xref: /llvm-project/llvm/lib/Transforms/Utils/LoopPeel.cpp (revision 343de6856e16b58bcbd16d479fc633f54e22fadc)
1 //===- LoopPeel.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop Peeling Utilities.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/Transforms/Utils/LoopPeel.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Optional.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/LoopIterator.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/ProfDataUtils.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/LoopSimplify.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/ValueMapper.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <optional>
46 
47 using namespace llvm;
48 using namespace llvm::PatternMatch;
49 
50 #define DEBUG_TYPE "loop-peel"
51 
52 STATISTIC(NumPeeled, "Number of loops peeled");
53 
54 static cl::opt<unsigned> UnrollPeelCount(
55     "unroll-peel-count", cl::Hidden,
56     cl::desc("Set the unroll peeling count, for testing purposes"));
57 
58 static cl::opt<bool>
59     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
60                        cl::desc("Allows loops to be peeled when the dynamic "
61                                 "trip count is known to be low."));
62 
63 static cl::opt<bool>
64     UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
65                                 cl::init(false), cl::Hidden,
66                                 cl::desc("Allows loop nests to be peeled."));
67 
68 static cl::opt<unsigned> UnrollPeelMaxCount(
69     "unroll-peel-max-count", cl::init(7), cl::Hidden,
70     cl::desc("Max average trip count which will cause loop peeling."));
71 
72 static cl::opt<unsigned> UnrollForcePeelCount(
73     "unroll-force-peel-count", cl::init(0), cl::Hidden,
74     cl::desc("Force a peel count regardless of profiling information."));
75 
76 static cl::opt<bool> DisableAdvancedPeeling(
77     "disable-advanced-peeling", cl::init(false), cl::Hidden,
78     cl::desc(
79         "Disable advance peeling. Issues for convergent targets (D134803)."));
80 
81 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
82 
83 // Check whether we are capable of peeling this loop.
84 bool llvm::canPeel(const Loop *L) {
85   // Make sure the loop is in simplified form
86   if (!L->isLoopSimplifyForm())
87     return false;
88   if (!DisableAdvancedPeeling)
89     return true;
90 
91   SmallVector<BasicBlock *, 4> Exits;
92   L->getUniqueNonLatchExitBlocks(Exits);
93   // The latch must either be the only exiting block or all non-latch exit
94   // blocks have either a deopt or unreachable terminator or compose a chain of
95   // blocks where the last one is either deopt or unreachable terminated. Both
96   // deopt and unreachable terminators are a strong indication they are not
97   // taken. Note that this is a profitability check, not a legality check. Also
98   // note that LoopPeeling currently can only update the branch weights of latch
99   // blocks and branch weights to blocks with deopt or unreachable do not need
100   // updating.
101   return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable);
102 }
103 
104 namespace {
105 
106 // As a loop is peeled, it may be the case that Phi nodes become
107 // loop-invariant (ie, known because there is only one choice).
108 // For example, consider the following function:
109 //   void g(int);
110 //   void binary() {
111 //     int x = 0;
112 //     int y = 0;
113 //     int a = 0;
114 //     for(int i = 0; i <100000; ++i) {
115 //       g(x);
116 //       x = y;
117 //       g(a);
118 //       y = a + 1;
119 //       a = 5;
120 //     }
121 //   }
122 // Peeling 3 iterations is beneficial because the values for x, y and a
123 // become known.  The IR for this loop looks something like the following:
124 //
125 //   %i = phi i32 [ 0, %entry ], [ %inc, %if.end ]
126 //   %a = phi i32 [ 0, %entry ], [ 5, %if.end ]
127 //   %y = phi i32 [ 0, %entry ], [ %add, %if.end ]
128 //   %x = phi i32 [ 0, %entry ], [ %y, %if.end ]
129 //   ...
130 //   tail call void @_Z1gi(i32 signext %x)
131 //   tail call void @_Z1gi(i32 signext %a)
132 //   %add = add nuw nsw i32 %a, 1
133 //   %inc = add nuw nsw i32 %i, 1
134 //   %exitcond = icmp eq i32 %inc, 100000
135 //   br i1 %exitcond, label %for.cond.cleanup, label %for.body
136 //
137 // The arguments for the calls to g will become known after 3 iterations
138 // of the loop, because the phi nodes values become known after 3 iterations
139 // of the loop (ie, they are known on the 4th iteration, so peel 3 iterations).
140 // The first iteration has g(0), g(0); the second has g(0), g(5); the
141 // third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5).
