xref: /llvm-project/llvm/lib/Transforms/Utils/LoopPeel.cpp (revision 2b6683fd5f7481d57a29ca6c5cd68822e1cfe5b0)
1 //===- LoopPeel.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop Peeling Utilities.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/Transforms/Utils/LoopPeel.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Optional.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/LoopIterator.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/ProfDataUtils.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/LoopSimplify.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/ValueMapper.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <optional>
46 
47 using namespace llvm;
48 using namespace llvm::PatternMatch;
49 
50 #define DEBUG_TYPE "loop-peel"
51 
52 STATISTIC(NumPeeled, "Number of loops peeled");
53 
54 static cl::opt<unsigned> UnrollPeelCount(
55     "unroll-peel-count", cl::Hidden,
56     cl::desc("Set the unroll peeling count, for testing purposes"));
57 
58 static cl::opt<bool>
59     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
60                        cl::desc("Allows loops to be peeled when the dynamic "
61                                 "trip count is known to be low."));
62 
63 static cl::opt<bool>
64     UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
65                                 cl::init(false), cl::Hidden,
66                                 cl::desc("Allows loop nests to be peeled."));
67 
68 static cl::opt<unsigned> UnrollPeelMaxCount(
69     "unroll-peel-max-count", cl::init(7), cl::Hidden,
70     cl::desc("Max average trip count which will cause loop peeling."));
71 
72 static cl::opt<unsigned> UnrollForcePeelCount(
73     "unroll-force-peel-count", cl::init(0), cl::Hidden,
74     cl::desc("Force a peel count regardless of profiling information."));
75 
76 static cl::opt<bool> DisableAdvancedPeeling(
77     "disable-advanced-peeling", cl::init(false), cl::Hidden,
78     cl::desc(
79         "Disable advance peeling. Issues for convergent targets (D134803)."));
80 
81 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
82 
83 // Check whether we are capable of peeling this loop.
84 bool llvm::canPeel(const Loop *L) {
85   // Make sure the loop is in simplified form
86   if (!L->isLoopSimplifyForm())
87     return false;
88   if (!DisableAdvancedPeeling)
89     return true;
90 
91   SmallVector<BasicBlock *, 4> Exits;
92   L->getUniqueNonLatchExitBlocks(Exits);
93   // The latch must either be the only exiting block or all non-latch exit
94   // blocks have either a deopt or unreachable terminator or compose a chain of
95   // blocks where the last one is either deopt or unreachable terminated. Both
96   // deopt and unreachable terminators are a strong indication they are not
97   // taken. Note that this is a profitability check, not a legality check. Also
98   // note that LoopPeeling currently can only update the branch weights of latch
99   // blocks and branch weights to blocks with deopt or unreachable do not need
100   // updating.
101   return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable);
102 }
103 
104 namespace {
105 
106 // As a loop is peeled, it may be the case that Phi nodes become
107 // loop-invariant (ie, known because there is only one choice).
108 // For example, consider the following function:
109 //   void g(int);
110 //   void binary() {
111 //     int x = 0;
112 //     int y = 0;
113 //     int a = 0;
114 //     for(int i = 0; i <100000; ++i) {
115 //       g(x);
116 //       x = y;
117 //       g(a);
118 //       y = a + 1;
119 //       a = 5;
120 //     }
121 //   }
122 // Peeling 3 iterations is beneficial because the values for x, y and a
123 // become known.  The IR for this loop looks something like the following:
124 //
125 //   %i = phi i32 [ 0, %entry ], [ %inc, %if.end ]
126 //   %a = phi i32 [ 0, %entry ], [ 5, %if.end ]
127 //   %y = phi i32 [ 0, %entry ], [ %add, %if.end ]
128 //   %x = phi i32 [ 0, %entry ], [ %y, %if.end ]
129 //   ...
130 //   tail call void @_Z1gi(i32 signext %x)
131 //   tail call void @_Z1gi(i32 signext %a)
132 //   %add = add nuw nsw i32 %a, 1
133 //   %inc = add nuw nsw i32 %i, 1
134 //   %exitcond = icmp eq i32 %inc, 100000
135 //   br i1 %exitcond, label %for.cond.cleanup, label %for.body
136 //
137 // The arguments for the calls to g will become known after 3 iterations
138 // of the loop, because the phi nodes values become known after 3 iterations
139 // of the loop (ie, they are known on the 4th iteration, so peel 3 iterations).
140 // The first iteration has g(0), g(0); the second has g(0), g(5); the
141 // third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5).
142 // Now consider the phi nodes:
143 //   %a is a phi with constants so it is determined after iteration 1.
