1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumeBundleQueries.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/BinaryFormat/Dwarf.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DIBuilder.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/GlobalObject.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/IntrinsicsWebAssembly.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/ProfDataUtils.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <optional> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 extern cl::opt<bool> UseNewDbgInfoFormat; 92 93 #define DEBUG_TYPE "local" 94 95 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 96 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 97 98 static cl::opt<bool> PHICSEDebugHash( 99 "phicse-debug-hash", 100 #ifdef EXPENSIVE_CHECKS 101 cl::init(true), 102 #else 103 cl::init(false), 104 #endif 105 cl::Hidden, 106 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 107 "function is well-behaved w.r.t. its isEqual predicate")); 108 109 static cl::opt<unsigned> PHICSENumPHISmallSize( 110 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 111 cl::desc( 112 "When the basic block contains not more than this number of PHI nodes, " 113 "perform a (faster!) exhaustive search instead of set-driven one.")); 114 115 // Max recursion depth for collectBitParts used when detecting bswap and 116 // bitreverse idioms. 117 static const unsigned BitPartRecursionMaxDepth = 48; 118 119 //===----------------------------------------------------------------------===// 120 // Local constant propagation. 121 // 122 123 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 124 /// constant value, convert it into an unconditional branch to the constant 125 /// destination. This is a nontrivial operation because the successors of this 126 /// basic block must have their PHI nodes updated. 127 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 128 /// conditions and indirectbr addresses this might make dead if 129 /// DeleteDeadConditions is true. 130 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 131 const TargetLibraryInfo *TLI, 132 DomTreeUpdater *DTU) { 133 Instruction *T = BB->getTerminator(); 134 IRBuilder<> Builder(T); 135 136 // Branch - See if we are conditional jumping on constant 137 if (auto *BI = dyn_cast<BranchInst>(T)) { 138 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 139 140 BasicBlock *Dest1 = BI->getSuccessor(0); 141 BasicBlock *Dest2 = BI->getSuccessor(1); 142 143 if (Dest2 == Dest1) { // Conditional branch to same location? 144 // This branch matches something like this: 145 // br bool %cond, label %Dest, label %Dest 146 // and changes it into: br label %Dest 147 148 // Let the basic block know that we are letting go of one copy of it. 149 assert(BI->getParent() && "Terminator not inserted in block!"); 150 Dest1->removePredecessor(BI->getParent()); 151 152 // Replace the conditional branch with an unconditional one. 153 BranchInst *NewBI = Builder.CreateBr(Dest1); 154 155 // Transfer the metadata to the new branch instruction. 156 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 157 LLVMContext::MD_annotation}); 158 159 Value *Cond = BI->getCondition(); 160 BI->eraseFromParent(); 161 if (DeleteDeadConditions) 162 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 163 return true; 164 } 165 166 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 167 // Are we branching on constant? 168 // YES. Change to unconditional branch... 169 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 170 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 171 172 // Let the basic block know that we are letting go of it. Based on this, 173 // it will adjust it's PHI nodes. 174 OldDest->removePredecessor(BB); 175 176 // Replace the conditional branch with an unconditional one. 177 BranchInst *NewBI = Builder.CreateBr(Destination); 178 179 // Transfer the metadata to the new branch instruction. 180 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 181 LLVMContext::MD_annotation}); 182 183 BI->eraseFromParent(); 184 if (DTU) 185 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 186 return true; 187 } 188 189 return false; 190 } 191 192 if (auto *SI = dyn_cast<SwitchInst>(T)) { 193 // If we are switching on a constant, we can convert the switch to an 194 // unconditional branch. 