142 // Now consider the phi nodes:
143 //   %a is a phi with constants so it is determined after iteration 1.
144 //   %y is a phi based on a constant and %a so it is determined on
145 //     the iteration after %a is determined, so iteration 2.
146 //   %x is a phi based on a constant and %y so it is determined on
147 //     the iteration after %y, so iteration 3.
148 //   %i is based on itself (and is an induction variable) so it is
149 //     never determined.
150 // This means that peeling off 3 iterations will result in being able to
151 // remove the phi nodes for %a, %y, and %x.  The arguments for the
152 // corresponding calls to g are determined and the code for computing
153 // x, y, and a can be removed.
154 //
155 // The PhiAnalyzer class calculates how many times a loop should be
156 // peeled based on the above analysis of the phi nodes in the loop while
157 // respecting the maximum specified.
158 class PhiAnalyzer {
159 public:
160   PhiAnalyzer(const Loop &L, unsigned MaxIterations);
161 
162   // Calculate the sufficient minimum number of iterations of the loop to peel
163   // such that phi instructions become determined (subject to allowable limits)
164   Optional<unsigned> calculateIterationsToPeel();
165 
166 protected:
167   using PeelCounter = std::optional<unsigned>;
168   const PeelCounter Unknown = std::nullopt;
169 
170   // Add 1 respecting Unknown and return Unknown if result over MaxIterations
171   PeelCounter addOne(PeelCounter PC) const {
172     if (PC == Unknown)
173       return Unknown;
174     return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown;
175   }
176 
177   // Calculate the number of iterations after which the given value
178   // becomes an invariant.
179   PeelCounter calculate(const Value &);
180 
181   const Loop &L;
182   const unsigned MaxIterations;
183 
184   // Map of Values to number of iterations to invariance
185   SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance;
186 };
187 
188 PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations)
189     : L(L), MaxIterations(MaxIterations) {
190   assert(canPeel(&L) && "loop is not suitable for peeling");
191   assert(MaxIterations > 0 && "no peeling is allowed?");
192 }
193 
194 // This function calculates the number of iterations after which the value
195 // becomes an invariant. The pre-calculated values are memorized in a map.
196 // N.B. This number will be Unknown or <= MaxIterations.
197 // The function is calculated according to the following definition:
198 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
199 //   F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown)
200 //   G(%y) = 0 if %y is a loop invariant
201 //   G(%y) = G(%BackEdgeValue) if %y is a phi in the header block
202 //   G(%y) = TODO: if %y is an expression based on phis and loop invariants
203 //           The example looks like:
204 //           %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration.
205 //           %y = phi(0, 5)
206 //           %a = %y + 1
207 //   G(%y) = Unknown otherwise (including phi not in header block)
208 PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) {
209   // If we already know the answer, take it from the map.
210   auto I = IterationsToInvariance.find(&V);
211   if (I != IterationsToInvariance.end())
212     return I->second;
213 
214   // Place Unknown to map to avoid infinite recursion. Such
215   // cycles can never stop on an invariant.
216   IterationsToInvariance[&V] = Unknown;
217 
218   if (L.isLoopInvariant(&V))
219     // Loop invariant so known at start.
220     return (IterationsToInvariance[&V] = 0);
221   if (const PHINode *Phi = dyn_cast<PHINode>(&V)) {
222     if (Phi->getParent() != L.getHeader()) {
223       // Phi is not in header block so Unknown.
224       assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
225       return Unknown;
226     }
227     // We need to analyze the input from the back edge and add 1.
228     Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch());
229     PeelCounter Iterations = calculate(*Input);
230     assert(IterationsToInvariance[Input] == Iterations &&
231            "unexpected value saved");
232     return (IterationsToInvariance[Phi] = addOne(Iterations));
233   }
234   // TODO: handle expressions
235 
236   // Everything else is Unknown.
237   assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
238   return Unknown;
239 }
240 
241 Optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() {
242   unsigned Iterations = 0;
243   for (auto &PHI : L.getHeader()->phis()) {
244     PeelCounter ToInvariance = calculate(PHI);
245     if (ToInvariance != Unknown) {
246       assert(*ToInvariance <= MaxIterations && "bad result in phi analysis");
247       Iterations = std::max(Iterations, *ToInvariance);
248       if (Iterations == MaxIterations)
249         break;
250     }
251   }
252   assert((Iterations <= MaxIterations) && "bad result in phi analysis");
253   return Iterations ? Optional<unsigned>(Iterations) : std::nullopt;
254 }
255 
256 } // unnamed namespace
257 
258 // Try to find any invariant memory reads that will become dereferenceable in
259 // the remainder loop after peeling. The load must also be used (transitively)
260 // by an exit condition. Returns the number of iterations to peel off (at the
261 // moment either 0 or 1).