144 //   %y is a phi based on a constant and %a so it is determined on
145 //     the iteration after %a is determined, so iteration 2.
146 //   %x is a phi based on a constant and %y so it is determined on
147 //     the iteration after %y, so iteration 3.
148 //   %i is based on itself (and is an induction variable) so it is
149 //     never determined.
150 // This means that peeling off 3 iterations will result in being able to
151 // remove the phi nodes for %a, %y, and %x.  The arguments for the
152 // corresponding calls to g are determined and the code for computing
153 // x, y, and a can be removed.
154 //
155 // The PhiAnalyzer class calculates how many times a loop should be
156 // peeled based on the above analysis of the phi nodes in the loop while
157 // respecting the maximum specified.
158 class PhiAnalyzer {
159 public:
160   PhiAnalyzer(const Loop &L, unsigned MaxIterations);
161 
162   // Calculate the sufficient minimum number of iterations of the loop to peel
163   // such that phi instructions become determined (subject to allowable limits)
164   Optional<unsigned> calculateIterationsToPeel();
165 
166 protected:
167   using PeelCounter = std::optional<unsigned>;
168   const PeelCounter Unknown = std::nullopt;
169 
170   // Add 1 respecting Unknown and return Unknown if result over MaxIterations
171   PeelCounter addOne(PeelCounter PC) const {
172     if (PC == Unknown)
173       return Unknown;
174     return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown;
175   }
176 
177   // Calculate the number of iterations after which the given value
178   // becomes an invariant.
179   PeelCounter calculate(const Value &);
180 
181   const Loop &L;
182   const unsigned MaxIterations;
183 
184   // Map of Values to number of iterations to invariance
185   SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance;
186 };
187 
188 PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations)
189     : L(L), MaxIterations(MaxIterations) {
190   assert(canPeel(&L) && "loop is not suitable for peeling");
191   assert(MaxIterations > 0 && "no peeling is allowed?");
192 }
193 
194 // This function calculates the number of iterations after which the value
195 // becomes an invariant. The pre-calculated values are memorized in a map.
196 // N.B. This number will be Unknown or <= MaxIterations.
197 // The function is calculated according to the following definition:
198 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
199 //   F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown)
200 //   G(%y) = 0 if %y is a loop invariant
201 //   G(%y) = G(%BackEdgeValue) if %y is a phi in the header block
202 //   G(%y) = TODO: if %y is an expression based on phis and loop invariants
203 //           The example looks like:
204 //           %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration.
205 //           %y = phi(0, 5)
206 //           %a = %y + 1
207 //   G(%y) = Unknown otherwise (including phi not in header block)
208 PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) {
209   // If we already know the answer, take it from the map.
210   auto I = IterationsToInvariance.find(&V);
211   if (I != IterationsToInvariance.end())
212     return I->second;
213 
214   // Place Unknown to map to avoid infinite recursion. Such
215   // cycles can never stop on an invariant.
216   IterationsToInvariance[&V] = Unknown;
217 
218   if (L.isLoopInvariant(&V))
219     // Loop invariant so known at start.
220     return (IterationsToInvariance[&V] = 0);
221   if (const PHINode *Phi = dyn_cast<PHINode>(&V)) {
222     if (Phi->getParent() != L.getHeader()) {
223       // Phi is not in header block so Unknown.
224       assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
225       return Unknown;
226     }
227     // We need to analyze the input from the back edge and add 1.
228     Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch());
229     PeelCounter Iterations = calculate(*Input);
230     assert(IterationsToInvariance[Input] == Iterations &&
231            "unexpected value saved");
232     return (IterationsToInvariance[Phi] = addOne(Iterations));
233   }
234   if (const Instruction *I = dyn_cast<Instruction>(&V)) {
235     if (isa<CmpInst>(I) || I->isBinaryOp()) {
236       // Binary instructions get the max of the operands.
237       PeelCounter LHS = calculate(*I->getOperand(0));
238       if (LHS == Unknown)
239         return Unknown;
240       PeelCounter RHS = calculate(*I->getOperand(1));
241       if (RHS == Unknown)
242         return Unknown;
243       return (IterationsToInvariance[I] = {std::max(*LHS, *RHS)});
244     }
245     if (I->isCast())
246       // Cast instructions get the value of the operand.
247       return (IterationsToInvariance[I] = calculate(*I->getOperand(0)));
248   }
249   // TODO: handle more expressions
250 
251   // Everything else is Unknown.
