> SubWeights; 543 for (auto [Succ, Weight] : zip(successors(Term), Weights)) { 544 if (!L->contains(Succ)) { 545 // Exit weights stay the same. 546 SubWeights.push_back(0); 547 continue; 548 } 549 550 // Subtract exit weights on each iteration, distributed across all 551 // fallthrough edges. 552 double W = (double)Weight / (double)FallThroughWeights; 553 SubWeights.push_back((uint32_t)(ExitWeights * W)); 554 } 555 556 WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}}); 557 } 558 } 559 560 /// Update the weights of original exiting block after peeling off all 561 /// iterations. 562 static void fixupBranchWeights(Instruction *Term, const WeightInfo &Info) { 563 MDBuilder MDB(Term->getContext()); 564 Term->setMetadata(LLVMContext::MD_prof, 565 MDB.createBranchWeights(Info.Weights)); 566 } 567 568 /// Clones the body of the loop L, putting it between \p InsertTop and \p 569 /// InsertBot. 570 /// \param IterNumber The serial number of the iteration currently being 571 /// peeled off. 572 /// \param ExitEdges The exit edges of the original loop. 573 /// \param[out] NewBlocks A list of the blocks in the newly created clone 574 /// \param[out] VMap The value map between the loop and the new clone. 575 /// \param LoopBlocks A helper for DFS-traversal of the loop. 576 /// \param LVMap A value-map that maps instructions from the original loop to 577 /// instructions in the last peeled-off iteration. 578 static void cloneLoopBlocks( 579 Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, 580 SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges, 581 SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 582 ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, 583 LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes, 584 ScalarEvolution &SE) { 585 BasicBlock *Header = L->getHeader(); 586 BasicBlock *Latch = L->getLoopLatch(); 587 BasicBlock *PreHeader = L->getLoopPreheader(); 588 589 Function *F = Header->getParent(); 590 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 591 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 592 Loop *ParentLoop = L->getParentLoop(); 593 594 // For each block in the original loop, create a new copy, 595 // and update the value map with the newly created values. 596 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 597 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); 598 NewBlocks.push_back(NewBB); 599 600 // If an original block is an immediate child of the loop L, its copy 601 // is a child of a ParentLoop after peeling. If a block is a child of 602 // a nested loop, it is handled in the cloneLoop() call below. 603 if (ParentLoop && LI->getLoopFor(*BB) == L) 604 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 605 606 VMap[*BB] = NewBB; 607 608 // If dominator tree is available, insert nodes to represent cloned blocks. 609 if (DT) { 610 if (Header == *BB) 611 DT->addNewBlock(NewBB, InsertTop); 612 else { 613 DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); 614 // VMap must contain entry for IDom, as the iteration order is RPO. 615 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()])); 616 } 617 } 618 } 619 620 { 621 // Identify what other metadata depends on the cloned version. After 622 // cloning, replace the metadata with the corrected version for both 623 // memory instructions and noalias intrinsics. 624 std::string Ext = (Twine("Peel") + Twine(IterNumber)).str(); 625 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 626 Header->getContext(), Ext); 627 } 628 629 // Recursively create the new Loop objects for nested loops, if any, 630 // to preserve LoopInfo. 631 for (Loop *ChildLoop : *L) { 632 cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr); 633 } 634 635 // Hook-up the control flow for the newly inserted blocks. 636 // The new header is hooked up directly to the "top", which is either 637 // the original loop preheader (for the first iteration) or the previous 638 // iteration's exiting block (for every other iteration) 639 InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); 640 641 // Similarly, for the latch: 642 // The original exiting edge is still hooked up to the loop exit. 643 // The backedge now goes to the "bottom", which is either the loop's real 644 // header (for the last peeled iteration) or the copied header of the next 645 // iteration (for every other iteration) 646 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 647 auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator()); 648 for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx) 649 if (LatchTerm->getSuccessor(idx) == Header) { 650 LatchTerm->setSuccessor(idx, InsertBot); 651 break; 652 } 653 if (DT) 654 DT->changeImmediateDominator(InsertBot, NewLatch); 655 656 // The new copy of the loop body starts with a bunch of PHI nodes 657 // that pick an incoming value from either the preheader, or the previous 658 // loop iteration. Since this copy is no longer part of the loop, we 659 // resolve this statically: 660 // For the first iteration, we use the value from the preheader directly. 