195 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 196 BasicBlock *DefaultDest = SI->getDefaultDest(); 197 BasicBlock *TheOnlyDest = DefaultDest; 198 199 // If the default is unreachable, ignore it when searching for TheOnlyDest. 200 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 201 SI->getNumCases() > 0) { 202 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 203 } 204 205 bool Changed = false; 206 207 // Figure out which case it goes to. 208 for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) { 209 // Found case matching a constant operand? 210 if (It->getCaseValue() == CI) { 211 TheOnlyDest = It->getCaseSuccessor(); 212 break; 213 } 214 215 // Check to see if this branch is going to the same place as the default 216 // dest. If so, eliminate it as an explicit compare. 217 if (It->getCaseSuccessor() == DefaultDest) { 218 MDNode *MD = getValidBranchWeightMDNode(*SI); 219 unsigned NCases = SI->getNumCases(); 220 // Fold the case metadata into the default if there will be any branches 221 // left, unless the metadata doesn't match the switch. 222 if (NCases > 1 && MD) { 223 // Collect branch weights into a vector. 224 SmallVector<uint32_t, 8> Weights; 225 extractBranchWeights(MD, Weights); 226 227 // Merge weight of this case to the default weight. 228 unsigned Idx = It->getCaseIndex(); 229 // TODO: Add overflow check. 230 Weights[0] += Weights[Idx + 1]; 231 // Remove weight for this case. 232 std::swap(Weights[Idx + 1], Weights.back()); 233 Weights.pop_back(); 234 setBranchWeights(*SI, Weights, hasBranchWeightOrigin(MD)); 235 } 236 // Remove this entry. 237 BasicBlock *ParentBB = SI->getParent(); 238 DefaultDest->removePredecessor(ParentBB); 239 It = SI->removeCase(It); 240 End = SI->case_end(); 241 242 // Removing this case may have made the condition constant. In that 243 // case, update CI and restart iteration through the cases. 244 if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) { 245 CI = NewCI; 246 It = SI->case_begin(); 247 } 248 249 Changed = true; 250 continue; 251 } 252 253 // Otherwise, check to see if the switch only branches to one destination. 254 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 255 // destinations. 256 if (It->getCaseSuccessor() != TheOnlyDest) 257 TheOnlyDest = nullptr; 258 259 // Increment this iterator as we haven't removed the case. 260 ++It; 261 } 262 263 if (CI && !TheOnlyDest) { 264 // Branching on a constant, but not any of the cases, go to the default 265 // successor. 266 TheOnlyDest = SI->getDefaultDest(); 267 } 268 269 // If we found a single destination that we can fold the switch into, do so 270 // now. 271 if (TheOnlyDest) { 272 // Insert the new branch. 273 Builder.CreateBr(TheOnlyDest); 274 BasicBlock *BB = SI->getParent(); 275 276 SmallSet<BasicBlock *, 8> RemovedSuccessors; 277 278 // Remove entries from PHI nodes which we no longer branch to... 279 BasicBlock *SuccToKeep = TheOnlyDest; 280 for (BasicBlock *Succ : successors(SI)) { 281 if (DTU && Succ != TheOnlyDest) 282 RemovedSuccessors.insert(Succ); 283 // Found case matching a constant operand? 284 if (Succ == SuccToKeep) { 285 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 286 } else { 287 Succ->removePredecessor(BB); 288 } 289 } 290 291 // Delete the old switch. 292 Value *Cond = SI->getCondition(); 293 SI->eraseFromParent(); 294 if (DeleteDeadConditions) 295 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 296 if (DTU) { 297 std::vector<DominatorTree::UpdateType> Updates; 298 Updates.reserve(RemovedSuccessors.size()); 299 for (auto *RemovedSuccessor : RemovedSuccessors) 300 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 301 DTU->applyUpdates(Updates); 302 } 303 return true; 304 } 305 306 if (SI->getNumCases() == 1) { 307 // Otherwise, we can fold this switch into a conditional branch 308 // instruction if it has only one non-default destination. 309 auto FirstCase = *SI->case_begin(); 310 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 311 FirstCase.getCaseValue(), "cond"); 312 313 // Insert the new branch. 