252   assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
253   return Unknown;
254 }
255 
256 Optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() {
257   unsigned Iterations = 0;
258   for (auto &PHI : L.getHeader()->phis()) {
259     PeelCounter ToInvariance = calculate(PHI);
260     if (ToInvariance != Unknown) {
261       assert(*ToInvariance <= MaxIterations && "bad result in phi analysis");
262       Iterations = std::max(Iterations, *ToInvariance);
263       if (Iterations == MaxIterations)
264         break;
265     }
266   }
267   assert((Iterations <= MaxIterations) && "bad result in phi analysis");
268   return Iterations ? Optional<unsigned>(Iterations) : std::nullopt;
269 }
270 
271 } // unnamed namespace
272 
273 // Try to find any invariant memory reads that will become dereferenceable in
274 // the remainder loop after peeling. The load must also be used (transitively)
275 // by an exit condition. Returns the number of iterations to peel off (at the
276 // moment either 0 or 1).
277 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
278                                                       DominatorTree &DT,
279                                                       AssumptionCache *AC) {
280   // Skip loops with a single exiting block, because there should be no benefit
281   // for the heuristic below.
282   if (L.getExitingBlock())
283     return 0;
284 
285   // All non-latch exit blocks must have an UnreachableInst terminator.
286   // Otherwise the heuristic below may not be profitable.
287   SmallVector<BasicBlock *, 4> Exits;
288   L.getUniqueNonLatchExitBlocks(Exits);
289   if (any_of(Exits, [](const BasicBlock *BB) {
290         return !isa<UnreachableInst>(BB->getTerminator());
291       }))
292     return 0;
293 
294   // Now look for invariant loads that dominate the latch and are not known to
295   // be dereferenceable. If there are such loads and no writes, they will become
296   // dereferenceable in the loop if the first iteration is peeled off. Also
297   // collect the set of instructions controlled by such loads. Only peel if an
298   // exit condition uses (transitively) such a load.
299   BasicBlock *Header = L.getHeader();
300   BasicBlock *Latch = L.getLoopLatch();
301   SmallPtrSet<Value *, 8> LoadUsers;
302   const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
303   for (BasicBlock *BB : L.blocks()) {
304     for (Instruction &I : *BB) {
305       if (I.mayWriteToMemory())
306         return 0;
307 
308       auto Iter = LoadUsers.find(&I);
309       if (Iter != LoadUsers.end()) {
310         for (Value *U : I.users())
311           LoadUsers.insert(U);
312       }
313       // Do not look for reads in the header; they can already be hoisted
314       // without peeling.
315       if (BB == Header)
316         continue;
317       if (auto *LI = dyn_cast<LoadInst>(&I)) {
318         Value *Ptr = LI->getPointerOperand();
319         if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) &&
320             !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT))
321           for (Value *U : I.users())
322             LoadUsers.insert(U);
323       }
324     }
325   }
326   SmallVector<BasicBlock *> ExitingBlocks;
327   L.getExitingBlocks(ExitingBlocks);
328   if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) {
329         return LoadUsers.contains(Exiting->getTerminator());
330       }))
331     return 1;
332   return 0;
333 }
334 
335 // Return the number of iterations to peel off that make conditions in the
336 // body true/false. For example, if we peel 2 iterations off the loop below,
337 // the condition i < 2 can be evaluated at compile time.
338 //  for (i = 0; i < n; i++)
339 //    if (i < 2)
340 //      ..
341 //    else
342 //      ..
343 //   }
344 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
345                                          ScalarEvolution &SE) {
346   assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
347   unsigned DesiredPeelCount = 0;
348 
349   for (auto *BB : L.blocks()) {
350     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
351     if (!BI || BI->isUnconditional())
352       continue;
353 
354     // Ignore loop exit condition.
355     if (L.getLoopLatch() == BB)
356       continue;
357 
358     Value *Condition = BI->getCondition();
359     Value *LeftVal, *RightVal;
360     CmpInst::Predicate Pred;
361     if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
362       continue;
363 
364     const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
365     const SCEV *RightSCEV = SE.getSCEV(RightVal);
366 
367     // Do not consider predicates that are known to be true or false
368     // independently of the loop iteration.
369     if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
370       continue;
371 
372     // Check if we have a condition with one AddRec and one non AddRec
373     // expression. Normalize LeftSCEV to be the AddRec.
374     if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
375       if (isa<SCEVAddRecExpr>(RightSCEV)) {
376         std::swap(LeftSCEV, RightSCEV);
377         Pred = ICmpInst::getSwappedPredicate(Pred);
378       } else
379         continue;
380     }
381 
382     const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
383 
384     // Avoid huge SCEV computations in the loop below, make sure we only
385     // consider AddRecs of the loop we are trying to peel.