262 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
263                                                       DominatorTree &DT,
264                                                       AssumptionCache *AC) {
265   // Skip loops with a single exiting block, because there should be no benefit
266   // for the heuristic below.
267   if (L.getExitingBlock())
268     return 0;
269 
270   // All non-latch exit blocks must have an UnreachableInst terminator.
271   // Otherwise the heuristic below may not be profitable.
272   SmallVector<BasicBlock *, 4> Exits;
273   L.getUniqueNonLatchExitBlocks(Exits);
274   if (any_of(Exits, [](const BasicBlock *BB) {
275         return !isa<UnreachableInst>(BB->getTerminator());
276       }))
277     return 0;
278 
279   // Now look for invariant loads that dominate the latch and are not known to
280   // be dereferenceable. If there are such loads and no writes, they will become
281   // dereferenceable in the loop if the first iteration is peeled off. Also
282   // collect the set of instructions controlled by such loads. Only peel if an
283   // exit condition uses (transitively) such a load.
284   BasicBlock *Header = L.getHeader();
285   BasicBlock *Latch = L.getLoopLatch();
286   SmallPtrSet<Value *, 8> LoadUsers;
287   const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
288   for (BasicBlock *BB : L.blocks()) {
289     for (Instruction &I : *BB) {
290       if (I.mayWriteToMemory())
291         return 0;
292 
293       auto Iter = LoadUsers.find(&I);
294       if (Iter != LoadUsers.end()) {
295         for (Value *U : I.users())
296           LoadUsers.insert(U);
297       }
298       // Do not look for reads in the header; they can already be hoisted
299       // without peeling.
300       if (BB == Header)
301         continue;
302       if (auto *LI = dyn_cast<LoadInst>(&I)) {
303         Value *Ptr = LI->getPointerOperand();
304         if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) &&
305             !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT))
306           for (Value *U : I.users())
307             LoadUsers.insert(U);
308       }
309     }
310   }
311   SmallVector<BasicBlock *> ExitingBlocks;
312   L.getExitingBlocks(ExitingBlocks);
313   if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) {
314         return LoadUsers.contains(Exiting->getTerminator());
315       }))
316     return 1;
317   return 0;
318 }
319 
320 // Return the number of iterations to peel off that make conditions in the
321 // body true/false. For example, if we peel 2 iterations off the loop below,
322 // the condition i < 2 can be evaluated at compile time.
323 //  for (i = 0; i < n; i++)
324 //    if (i < 2)
325 //      ..
326 //    else
327 //      ..
328 //   }
329 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
330                                          ScalarEvolution &SE) {
331   assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
332   unsigned DesiredPeelCount = 0;
333 
334   for (auto *BB : L.blocks()) {
335     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
336     if (!BI || BI->isUnconditional())
337       continue;
338 
339     // Ignore loop exit condition.
340     if (L.getLoopLatch() == BB)
341       continue;
342 
343     Value *Condition = BI->getCondition();
344     Value *LeftVal, *RightVal;
345     CmpInst::Predicate Pred;
346     if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
347       continue;
348 
349     const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
350     const SCEV *RightSCEV = SE.getSCEV(RightVal);
351 
352     // Do not consider predicates that are known to be true or false
353     // independently of the loop iteration.
354     if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
355       continue;
356 
357     // Check if we have a condition with one AddRec and one non AddRec
358     // expression. Normalize LeftSCEV to be the AddRec.
359     if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
360       if (isa<SCEVAddRecExpr>(RightSCEV)) {
361         std::swap(LeftSCEV, RightSCEV);
362         Pred = ICmpInst::getSwappedPredicate(Pred);
363       } else
364         continue;
365     }
366 
367     const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
368 
369     // Avoid huge SCEV computations in the loop below, make sure we only
370     // consider AddRecs of the loop we are trying to peel.
371     if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
372       continue;
373     if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
374         !SE.getMonotonicPredicateType(LeftAR, Pred))
375       continue;
376 
377     // Check if extending the current DesiredPeelCount lets us evaluate Pred
378     // or !Pred in the loop body statically.