314 BranchInst *NewBr = Builder.CreateCondBr(Cond, 315 FirstCase.getCaseSuccessor(), 316 SI->getDefaultDest()); 317 SmallVector<uint32_t> Weights; 318 if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) { 319 uint32_t DefWeight = Weights[0]; 320 uint32_t CaseWeight = Weights[1]; 321 // The TrueWeight should be the weight for the single case of SI. 322 NewBr->setMetadata(LLVMContext::MD_prof, 323 MDBuilder(BB->getContext()) 324 .createBranchWeights(CaseWeight, DefWeight)); 325 } 326 327 // Update make.implicit metadata to the newly-created conditional branch. 328 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 329 if (MakeImplicitMD) 330 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 331 332 // Delete the old switch. 333 SI->eraseFromParent(); 334 return true; 335 } 336 return Changed; 337 } 338 339 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 340 // indirectbr blockaddress(@F, @BB) -> br label @BB 341 if (auto *BA = 342 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 343 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 344 SmallSet<BasicBlock *, 8> RemovedSuccessors; 345 346 // Insert the new branch. 347 Builder.CreateBr(TheOnlyDest); 348 349 BasicBlock *SuccToKeep = TheOnlyDest; 350 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 351 BasicBlock *DestBB = IBI->getDestination(i); 352 if (DTU && DestBB != TheOnlyDest) 353 RemovedSuccessors.insert(DestBB); 354 if (IBI->getDestination(i) == SuccToKeep) { 355 SuccToKeep = nullptr; 356 } else { 357 DestBB->removePredecessor(BB); 358 } 359 } 360 Value *Address = IBI->getAddress(); 361 IBI->eraseFromParent(); 362 if (DeleteDeadConditions) 363 // Delete pointer cast instructions. 364 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 365 366 // Also zap the blockaddress constant if there are no users remaining, 367 // otherwise the destination is still marked as having its address taken. 368 if (BA->use_empty()) 369 BA->destroyConstant(); 370 371 // If we didn't find our destination in the IBI successor list, then we 372 // have undefined behavior. Replace the unconditional branch with an 373 // 'unreachable' instruction. 374 if (SuccToKeep) { 375 BB->getTerminator()->eraseFromParent(); 376 new UnreachableInst(BB->getContext(), BB); 377 } 378 379 if (DTU) { 380 std::vector<DominatorTree::UpdateType> Updates; 381 Updates.reserve(RemovedSuccessors.size()); 382 for (auto *RemovedSuccessor : RemovedSuccessors) 383 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 384 DTU->applyUpdates(Updates); 385 } 386 return true; 387 } 388 } 389 390 return false; 391 } 392 393 //===----------------------------------------------------------------------===// 394 // Local dead code elimination. 395 // 396 397 /// isInstructionTriviallyDead - Return true if the result produced by the 398 /// instruction is not used, and the instruction has no side effects. 399 /// 400 bool llvm::isInstructionTriviallyDead(Instruction *I, 401 const TargetLibraryInfo *TLI) { 402 if (!I->use_empty()) 403 return false; 404 return wouldInstructionBeTriviallyDead(I, TLI); 405 } 406 407 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 408 Instruction *I, const TargetLibraryInfo *TLI) { 409 // Instructions that are "markers" and have implied meaning on code around 410 // them (without explicit uses), are not dead on unused paths. 411 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 412 if (II->getIntrinsicID() == Intrinsic::stacksave || 413 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 414 II->isLifetimeStartOrEnd()) 415 return false; 416 return wouldInstructionBeTriviallyDead(I, TLI); 417 } 418 419 bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I, 420 const TargetLibraryInfo *TLI) { 421 if (I->isTerminator()) 422 return false; 423 424 // We don't want the landingpad-like instructions removed by anything this 425 // general. 426 if (I->isEHPad()) 427 return false; 428 429 // We don't want debug info removed by anything this general. 430 if (isa<DbgVariableIntrinsic>(I)) 431 return false; 432 433 if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 434 if (DLI->getLabel()) 435 return false; 436 return true; 437 } 438 439 if (auto *CB = dyn_cast<CallBase>(I)) 440 if (isRemovableAlloc(CB, TLI)) 441 return true; 442 443 if (!I->willReturn()) { 444 auto *II = dyn_cast<IntrinsicInst>(I); 445 if (!II) 446 return false; 447 448 switch (II->getIntrinsicID()) { 449 case Intrinsic::experimental_guard: { 450 // Guards on true are operationally no-ops. In the future we can 451 // consider more sophisticated tradeoffs for guards considering potential 452 // for check widening, but for now we keep things simple. 