386     if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
387       continue;
388     if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
389         !SE.getMonotonicPredicateType(LeftAR, Pred))
390       continue;
391 
392     // Check if extending the current DesiredPeelCount lets us evaluate Pred
393     // or !Pred in the loop body statically.
394     unsigned NewPeelCount = DesiredPeelCount;
395 
396     const SCEV *IterVal = LeftAR->evaluateAtIteration(
397         SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
398 
399     // If the original condition is not known, get the negated predicate
400     // (which holds on the else branch) and check if it is known. This allows
401     // us to peel of iterations that make the original condition false.
402     if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
403       Pred = ICmpInst::getInversePredicate(Pred);
404 
405     const SCEV *Step = LeftAR->getStepRecurrence(SE);
406     const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
407     auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
408                                  &NewPeelCount]() {
409       IterVal = NextIterVal;
410       NextIterVal = SE.getAddExpr(IterVal, Step);
411       NewPeelCount++;
412     };
413 
414     auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
415       return NewPeelCount < MaxPeelCount;
416     };
417 
418     while (CanPeelOneMoreIteration() &&
419            SE.isKnownPredicate(Pred, IterVal, RightSCEV))
420       PeelOneMoreIteration();
421 
422     // With *that* peel count, does the predicate !Pred become known in the
423     // first iteration of the loop body after peeling?
424     if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
425                              RightSCEV))
426       continue; // If not, give up.
427 
428     // However, for equality comparisons, that isn't always sufficient to
429     // eliminate the comparsion in loop body, we may need to peel one more
430     // iteration. See if that makes !Pred become unknown again.
431     if (ICmpInst::isEquality(Pred) &&
432         !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
433                              RightSCEV) &&
434         !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
435         SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
436       if (!CanPeelOneMoreIteration())
437         continue; // Need to peel one more iteration, but can't. Give up.
438       PeelOneMoreIteration(); // Great!
439     }
440 
441     DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
442   }
443 
444   return DesiredPeelCount;
445 }
446 
447 /// This "heuristic" exactly matches implicit behavior which used to exist
448 /// inside getLoopEstimatedTripCount.  It was added here to keep an
449 /// improvement inside that API from causing peeling to become more aggressive.
450 /// This should probably be removed.
451 static bool violatesLegacyMultiExitLoopCheck(Loop *L) {
452   BasicBlock *Latch = L->getLoopLatch();
453   if (!Latch)
454     return true;
455 
456   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
457   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
458     return true;
459 
460   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
461           LatchBR->getSuccessor(1) == L->getHeader()) &&
462          "At least one edge out of the latch must go to the header");
463 
464   SmallVector<BasicBlock *, 4> ExitBlocks;
465   L->getUniqueNonLatchExitBlocks(ExitBlocks);
466   return any_of(ExitBlocks, [](const BasicBlock *EB) {
467       return !EB->getTerminatingDeoptimizeCall();
468     });
469 }
470 
471 
472 // Return the number of iterations we want to peel off.
473 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
474                             TargetTransformInfo::PeelingPreferences &PP,
475                             unsigned TripCount, DominatorTree &DT,
476                             ScalarEvolution &SE, AssumptionCache *AC,
477                             unsigned Threshold) {
478   assert(LoopSize > 0 && "Zero loop size is not allowed!");
479   // Save the PP.PeelCount value set by the target in
480   // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
481   unsigned TargetPeelCount = PP.PeelCount;
482   PP.PeelCount = 0;
483   if (!canPeel(L))
484     return;
485 
486   // Only try to peel innermost loops by default.
487   // The constraint can be relaxed by the target in TTI.getPeelingPreferences
488   // or by the flag -unroll-allow-loop-nests-peeling.
489   if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
490     return;
491 
492   // If the user provided a peel count, use that.
493   bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
494   if (UserPeelCount) {
495     LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
496                       << " iterations.\n");
497     PP.PeelCount = UnrollForcePeelCount;
498     PP.PeelProfiledIterations = true;
499     return;
500   }
501 
502   // Skip peeling if it's disabled.
503   if (!PP.AllowPeeling)
504     return;
505 
506   // Check that we can peel at least one iteration.
507   if (2 * LoopSize > Threshold)
508     return;
509 
510   unsigned AlreadyPeeled = 0;
511   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
512     AlreadyPeeled = *Peeled;
513   // Stop if we already peeled off the maximum number of iterations.
514   if (AlreadyPeeled >= UnrollPeelMaxCount)
515     return;
516 
517   // Pay respect to limitations implied by loop size and the max peel count.