379     unsigned NewPeelCount = DesiredPeelCount;
380 
381     const SCEV *IterVal = LeftAR->evaluateAtIteration(
382         SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
383 
384     // If the original condition is not known, get the negated predicate
385     // (which holds on the else branch) and check if it is known. This allows
386     // us to peel of iterations that make the original condition false.
387     if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
388       Pred = ICmpInst::getInversePredicate(Pred);
389 
390     const SCEV *Step = LeftAR->getStepRecurrence(SE);
391     const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
392     auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
393                                  &NewPeelCount]() {
394       IterVal = NextIterVal;
395       NextIterVal = SE.getAddExpr(IterVal, Step);
396       NewPeelCount++;
397     };
398 
399     auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
400       return NewPeelCount < MaxPeelCount;
401     };
402 
403     while (CanPeelOneMoreIteration() &&
404            SE.isKnownPredicate(Pred, IterVal, RightSCEV))
405       PeelOneMoreIteration();
406 
407     // With *that* peel count, does the predicate !Pred become known in the
408     // first iteration of the loop body after peeling?
409     if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
410                              RightSCEV))
411       continue; // If not, give up.
412 
413     // However, for equality comparisons, that isn't always sufficient to
414     // eliminate the comparsion in loop body, we may need to peel one more
415     // iteration. See if that makes !Pred become unknown again.
416     if (ICmpInst::isEquality(Pred) &&
417         !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
418                              RightSCEV) &&
419         !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
420         SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
421       if (!CanPeelOneMoreIteration())
422         continue; // Need to peel one more iteration, but can't. Give up.
423       PeelOneMoreIteration(); // Great!
424     }
425 
426     DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
427   }
428 
429   return DesiredPeelCount;
430 }
431 
432 /// This "heuristic" exactly matches implicit behavior which used to exist
433 /// inside getLoopEstimatedTripCount.  It was added here to keep an
434 /// improvement inside that API from causing peeling to become more aggressive.
435 /// This should probably be removed.
436 static bool violatesLegacyMultiExitLoopCheck(Loop *L) {
437   BasicBlock *Latch = L->getLoopLatch();
438   if (!Latch)
439     return true;
440 
441   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
442   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
443     return true;
444 
445   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
446           LatchBR->getSuccessor(1) == L->getHeader()) &&
447          "At least one edge out of the latch must go to the header");
448 
449   SmallVector<BasicBlock *, 4> ExitBlocks;
450   L->getUniqueNonLatchExitBlocks(ExitBlocks);
451   return any_of(ExitBlocks, [](const BasicBlock *EB) {
452       return !EB->getTerminatingDeoptimizeCall();
453     });
454 }
455 
456 
457 // Return the number of iterations we want to peel off.
458 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
459                             TargetTransformInfo::PeelingPreferences &PP,
460                             unsigned TripCount, DominatorTree &DT,
461                             ScalarEvolution &SE, AssumptionCache *AC,
462                             unsigned Threshold) {
463   assert(LoopSize > 0 && "Zero loop size is not allowed!");
464   // Save the PP.PeelCount value set by the target in
465   // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
466   unsigned TargetPeelCount = PP.PeelCount;
467   PP.PeelCount = 0;
468   if (!canPeel(L))
469     return;
470 
471   // Only try to peel innermost loops by default.
472   // The constraint can be relaxed by the target in TTI.getPeelingPreferences
473   // or by the flag -unroll-allow-loop-nests-peeling.
474   if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
475     return;
476 
477   // If the user provided a peel count, use that.
478   bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
479   if (UserPeelCount) {
480     LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
481                       << " iterations.\n");
482     PP.PeelCount = UnrollForcePeelCount;
483     PP.PeelProfiledIterations = true;
484     return;
485   }
486 
487   // Skip peeling if it's disabled.
488   if (!PP.AllowPeeling)
489     return;
490 
491   // Check that we can peel at least one iteration.
492   if (2 * LoopSize > Threshold)
493     return;
494 
495   unsigned AlreadyPeeled = 0;
496   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
497     AlreadyPeeled = *Peeled;
498   // Stop if we already peeled off the maximum number of iterations.
499   if (AlreadyPeeled >= UnrollPeelMaxCount)
500     return;
501 
502   // Pay respect to limitations implied by loop size and the max peel count.
503   unsigned MaxPeelCount = UnrollPeelMaxCount;
504   MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
505 
506   // Start the max computation with the PP.PeelCount value set by the target
507   // in TTI.getPeelingPreferences or by the flag -unroll-peel-count.