453 auto *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)); 454 return Cond && Cond->isOne(); 455 } 456 // TODO: These intrinsics are not safe to remove, because this may remove 457 // a well-defined trap. 458 case Intrinsic::wasm_trunc_signed: 459 case Intrinsic::wasm_trunc_unsigned: 460 case Intrinsic::ptrauth_auth: 461 case Intrinsic::ptrauth_resign: 462 return true; 463 default: 464 return false; 465 } 466 } 467 468 if (!I->mayHaveSideEffects()) 469 return true; 470 471 // Special case intrinsics that "may have side effects" but can be deleted 472 // when dead. 473 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 474 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 475 if (II->getIntrinsicID() == Intrinsic::stacksave || 476 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 477 return true; 478 479 // Intrinsics declare sideeffects to prevent them from moving, but they are 480 // nops without users. 481 if (II->getIntrinsicID() == Intrinsic::allow_runtime_check || 482 II->getIntrinsicID() == Intrinsic::allow_ubsan_check) 483 return true; 484 485 if (II->isLifetimeStartOrEnd()) { 486 auto *Arg = II->getArgOperand(1); 487 // Lifetime intrinsics are dead when their right-hand is undef. 488 if (isa<UndefValue>(Arg)) 489 return true; 490 // If the right-hand is an alloc, global, or argument and the only uses 491 // are lifetime intrinsics then the intrinsics are dead. 492 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 493 return llvm::all_of(Arg->uses(), [](Use &Use) { 494 if (IntrinsicInst *IntrinsicUse = 495 dyn_cast<IntrinsicInst>(Use.getUser())) 496 return IntrinsicUse->isLifetimeStartOrEnd(); 497 return false; 498 }); 499 return false; 500 } 501 502 // Assumptions are dead if their condition is trivially true. 503 if (II->getIntrinsicID() == Intrinsic::assume && 504 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) { 505 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 506 return !Cond->isZero(); 507 508 return false; 509 } 510 511 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 512 std::optional<fp::ExceptionBehavior> ExBehavior = 513 FPI->getExceptionBehavior(); 514 return *ExBehavior != fp::ebStrict; 515 } 516 } 517 518 if (auto *Call = dyn_cast<CallBase>(I)) { 519 if (Value *FreedOp = getFreedOperand(Call, TLI)) 520 if (Constant *C = dyn_cast<Constant>(FreedOp)) 521 return C->isNullValue() || isa<UndefValue>(C); 522 if (isMathLibCallNoop(Call, TLI)) 523 return true; 524 } 525 526 // Non-volatile atomic loads from constants can be removed. 527 if (auto *LI = dyn_cast<LoadInst>(I)) 528 if (auto *GV = dyn_cast<GlobalVariable>( 529 LI->getPointerOperand()->stripPointerCasts())) 530 if (!LI->isVolatile() && GV->isConstant()) 531 return true; 532 533 return false; 534 } 535 536 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 537 /// trivially dead instruction, delete it. If that makes any of its operands 538 /// trivially dead, delete them too, recursively. Return true if any 539 /// instructions were deleted. 540 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 541 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 542 std::function<void(Value *)> AboutToDeleteCallback) { 543 Instruction *I = dyn_cast<Instruction>(V); 544 if (!I || !isInstructionTriviallyDead(I, TLI)) 545 return false; 546 547 SmallVector<WeakTrackingVH, 16> DeadInsts; 548 DeadInsts.push_back(I); 549 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 550 AboutToDeleteCallback); 551 552 return true; 553 } 554 555 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 556 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 557 MemorySSAUpdater *MSSAU, 558 std::function<void(Value *)> AboutToDeleteCallback) { 559 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 560 for (; S != E; ++S) { 561 auto *I = dyn_cast_or_null<Instruction>(DeadInsts[S]); 562 if (!I || !isInstructionTriviallyDead(I)) { 563 DeadInsts[S] = nullptr; 564 ++Alive; 565 } 566 } 567 if (Alive == E) 568 return false; 569 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 570 AboutToDeleteCallback); 571 return true; 572 } 573 574 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 575 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 576 MemorySSAUpdater *MSSAU, 577 std::function<void(Value *)> AboutToDeleteCallback) { 578 // Process the dead instruction list until empty. 