661 // For any other iteration, we replace the phi with the value generated by 662 // the immediately preceding clone of the loop body (which represents 663 // the previous iteration). 664 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 665 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 666 if (IterNumber == 0) { 667 VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); 668 } else { 669 Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); 670 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 671 if (LatchInst && L->contains(LatchInst)) 672 VMap[&*I] = LVMap[LatchInst]; 673 else 674 VMap[&*I] = LatchVal; 675 } 676 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 677 } 678 679 // Fix up the outgoing values - we need to add a value for the iteration 680 // we've just created. Note that this must happen *after* the incoming 681 // values are adjusted, since the value going out of the latch may also be 682 // a value coming into the header. 683 for (auto Edge : ExitEdges) 684 for (PHINode &PHI : Edge.second->phis()) { 685 Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first); 686 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 687 if (LatchInst && L->contains(LatchInst)) 688 LatchVal = VMap[LatchVal]; 689 PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first])); 690 SE.forgetValue(&PHI); 691 } 692 693 // LastValueMap is updated with the values for the current loop 694 // which are used the next time this function is called. 695 for (auto KV : VMap) 696 LVMap[KV.first] = KV.second; 697 } 698 699 TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences( 700 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 701 Optional<bool> UserAllowPeeling, 702 Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) { 703 TargetTransformInfo::PeelingPreferences PP; 704 705 // Set the default values. 706 PP.PeelCount = 0; 707 PP.AllowPeeling = true; 708 PP.AllowLoopNestsPeeling = false; 709 PP.PeelProfiledIterations = true; 710 711 // Get the target specifc values. 712 TTI.getPeelingPreferences(L, SE, PP); 713 714 // User specified values using cl::opt. 715 if (UnrollingSpecficValues) { 716 if (UnrollPeelCount.getNumOccurrences() > 0) 717 PP.PeelCount = UnrollPeelCount; 718 if (UnrollAllowPeeling.getNumOccurrences() > 0) 719 PP.AllowPeeling = UnrollAllowPeeling; 720 if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0) 721 PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling; 722 } 723 724 // User specifed values provided by argument. 725 if (UserAllowPeeling) 726 PP.AllowPeeling = *UserAllowPeeling; 727 if (UserAllowProfileBasedPeeling) 728 PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 729 730 return PP; 731 } 732 733 /// Peel off the first \p PeelCount iterations of loop \p L. 734 /// 735 /// Note that this does not peel them off as a single straight-line block. 736 /// Rather, each iteration is peeled off separately, and needs to check the 737 /// exit condition. 738 /// For loops that dynamically execute \p PeelCount iterations or less 739 /// this provides a benefit, since the peeled off iterations, which account 740 /// for the bulk of dynamic execution, can be further simplified by scalar 741 /// optimizations. 742 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, 743 ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC, 744 bool PreserveLCSSA) { 745 assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); 746 assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); 747 748 LoopBlocksDFS LoopBlocks(L); 749 LoopBlocks.perform(LI); 750 751 BasicBlock *Header = L->getHeader(); 752 BasicBlock *PreHeader = L->getLoopPreheader(); 753 BasicBlock *Latch = L->getLoopLatch(); 754 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges; 755 L->getExitEdges(ExitEdges); 756 757 // Remember dominators of blocks we might reach through exits to change them 758 // later. Immediate dominator of such block might change, because we add more 759 // routes which can lead to the exit: we can reach it from the peeled 760 // iterations too. 761 DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom; 762 for (auto *BB : L->blocks()) { 763 auto *BBDomNode = DT.getNode(BB); 764 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 765 for (auto *ChildDomNode : BBDomNode->children()) { 766 auto *ChildBB = ChildDomNode->getBlock(); 767 if (!L->contains(ChildBB)) 768 ChildrenToUpdate.push_back(ChildBB); 769 } 770 // The new idom of the block will be the nearest common dominator 771 // of all copies of the previous idom. This is equivalent to the 772 // nearest common dominator of the previous idom and the first latch, 773 // which dominates all copies of the previous idom. 774 BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch); 775 for (auto *ChildBB : ChildrenToUpdate) 776 NonLoopBlocksIDom[ChildBB] = NewIDom; 777 } 778 779 Function *F = Header->getParent(); 780 781 // Set up all the necessary basic blocks. It is convenient to split the 782 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop 783 // body, and a new preheader for the "real" loop. 784 785 // Peeling the first iteration transforms. 