508   unsigned DesiredPeelCount = TargetPeelCount;
509 
510   // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
511   // iterations of the loop. For this we compute the number for iterations after
512   // which every Phi is guaranteed to become an invariant, and try to peel the
513   // maximum number of iterations among these values, thus turning all those
514   // Phis into invariants.
515   if (MaxPeelCount > DesiredPeelCount) {
516     // Check how many iterations are useful for resolving Phis
517     auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel();
518     if (NumPeels)
519       DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels);
520   }
521 
522   DesiredPeelCount = std::max(DesiredPeelCount,
523                               countToEliminateCompares(*L, MaxPeelCount, SE));
524 
525   if (DesiredPeelCount == 0)
526     DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC);
527 
528   if (DesiredPeelCount > 0) {
529     DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
530     // Consider max peel count limitation.
531     assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
532     if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
533       LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
534                         << " iteration(s) to turn"
535                         << " some Phis into invariants.\n");
536       PP.PeelCount = DesiredPeelCount;
537       PP.PeelProfiledIterations = false;
538       return;
539     }
540   }
541 
542   // Bail if we know the statically calculated trip count.
543   // In this case we rather prefer partial unrolling.
544   if (TripCount)
545     return;
546 
547   // Do not apply profile base peeling if it is disabled.
548   if (!PP.PeelProfiledIterations)
549     return;
550   // If we don't know the trip count, but have reason to believe the average
551   // trip count is low, peeling should be beneficial, since we will usually
552   // hit the peeled section.
553   // We only do this in the presence of profile information, since otherwise
554   // our estimates of the trip count are not reliable enough.
555   if (L->getHeader()->getParent()->hasProfileData()) {
556     if (violatesLegacyMultiExitLoopCheck(L))
557       return;
558     Optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L);
559     if (!EstimatedTripCount)
560       return;
561 
562     LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is "
563                       << *EstimatedTripCount << "\n");
564 
565     if (*EstimatedTripCount) {
566       if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) {
567         unsigned PeelCount = *EstimatedTripCount;
568         LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n");
569         PP.PeelCount = PeelCount;
570         return;
571       }
572       LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
573       LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
574       LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n");
575       LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
576       LLVM_DEBUG(dbgs() << "Max peel count by cost: "
577                         << (Threshold / LoopSize - 1) << "\n");
578     }
579   }
580 }
581 
582 struct WeightInfo {
583   // Weights for current iteration.
584   SmallVector<uint32_t> Weights;
585   // Weights to subtract after each iteration.
586   const SmallVector<uint32_t> SubWeights;
587 };
588 
589 /// Update the branch weights of an exiting block of a peeled-off loop
590 /// iteration.
591 /// Let F is a weight of the edge to continue (fallthrough) into the loop.
592 /// Let E is a weight of the edge to an exit.
593 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
594 /// go to exit.
595 /// Then, Estimated ExitCount = F / E.
596 /// For I-th (counting from 0) peeled off iteration we set the the weights for
597 /// the peeled exit as (EC - I, 1). It gives us reasonable distribution,
598 /// The probability to go to exit 1/(EC-I) increases. At the same time
599 /// the estimated exit count in the remainder loop reduces by I.
600 /// To avoid dealing with division rounding we can just multiple both part
601 /// of weights to E and use weight as (F - I * E, E).
602 static void updateBranchWeights(Instruction *Term, WeightInfo &Info) {
603   MDBuilder MDB(Term->getContext());
604   Term->setMetadata(LLVMContext::MD_prof,
605                     MDB.createBranchWeights(Info.Weights));
606   for (auto [Idx, SubWeight] : enumerate(Info.SubWeights))
607     if (SubWeight != 0)
608       Info.Weights[Idx] = Info.Weights[Idx] > SubWeight
609                               ? Info.Weights[Idx] - SubWeight
610                               : 1;
611 }
612 
613 /// Initialize the weights for all exiting blocks.
614 static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos,
615                               Loop *L) {
616   SmallVector<BasicBlock *> ExitingBlocks;
617   L->getExitingBlocks(ExitingBlocks);
618   for (BasicBlock *ExitingBlock : ExitingBlocks) {
619     Instruction *Term = ExitingBlock->getTerminator();
620     SmallVector<uint32_t> Weights;
621     if (!extractBranchWeights(*Term, Weights))
622       continue;
623 
624     // See the comment on updateBranchWeights() for an explanation of what we
625     // do here.
626     uint32_t FallThroughWeights = 0;
627     uint32_t ExitWeights = 0;
628     for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
629       if (L->contains(Succ))
630         FallThroughWeights += Weight;
631       else
632         ExitWeights += Weight;
633     }
634 
635     // Don't try to update weights for degenerate case.