579 while (!DeadInsts.empty()) { 580 Value *V = DeadInsts.pop_back_val(); 581 Instruction *I = cast_or_null<Instruction>(V); 582 if (!I) 583 continue; 584 assert(isInstructionTriviallyDead(I, TLI) && 585 "Live instruction found in dead worklist!"); 586 assert(I->use_empty() && "Instructions with uses are not dead."); 587 588 // Don't lose the debug info while deleting the instructions. 589 salvageDebugInfo(*I); 590 591 if (AboutToDeleteCallback) 592 AboutToDeleteCallback(I); 593 594 // Null out all of the instruction's operands to see if any operand becomes 595 // dead as we go. 596 for (Use &OpU : I->operands()) { 597 Value *OpV = OpU.get(); 598 OpU.set(nullptr); 599 600 if (!OpV->use_empty()) 601 continue; 602 603 // If the operand is an instruction that became dead as we nulled out the 604 // operand, and if it is 'trivially' dead, delete it in a future loop 605 // iteration. 606 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 607 if (isInstructionTriviallyDead(OpI, TLI)) 608 DeadInsts.push_back(OpI); 609 } 610 if (MSSAU) 611 MSSAU->removeMemoryAccess(I); 612 613 I->eraseFromParent(); 614 } 615 } 616 617 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 618 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 619 SmallVector<DbgVariableRecord *, 1> DPUsers; 620 findDbgUsers(DbgUsers, I, &DPUsers); 621 for (auto *DII : DbgUsers) 622 DII->setKillLocation(); 623 for (auto *DVR : DPUsers) 624 DVR->setKillLocation(); 625 return !DbgUsers.empty() || !DPUsers.empty(); 626 } 627 628 /// areAllUsesEqual - Check whether the uses of a value are all the same. 629 /// This is similar to Instruction::hasOneUse() except this will also return 630 /// true when there are no uses or multiple uses that all refer to the same 631 /// value. 632 static bool areAllUsesEqual(Instruction *I) { 633 Value::user_iterator UI = I->user_begin(); 634 Value::user_iterator UE = I->user_end(); 635 if (UI == UE) 636 return true; 637 638 User *TheUse = *UI; 639 for (++UI; UI != UE; ++UI) { 640 if (*UI != TheUse) 641 return false; 642 } 643 return true; 644 } 645 646 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 647 /// dead PHI node, due to being a def-use chain of single-use nodes that 648 /// either forms a cycle or is terminated by a trivially dead instruction, 649 /// delete it. If that makes any of its operands trivially dead, delete them 650 /// too, recursively. Return true if a change was made. 651 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 652 const TargetLibraryInfo *TLI, 653 llvm::MemorySSAUpdater *MSSAU) { 654 SmallPtrSet<Instruction*, 4> Visited; 655 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 656 I = cast<Instruction>(*I->user_begin())) { 657 if (I->use_empty()) 658 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 659 660 // If we find an instruction more than once, we're on a cycle that 661 // won't prove fruitful. 662 if (!Visited.insert(I).second) { 663 // Break the cycle and delete the instruction and its operands. 664 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 665 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 666 return true; 667 } 668 } 669 return false; 670 } 671 672 static bool 673 simplifyAndDCEInstruction(Instruction *I, 674 SmallSetVector<Instruction *, 16> &WorkList, 675 const DataLayout &DL, 676 const TargetLibraryInfo *TLI) { 677 if (isInstructionTriviallyDead(I, TLI)) { 678 salvageDebugInfo(*I); 679 680 // Null out all of the instruction's operands to see if any operand becomes 681 // dead as we go. 682 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 683 Value *OpV = I->getOperand(i); 684 I->setOperand(i, nullptr); 685 686 if (!OpV->use_empty() || I == OpV) 687 continue; 688 689 // If the operand is an instruction that became dead as we nulled out the 690 // operand, and if it is 'trivially' dead, delete it in a future loop 691 // iteration. 