518   unsigned MaxPeelCount = UnrollPeelMaxCount;
519   MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
520 
521   // Start the max computation with the PP.PeelCount value set by the target
522   // in TTI.getPeelingPreferences or by the flag -unroll-peel-count.
523   unsigned DesiredPeelCount = TargetPeelCount;
524 
525   // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
526   // iterations of the loop. For this we compute the number for iterations after
527   // which every Phi is guaranteed to become an invariant, and try to peel the
528   // maximum number of iterations among these values, thus turning all those
529   // Phis into invariants.
530   if (MaxPeelCount > DesiredPeelCount) {
531     // Check how many iterations are useful for resolving Phis
532     auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel();
533     if (NumPeels)
534       DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels);
535   }
536 
537   DesiredPeelCount = std::max(DesiredPeelCount,
538                               countToEliminateCompares(*L, MaxPeelCount, SE));
539 
540   if (DesiredPeelCount == 0)
541     DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC);
542 
543   if (DesiredPeelCount > 0) {
544     DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
545     // Consider max peel count limitation.
546     assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
547     if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
548       LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
549                         << " iteration(s) to turn"
550                         << " some Phis into invariants.\n");
551       PP.PeelCount = DesiredPeelCount;
552       PP.PeelProfiledIterations = false;
553       return;
554     }
555   }
556 
557   // Bail if we know the statically calculated trip count.
558   // In this case we rather prefer partial unrolling.
559   if (TripCount)
560     return;
561 
562   // Do not apply profile base peeling if it is disabled.
563   if (!PP.PeelProfiledIterations)
564     return;
565   // If we don't know the trip count, but have reason to believe the average
566   // trip count is low, peeling should be beneficial, since we will usually
567   // hit the peeled section.
568   // We only do this in the presence of profile information, since otherwise
569   // our estimates of the trip count are not reliable enough.
570   if (L->getHeader()->getParent()->hasProfileData()) {
571     if (violatesLegacyMultiExitLoopCheck(L))
572       return;
573     Optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L);
574     if (!EstimatedTripCount)
575       return;
576 
577     LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is "
578                       << *EstimatedTripCount << "\n");
579 
580     if (*EstimatedTripCount) {
581       if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) {
582         unsigned PeelCount = *EstimatedTripCount;
583         LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n");
584         PP.PeelCount = PeelCount;
585         return;
586       }
587       LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
588       LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
589       LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n");
590       LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
591       LLVM_DEBUG(dbgs() << "Max peel count by cost: "
592                         << (Threshold / LoopSize - 1) << "\n");
593     }
594   }
595 }
596 
597 struct WeightInfo {
598   // Weights for current iteration.
599   SmallVector<uint32_t> Weights;
600   // Weights to subtract after each iteration.
601   const SmallVector<uint32_t> SubWeights;
602 };
603 
604 /// Update the branch weights of an exiting block of a peeled-off loop
605 /// iteration.
606 /// Let F is a weight of the edge to continue (fallthrough) into the loop.
607 /// Let E is a weight of the edge to an exit.
608 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
609 /// go to exit.
610 /// Then, Estimated ExitCount = F / E.
611 /// For I-th (counting from 0) peeled off iteration we set the the weights for
612 /// the peeled exit as (EC - I, 1). It gives us reasonable distribution,
613 /// The probability to go to exit 1/(EC-I) increases. At the same time
614 /// the estimated exit count in the remainder loop reduces by I.
615 /// To avoid dealing with division rounding we can just multiple both part
616 /// of weights to E and use weight as (F - I * E, E).
617 static void updateBranchWeights(Instruction *Term, WeightInfo &Info) {
618   MDBuilder MDB(Term->getContext());
619   Term->setMetadata(LLVMContext::MD_prof,
620                     MDB.createBranchWeights(Info.Weights));
621   for (auto [Idx, SubWeight] : enumerate(Info.SubWeights))
622     if (SubWeight != 0)
623       Info.Weights[Idx] = Info.Weights[Idx] > SubWeight
624                               ? Info.Weights[Idx] - SubWeight
625                               : 1;
626 }
627 
628 /// Initialize the weights for all exiting blocks.
629 static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos,
630                               Loop *L) {
631   SmallVector<BasicBlock *> ExitingBlocks;
632   L->getExitingBlocks(ExitingBlocks);
633   for (BasicBlock *ExitingBlock : ExitingBlocks) {
634     Instruction *Term = ExitingBlock->getTerminator();
635     SmallVector<uint32_t> Weights;
636     if (!extractBranchWeights(*Term, Weights))
637       continue;
638 
639     // See the comment on updateBranchWeights() for an explanation of what we
640     // do here.