636     if (FallThroughWeights == 0)
637       continue;
638 
639     SmallVector<uint32_t> SubWeights;
640     for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
641       if (!L->contains(Succ)) {
642         // Exit weights stay the same.
643         SubWeights.push_back(0);
644         continue;
645       }
646 
647       // Subtract exit weights on each iteration, distributed across all
648       // fallthrough edges.
649       double W = (double)Weight / (double)FallThroughWeights;
650       SubWeights.push_back((uint32_t)(ExitWeights * W));
651     }
652 
653     WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}});
654   }
655 }
656 
657 /// Update the weights of original exiting block after peeling off all
658 /// iterations.
659 static void fixupBranchWeights(Instruction *Term, const WeightInfo &Info) {
660   MDBuilder MDB(Term->getContext());
661   Term->setMetadata(LLVMContext::MD_prof,
662                     MDB.createBranchWeights(Info.Weights));
663 }
664 
665 /// Clones the body of the loop L, putting it between \p InsertTop and \p
666 /// InsertBot.
667 /// \param IterNumber The serial number of the iteration currently being
668 /// peeled off.
669 /// \param ExitEdges The exit edges of the original loop.
670 /// \param[out] NewBlocks A list of the blocks in the newly created clone
671 /// \param[out] VMap The value map between the loop and the new clone.
672 /// \param LoopBlocks A helper for DFS-traversal of the loop.
673 /// \param LVMap A value-map that maps instructions from the original loop to
674 /// instructions in the last peeled-off iteration.
675 static void cloneLoopBlocks(
676     Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
677     SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
678     SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
679     ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
680     LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes,
681     ScalarEvolution &SE) {
682   BasicBlock *Header = L->getHeader();
683   BasicBlock *Latch = L->getLoopLatch();
684   BasicBlock *PreHeader = L->getLoopPreheader();
685 
686   Function *F = Header->getParent();
687   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
688   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
689   Loop *ParentLoop = L->getParentLoop();
690 
691   // For each block in the original loop, create a new copy,
692   // and update the value map with the newly created values.
693   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
694     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
695     NewBlocks.push_back(NewBB);
696 
697     // If an original block is an immediate child of the loop L, its copy
698     // is a child of a ParentLoop after peeling. If a block is a child of
699     // a nested loop, it is handled in the cloneLoop() call below.
700     if (ParentLoop && LI->getLoopFor(*BB) == L)
701       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
702 
703     VMap[*BB] = NewBB;
704 
705     // If dominator tree is available, insert nodes to represent cloned blocks.
706     if (DT) {
707       if (Header == *BB)
708         DT->addNewBlock(NewBB, InsertTop);
709       else {
710         DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
711         // VMap must contain entry for IDom, as the iteration order is RPO.
712         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
713       }
714     }
715   }
716 
717   {
718     // Identify what other metadata depends on the cloned version. After
719     // cloning, replace the metadata with the corrected version for both
720     // memory instructions and noalias intrinsics.
721     std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
722     cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
723                                Header->getContext(), Ext);
724   }
725 
726   // Recursively create the new Loop objects for nested loops, if any,
727   // to preserve LoopInfo.
728   for (Loop *ChildLoop : *L) {
729     cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
730   }
731 
732   // Hook-up the control flow for the newly inserted blocks.
733   // The new header is hooked up directly to the "top", which is either
734   // the original loop preheader (for the first iteration) or the previous
735   // iteration's exiting block (for every other iteration)
736   InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
737 
738   // Similarly, for the latch:
739   // The original exiting edge is still hooked up to the loop exit.
740   // The backedge now goes to the "bottom", which is either the loop's real
741   // header (for the last peeled iteration) or the copied header of the next
742   // iteration (for every other iteration)
743   BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
744   auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator());
745   for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx)
746     if (LatchTerm->getSuccessor(idx) == Header) {
747       LatchTerm->setSuccessor(idx, InsertBot);
748       break;
749     }
750   if (DT)
751     DT->changeImmediateDominator(InsertBot, NewLatch);
752 
753   // The new copy of the loop body starts with a bunch of PHI nodes
754   // that pick an incoming value from either the preheader, or the previous
755   // loop iteration. Since this copy is no longer part of the loop, we
756   // resolve this statically:
757   // For the first iteration, we use the value from the preheader directly.
758   // For any other iteration, we replace the phi with the value generated by
759   // the immediately preceding clone of the loop body (which represents
760   // the previous iteration).