786 // 787 // PreHeader: 788 // ... 789 // Header: 790 // LoopBody 791 // If (cond) goto Header 792 // Exit: 793 // 794 // into 795 // 796 // InsertTop: 797 // LoopBody 798 // If (!cond) goto Exit 799 // InsertBot: 800 // NewPreHeader: 801 // ... 802 // Header: 803 // LoopBody 804 // If (cond) goto Header 805 // Exit: 806 // 807 // Each following iteration will split the current bottom anchor in two, 808 // and put the new copy of the loop body between these two blocks. That is, 809 // after peeling another iteration from the example above, we'll split 810 // InsertBot, and get: 811 // 812 // InsertTop: 813 // LoopBody 814 // If (!cond) goto Exit 815 // InsertBot: 816 // LoopBody 817 // If (!cond) goto Exit 818 // InsertBot.next: 819 // NewPreHeader: 820 // ... 821 // Header: 822 // LoopBody 823 // If (cond) goto Header 824 // Exit: 825 826 BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI); 827 BasicBlock *InsertBot = 828 SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI); 829 BasicBlock *NewPreHeader = 830 SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI); 831 832 InsertTop->setName(Header->getName() + ".peel.begin"); 833 InsertBot->setName(Header->getName() + ".peel.next"); 834 NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); 835 836 ValueToValueMapTy LVMap; 837 838 Instruction *LatchTerm = 839 cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator()); 840 841 // If we have branch weight information, we'll want to update it for the 842 // newly created branches. 843 DenseMap<Instruction *, WeightInfo> Weights; 844 initBranchWeights(Weights, L); 845 846 // Identify what noalias metadata is inside the loop: if it is inside the 847 // loop, the associated metadata must be cloned for each iteration. 848 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 849 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 850 851 // For each peeled-off iteration, make a copy of the loop. 852 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { 853 SmallVector<BasicBlock *, 8> NewBlocks; 854 ValueToValueMapTy VMap; 855 856 cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks, 857 LoopBlocks, VMap, LVMap, &DT, LI, 858 LoopLocalNoAliasDeclScopes, *SE); 859 860 // Remap to use values from the current iteration instead of the 861 // previous one. 862 remapInstructionsInBlocks(NewBlocks, VMap); 863 864 // Update IDoms of the blocks reachable through exits. 865 if (Iter == 0) 866 for (auto BBIDom : NonLoopBlocksIDom) 867 DT.changeImmediateDominator(BBIDom.first, 868 cast<BasicBlock>(LVMap[BBIDom.second])); 869 #ifdef EXPENSIVE_CHECKS 870 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 871 #endif 872 873 for (auto &[Term, Info] : Weights) { 874 auto *TermCopy = cast<Instruction>(VMap[Term]); 875 updateBranchWeights(TermCopy, Info); 876 } 877 878 // Remove Loop metadata from the latch branch instruction 879 // because it is not the Loop's latch branch anymore. 880 auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]); 881 LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr); 882 883 InsertTop = InsertBot; 884 InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI); 885 InsertBot->setName(Header->getName() + ".peel.next"); 886 887 F->getBasicBlockList().splice(InsertTop->getIterator(), 888 F->getBasicBlockList(), 889 NewBlocks[0]->getIterator(), F->end()); 890 } 891 892 // Now adjust the phi nodes in the loop header to get their initial values 893 // from the last peeled-off iteration instead of the preheader. 894 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 895 PHINode *PHI = cast<PHINode>(I); 896 Value *NewVal = PHI->getIncomingValueForBlock(Latch); 897 Instruction *LatchInst = dyn_cast<Instruction>(NewVal); 898 if (LatchInst && L->contains(LatchInst)) 899 NewVal = LVMap[LatchInst]; 900 901 PHI->setIncomingValueForBlock(NewPreHeader, NewVal); 902 } 903 904 for (const auto &[Term, Info] : Weights) 905 fixupBranchWeights(Term, Info); 906 907 // Update Metadata for count of peeled off iterations. 908 unsigned AlreadyPeeled = 0; 909 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 910 AlreadyPeeled = *Peeled; 911 addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount); 912 913 if (Loop *ParentLoop = L->getParentLoop()) 914 L = ParentLoop; 915 916 // We modified the loop, update SE. 917 SE->forgetTopmostLoop(L); 918 919 #ifdef EXPENSIVE_CHECKS 920 // Finally DomtTree must be correct. 921 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 922 #endif 923 924 // FIXME: Incrementally update loop-simplify 925 simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA); 926 927 NumPeeled++; 928 929 return true; 930 } 931