641     uint32_t FallThroughWeights = 0;
642     uint32_t ExitWeights = 0;
643     for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
644       if (L->contains(Succ))
645         FallThroughWeights += Weight;
646       else
647         ExitWeights += Weight;
648     }
649 
650     // Don't try to update weights for degenerate case.
651     if (FallThroughWeights == 0)
652       continue;
653 
654     SmallVector<uint32_t> SubWeights;
655     for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
656       if (!L->contains(Succ)) {
657         // Exit weights stay the same.
658         SubWeights.push_back(0);
659         continue;
660       }
661 
662       // Subtract exit weights on each iteration, distributed across all
663       // fallthrough edges.
664       double W = (double)Weight / (double)FallThroughWeights;
665       SubWeights.push_back((uint32_t)(ExitWeights * W));
666     }
667 
668     WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}});
669   }
670 }
671 
672 /// Update the weights of original exiting block after peeling off all
673 /// iterations.
674 static void fixupBranchWeights(Instruction *Term, const WeightInfo &Info) {
675   MDBuilder MDB(Term->getContext());
676   Term->setMetadata(LLVMContext::MD_prof,
677                     MDB.createBranchWeights(Info.Weights));
678 }
679 
680 /// Clones the body of the loop L, putting it between \p InsertTop and \p
681 /// InsertBot.
682 /// \param IterNumber The serial number of the iteration currently being
683 /// peeled off.
684 /// \param ExitEdges The exit edges of the original loop.
685 /// \param[out] NewBlocks A list of the blocks in the newly created clone
686 /// \param[out] VMap The value map between the loop and the new clone.
687 /// \param LoopBlocks A helper for DFS-traversal of the loop.
688 /// \param LVMap A value-map that maps instructions from the original loop to
689 /// instructions in the last peeled-off iteration.
690 static void cloneLoopBlocks(
691     Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
692     SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
693     SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
694     ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
695     LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes,
696     ScalarEvolution &SE) {
697   BasicBlock *Header = L->getHeader();
698   BasicBlock *Latch = L->getLoopLatch();
699   BasicBlock *PreHeader = L->getLoopPreheader();
700 
701   Function *F = Header->getParent();
702   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
703   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
704   Loop *ParentLoop = L->getParentLoop();
705 
706   // For each block in the original loop, create a new copy,
707   // and update the value map with the newly created values.
708   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
709     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
710     NewBlocks.push_back(NewBB);
711 
712     // If an original block is an immediate child of the loop L, its copy
713     // is a child of a ParentLoop after peeling. If a block is a child of
714     // a nested loop, it is handled in the cloneLoop() call below.
715     if (ParentLoop && LI->getLoopFor(*BB) == L)
716       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
717 
718     VMap[*BB] = NewBB;
719 
720     // If dominator tree is available, insert nodes to represent cloned blocks.
721     if (DT) {
722       if (Header == *BB)
723         DT->addNewBlock(NewBB, InsertTop);
724       else {
725         DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
726         // VMap must contain entry for IDom, as the iteration order is RPO.
727         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
728       }
729     }
730   }
731 
732   {
733     // Identify what other metadata depends on the cloned version. After
734     // cloning, replace the metadata with the corrected version for both
735     // memory instructions and noalias intrinsics.
736     std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
737     cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
738                                Header->getContext(), Ext);
739   }
740 
741   // Recursively create the new Loop objects for nested loops, if any,
742   // to preserve LoopInfo.
743   for (Loop *ChildLoop : *L) {
744     cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
745   }
746 
747   // Hook-up the control flow for the newly inserted blocks.
748   // The new header is hooked up directly to the "top", which is either
749   // the original loop preheader (for the first iteration) or the previous
750   // iteration's exiting block (for every other iteration)
751   InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
752 
753   // Similarly, for the latch:
754   // The original exiting edge is still hooked up to the loop exit.
755   // The backedge now goes to the "bottom", which is either the loop's real
756   // header (for the last peeled iteration) or the copied header of the next
757   // iteration (for every other iteration)
758   BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
759   auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator());
760   for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx)
761     if (LatchTerm->getSuccessor(idx) == Header) {
762       LatchTerm->setSuccessor(idx, InsertBot);
763       break;
764     }
765   if (DT)
766     DT->changeImmediateDominator(InsertBot, NewLatch);
767 
768   // The new copy of the loop body starts with a bunch of PHI nodes
769   // that pick an incoming value from either the preheader, or the previous
770   // loop iteration. Since this copy is no longer part of the loop, we
771   // resolve this statically:
772   // For the first iteration, we use the value from the preheader directly.