761   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
762     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
763     if (IterNumber == 0) {
764       VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
765     } else {
766       Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
767       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
768       if (LatchInst && L->contains(LatchInst))
769         VMap[&*I] = LVMap[LatchInst];
770       else
771         VMap[&*I] = LatchVal;
772     }
773     NewPHI->eraseFromParent();
774   }
775 
776   // Fix up the outgoing values - we need to add a value for the iteration
777   // we've just created. Note that this must happen *after* the incoming
778   // values are adjusted, since the value going out of the latch may also be
779   // a value coming into the header.
780   for (auto Edge : ExitEdges)
781     for (PHINode &PHI : Edge.second->phis()) {
782       Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
783       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
784       if (LatchInst && L->contains(LatchInst))
785         LatchVal = VMap[LatchVal];
786       PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
787       SE.forgetValue(&PHI);
788     }
789 
790   // LastValueMap is updated with the values for the current loop
791   // which are used the next time this function is called.
792   for (auto KV : VMap)
793     LVMap[KV.first] = KV.second;
794 }
795 
796 TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences(
797     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
798     Optional<bool> UserAllowPeeling,
799     Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) {
800   TargetTransformInfo::PeelingPreferences PP;
801 
802   // Set the default values.
803   PP.PeelCount = 0;
804   PP.AllowPeeling = true;
805   PP.AllowLoopNestsPeeling = false;
806   PP.PeelProfiledIterations = true;
807 
808   // Get the target specifc values.
809   TTI.getPeelingPreferences(L, SE, PP);
810 
811   // User specified values using cl::opt.
812   if (UnrollingSpecficValues) {
813     if (UnrollPeelCount.getNumOccurrences() > 0)
814       PP.PeelCount = UnrollPeelCount;
815     if (UnrollAllowPeeling.getNumOccurrences() > 0)
816       PP.AllowPeeling = UnrollAllowPeeling;
817     if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
818       PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
819   }
820 
821   // User specifed values provided by argument.
822   if (UserAllowPeeling)
823     PP.AllowPeeling = *UserAllowPeeling;
824   if (UserAllowProfileBasedPeeling)
825     PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
826 
827   return PP;
828 }
829 
830 /// Peel off the first \p PeelCount iterations of loop \p L.
831 ///
832 /// Note that this does not peel them off as a single straight-line block.
833 /// Rather, each iteration is peeled off separately, and needs to check the
834 /// exit condition.
835 /// For loops that dynamically execute \p PeelCount iterations or less
836 /// this provides a benefit, since the peeled off iterations, which account
837 /// for the bulk of dynamic execution, can be further simplified by scalar
838 /// optimizations.
839 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
840                     ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC,
841                     bool PreserveLCSSA) {
842   assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
843   assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
844 
845   LoopBlocksDFS LoopBlocks(L);
846   LoopBlocks.perform(LI);
847 
848   BasicBlock *Header = L->getHeader();
849   BasicBlock *PreHeader = L->getLoopPreheader();
850   BasicBlock *Latch = L->getLoopLatch();
851   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
852   L->getExitEdges(ExitEdges);
853 
854   // Remember dominators of blocks we might reach through exits to change them
855   // later. Immediate dominator of such block might change, because we add more
856   // routes which can lead to the exit: we can reach it from the peeled
857   // iterations too.
858   DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom;
859   for (auto *BB : L->blocks()) {
860     auto *BBDomNode = DT.getNode(BB);
861     SmallVector<BasicBlock *, 16> ChildrenToUpdate;
862     for (auto *ChildDomNode : BBDomNode->children()) {
863       auto *ChildBB = ChildDomNode->getBlock();
864       if (!L->contains(ChildBB))
865         ChildrenToUpdate.push_back(ChildBB);
866     }
867     // The new idom of the block will be the nearest common dominator
868     // of all copies of the previous idom. This is equivalent to the
869     // nearest common dominator of the previous idom and the first latch,
870     // which dominates all copies of the previous idom.
871     BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch);
872     for (auto *ChildBB : ChildrenToUpdate)
873       NonLoopBlocksIDom[ChildBB] = NewIDom;
874   }
875 
876   Function *F = Header->getParent();
877 
878   // Set up all the necessary basic blocks. It is convenient to split the
879   // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
880   // body, and a new preheader for the "real" loop.
881 
882   // Peeling the first iteration transforms.
883   //
884   // PreHeader:
885   // ...