773   // For any other iteration, we replace the phi with the value generated by
774   // the immediately preceding clone of the loop body (which represents
775   // the previous iteration).
776   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
777     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
778     if (IterNumber == 0) {
779       VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
780     } else {
781       Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
782       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
783       if (LatchInst && L->contains(LatchInst))
784         VMap[&*I] = LVMap[LatchInst];
785       else
786         VMap[&*I] = LatchVal;
787     }
788     NewPHI->eraseFromParent();
789   }
790 
791   // Fix up the outgoing values - we need to add a value for the iteration
792   // we've just created. Note that this must happen *after* the incoming
793   // values are adjusted, since the value going out of the latch may also be
794   // a value coming into the header.
795   for (auto Edge : ExitEdges)
796     for (PHINode &PHI : Edge.second->phis()) {
797       Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
798       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
799       if (LatchInst && L->contains(LatchInst))
800         LatchVal = VMap[LatchVal];
801       PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
802       SE.forgetValue(&PHI);
803     }
804 
805   // LastValueMap is updated with the values for the current loop
806   // which are used the next time this function is called.
807   for (auto KV : VMap)
808     LVMap[KV.first] = KV.second;
809 }
810 
811 TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences(
812     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
813     Optional<bool> UserAllowPeeling,
814     Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) {
815   TargetTransformInfo::PeelingPreferences PP;
816 
817   // Set the default values.
818   PP.PeelCount = 0;
819   PP.AllowPeeling = true;
820   PP.AllowLoopNestsPeeling = false;
821   PP.PeelProfiledIterations = true;
822 
823   // Get the target specifc values.
824   TTI.getPeelingPreferences(L, SE, PP);
825 
826   // User specified values using cl::opt.
827   if (UnrollingSpecficValues) {
828     if (UnrollPeelCount.getNumOccurrences() > 0)
829       PP.PeelCount = UnrollPeelCount;
830     if (UnrollAllowPeeling.getNumOccurrences() > 0)
831       PP.AllowPeeling = UnrollAllowPeeling;
832     if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
833       PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
834   }
835 
836   // User specifed values provided by argument.
837   if (UserAllowPeeling)
838     PP.AllowPeeling = *UserAllowPeeling;
839   if (UserAllowProfileBasedPeeling)
840     PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
841 
842   return PP;
843 }
844 
845 /// Peel off the first \p PeelCount iterations of loop \p L.
846 ///
847 /// Note that this does not peel them off as a single straight-line block.
848 /// Rather, each iteration is peeled off separately, and needs to check the
849 /// exit condition.
850 /// For loops that dynamically execute \p PeelCount iterations or less
851 /// this provides a benefit, since the peeled off iterations, which account
852 /// for the bulk of dynamic execution, can be further simplified by scalar
853 /// optimizations.
854 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
855                     ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC,
856                     bool PreserveLCSSA) {
857   assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
858   assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
859 
860   LoopBlocksDFS LoopBlocks(L);
861   LoopBlocks.perform(LI);
862 
863   BasicBlock *Header = L->getHeader();
864   BasicBlock *PreHeader = L->getLoopPreheader();
865   BasicBlock *Latch = L->getLoopLatch();
866   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
867   L->getExitEdges(ExitEdges);
868 
869   // Remember dominators of blocks we might reach through exits to change them
870   // later. Immediate dominator of such block might change, because we add more
871   // routes which can lead to the exit: we can reach it from the peeled
872   // iterations too.
873   DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom;
874   for (auto *BB : L->blocks()) {
875     auto *BBDomNode = DT.getNode(BB);
876     SmallVector<BasicBlock *, 16> ChildrenToUpdate;
877     for (auto *ChildDomNode : BBDomNode->children()) {
878       auto *ChildBB = ChildDomNode->getBlock();
879       if (!L->contains(ChildBB))
880         ChildrenToUpdate.push_back(ChildBB);
881     }
882     // The new idom of the block will be the nearest common dominator
883     // of all copies of the previous idom. This is equivalent to the
884     // nearest common dominator of the previous idom and the first latch,
885     // which dominates all copies of the previous idom.
886     BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch);
887     for (auto *ChildBB : ChildrenToUpdate)
888       NonLoopBlocksIDom[ChildBB] = NewIDom;
889   }
890 
891   Function *F = Header->getParent();
892 
893   // Set up all the necessary basic blocks. It is convenient to split the
894   // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
895   // body, and a new preheader for the "real" loop.
896 
897   // Peeling the first iteration transforms.
898   //
899   // PreHeader:
900   // ...
901   // Header:
902   //   LoopBody
903   //   If (cond) goto Header
904   // Exit:
905   //
906   // into
907   //
908   // InsertTop:
909   //   LoopBody
910   //   If (!cond) goto Exit
911   // InsertBot:
912   // NewPreHeader:
913   // ...
914   // Header:
915   //  LoopBody
916   //  If (cond) goto Header
917   // Exit:
918   //
919   // Each following iteration will split the current bottom anchor in two,
920   // and put the new copy of the loop body between these two blocks. That is,
921   // after peeling another iteration from the example above, we'll split
922   // InsertBot, and get:
923   //
924   // InsertTop:
925   //   LoopBody
926   //   If (!cond) goto Exit
927   // InsertBot:
928   //   LoopBody
929   //   If (!cond) goto Exit
930   // InsertBot.next:
931   // NewPreHeader:
932   // ...
933   // Header:
934   //  LoopBody
935   //  If (cond) goto Header
936   // Exit:
937 
938   BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI);
939   BasicBlock *InsertBot =
940       SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI);
941   BasicBlock *NewPreHeader =
942       SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
943 
944   InsertTop->setName(Header->getName() + ".peel.begin");
945   InsertBot->setName(Header->getName() + ".peel.next");
946   NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
947 
948   ValueToValueMapTy LVMap;
949 
950   Instruction *LatchTerm =
951       cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator());
952 
953   // If we have branch weight information, we'll want to update it for the
954   // newly created branches.
955   DenseMap<Instruction *, WeightInfo> Weights;
956   initBranchWeights(Weights, L);
957 
958   // Identify what noalias metadata is inside the loop: if it is inside the
959   // loop, the associated metadata must be cloned for each iteration.
960   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
961   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
962 
963   // For each peeled-off iteration, make a copy of the loop.
964   for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
965     SmallVector<BasicBlock *, 8> NewBlocks;
966     ValueToValueMapTy VMap;
967 
968     cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
969                     LoopBlocks, VMap, LVMap, &DT, LI,
970                     LoopLocalNoAliasDeclScopes, *SE);
971 
972     // Remap to use values from the current iteration instead of the
973     // previous one.
974     remapInstructionsInBlocks(NewBlocks, VMap);
975 
976     // Update IDoms of the blocks reachable through exits.
977     if (Iter == 0)
978       for (auto BBIDom : NonLoopBlocksIDom)
979         DT.changeImmediateDominator(BBIDom.first,
980                                      cast<BasicBlock>(LVMap[BBIDom.second]));
981 #ifdef EXPENSIVE_CHECKS
982     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
983 #endif
984 
985     for (auto &[Term, Info] : Weights) {
986       auto *TermCopy = cast<Instruction>(VMap[Term]);
987       updateBranchWeights(TermCopy, Info);
988     }
989 
990     // Remove Loop metadata from the latch branch instruction
991     // because it is not the Loop's latch branch anymore.
992     auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]);
993     LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr);
994 
995     InsertTop = InsertBot;
996     InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
997     InsertBot->setName(Header->getName() + ".peel.next");
998 
999     F->getBasicBlockList().splice(InsertTop->getIterator(),
1000                                   F->getBasicBlockList(),
1001                                   NewBlocks[0]->getIterator(), F->end());
1002   }
1003 
1004   // Now adjust the phi nodes in the loop header to get their initial values
1005   // from the last peeled-off iteration instead of the preheader.
1006   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
1007     PHINode *PHI = cast<PHINode>(I);
1008     Value *NewVal = PHI->getIncomingValueForBlock(Latch);
1009     Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
1010     if (LatchInst && L->contains(LatchInst))
1011       NewVal = LVMap[LatchInst];
1012 
1013     PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
1014   }
1015 
1016   for (const auto &[Term, Info] : Weights)
1017     fixupBranchWeights(Term, Info);
1018 
1019   // Update Metadata for count of peeled off iterations.
1020   unsigned AlreadyPeeled = 0;
1021   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
1022     AlreadyPeeled = *Peeled;
1023   addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
1024 
1025   if (Loop *ParentLoop = L->getParentLoop())
1026     L = ParentLoop;
1027 
1028   // We modified the loop, update SE.
1029   SE->forgetTopmostLoop(L);
1030 
1031 #ifdef EXPENSIVE_CHECKS
1032   // Finally DomtTree must be correct.
1033   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1034 #endif
1035 
1036   // FIXME: Incrementally update loop-simplify
1037   simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA);
1038 
1039   NumPeeled++;
1040 
1041   return true;
1042 }
1043