886   // Header:
887   //   LoopBody
888   //   If (cond) goto Header
889   // Exit:
890   //
891   // into
892   //
893   // InsertTop:
894   //   LoopBody
895   //   If (!cond) goto Exit
896   // InsertBot:
897   // NewPreHeader:
898   // ...
899   // Header:
900   //  LoopBody
901   //  If (cond) goto Header
902   // Exit:
903   //
904   // Each following iteration will split the current bottom anchor in two,
905   // and put the new copy of the loop body between these two blocks. That is,
906   // after peeling another iteration from the example above, we'll split
907   // InsertBot, and get:
908   //
909   // InsertTop:
910   //   LoopBody
911   //   If (!cond) goto Exit
912   // InsertBot:
913   //   LoopBody
914   //   If (!cond) goto Exit
915   // InsertBot.next:
916   // NewPreHeader:
917   // ...
918   // Header:
919   //  LoopBody
920   //  If (cond) goto Header
921   // Exit:
922 
923   BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI);
924   BasicBlock *InsertBot =
925       SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI);
926   BasicBlock *NewPreHeader =
927       SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
928 
929   InsertTop->setName(Header->getName() + ".peel.begin");
930   InsertBot->setName(Header->getName() + ".peel.next");
931   NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
932 
933   ValueToValueMapTy LVMap;
934 
935   Instruction *LatchTerm =
936       cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator());
937 
938   // If we have branch weight information, we'll want to update it for the
939   // newly created branches.
940   DenseMap<Instruction *, WeightInfo> Weights;
941   initBranchWeights(Weights, L);
942 
943   // Identify what noalias metadata is inside the loop: if it is inside the
944   // loop, the associated metadata must be cloned for each iteration.
945   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
946   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
947 
948   // For each peeled-off iteration, make a copy of the loop.
949   for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
950     SmallVector<BasicBlock *, 8> NewBlocks;
951     ValueToValueMapTy VMap;
952 
953     cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
954                     LoopBlocks, VMap, LVMap, &DT, LI,
955                     LoopLocalNoAliasDeclScopes, *SE);
956 
957     // Remap to use values from the current iteration instead of the
958     // previous one.
959     remapInstructionsInBlocks(NewBlocks, VMap);
960 
961     // Update IDoms of the blocks reachable through exits.
962     if (Iter == 0)
963       for (auto BBIDom : NonLoopBlocksIDom)
964         DT.changeImmediateDominator(BBIDom.first,
965                                      cast<BasicBlock>(LVMap[BBIDom.second]));
966 #ifdef EXPENSIVE_CHECKS
967     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
968 #endif
969 
970     for (auto &[Term, Info] : Weights) {
971       auto *TermCopy = cast<Instruction>(VMap[Term]);
972       updateBranchWeights(TermCopy, Info);
973     }
974 
975     // Remove Loop metadata from the latch branch instruction
976     // because it is not the Loop's latch branch anymore.
977     auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]);
978     LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr);
979 
980     InsertTop = InsertBot;
981     InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
982     InsertBot->setName(Header->getName() + ".peel.next");
983 
984     F->getBasicBlockList().splice(InsertTop->getIterator(),
985                                   F->getBasicBlockList(),
986                                   NewBlocks[0]->getIterator(), F->end());
987   }
988 
989   // Now adjust the phi nodes in the loop header to get their initial values
990   // from the last peeled-off iteration instead of the preheader.
991   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
992     PHINode *PHI = cast<PHINode>(I);
993     Value *NewVal = PHI->getIncomingValueForBlock(Latch);
994     Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
995     if (LatchInst && L->contains(LatchInst))
996       NewVal = LVMap[LatchInst];
997 
998     PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
999   }
1000 
1001   for (const auto &[Term, Info] : Weights)
1002     fixupBranchWeights(Term, Info);
1003 
1004   // Update Metadata for count of peeled off iterations.
1005   unsigned AlreadyPeeled = 0;
1006   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
1007     AlreadyPeeled = *Peeled;
1008   addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
1009 
1010   if (Loop *ParentLoop = L->getParentLoop())
1011     L = ParentLoop;
1012 
1013   // We modified the loop, update SE.
1014   SE->forgetTopmostLoop(L);
1015 
1016 #ifdef EXPENSIVE_CHECKS
1017   // Finally DomtTree must be correct.
1018   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1019 #endif
1020 
1021   // FIXME: Incrementally update loop-simplify
1022   simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA);
1023 
1024   NumPeeled++;
1025 
1026   return true;
1027 }
1028