692 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 693 if (isInstructionTriviallyDead(OpI, TLI)) 694 WorkList.insert(OpI); 695 } 696 697 I->eraseFromParent(); 698 699 return true; 700 } 701 702 if (Value *SimpleV = simplifyInstruction(I, DL)) { 703 // Add the users to the worklist. CAREFUL: an instruction can use itself, 704 // in the case of a phi node. 705 for (User *U : I->users()) { 706 if (U != I) { 707 WorkList.insert(cast<Instruction>(U)); 708 } 709 } 710 711 // Replace the instruction with its simplified value. 712 bool Changed = false; 713 if (!I->use_empty()) { 714 I->replaceAllUsesWith(SimpleV); 715 Changed = true; 716 } 717 if (isInstructionTriviallyDead(I, TLI)) { 718 I->eraseFromParent(); 719 Changed = true; 720 } 721 return Changed; 722 } 723 return false; 724 } 725 726 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 727 /// simplify any instructions in it and recursively delete dead instructions. 728 /// 729 /// This returns true if it changed the code, note that it can delete 730 /// instructions in other blocks as well in this block. 731 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 732 const TargetLibraryInfo *TLI) { 733 bool MadeChange = false; 734 const DataLayout &DL = BB->getDataLayout(); 735 736 #ifndef NDEBUG 737 // In debug builds, ensure that the terminator of the block is never replaced 738 // or deleted by these simplifications. The idea of simplification is that it 739 // cannot introduce new instructions, and there is no way to replace the 740 // terminator of a block without introducing a new instruction. 741 AssertingVH<Instruction> TerminatorVH(&BB->back()); 742 #endif 743 744 SmallSetVector<Instruction *, 16> WorkList; 745 // Iterate over the original function, only adding insts to the worklist 746 // if they actually need to be revisited. This avoids having to pre-init 747 // the worklist with the entire function's worth of instructions. 748 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 749 BI != E;) { 750 assert(!BI->isTerminator()); 751 Instruction *I = &*BI; 752 ++BI; 753 754 // We're visiting this instruction now, so make sure it's not in the 755 // worklist from an earlier visit. 756 if (!WorkList.count(I)) 757 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 758 } 759 760 while (!WorkList.empty()) { 761 Instruction *I = WorkList.pop_back_val(); 762 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 763 } 764 return MadeChange; 765 } 766 767 //===----------------------------------------------------------------------===// 768 // Control Flow Graph Restructuring. 769 // 770 771 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 772 DomTreeUpdater *DTU) { 773 774 // If BB has single-entry PHI nodes, fold them. 775 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 776 Value *NewVal = PN->getIncomingValue(0); 777 // Replace self referencing PHI with poison, it must be dead. 778 if (NewVal == PN) NewVal = PoisonValue::get(PN->getType()); 779 PN->replaceAllUsesWith(NewVal); 780 PN->eraseFromParent(); 781 } 782 783 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 784 assert(PredBB && "Block doesn't have a single predecessor!"); 785 786 bool ReplaceEntryBB = PredBB->isEntryBlock(); 787 788 // DTU updates: Collect all the edges that enter 789 // PredBB. These dominator edges will be redirected to DestBB. 790 SmallVector<DominatorTree::UpdateType, 32> Updates; 791 792 if (DTU) { 793 // To avoid processing the same predecessor more than once. 794 SmallPtrSet<BasicBlock *, 2> SeenPreds; 795 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 796 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 797 // This predecessor of PredBB may already have DestBB as a successor. 798 if (PredOfPredBB != PredBB) 799 if (SeenPreds.insert(PredOfPredBB).second) 800 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 801 SeenPreds.clear(); 802 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 803 if (SeenPreds.insert(PredOfPredBB).second) 804 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 805 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 806 } 807 808 // Zap anything that took the address of DestBB. Not doing this will give the 809 // address an invalid value. 810 if (DestBB->hasAddressTaken()) { 811 BlockAddress *BA = BlockAddress::get(DestBB); 812 Constant *Replacement = 813 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 814 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 815 BA->getType())); 816 BA->destroyConstant(); 817 } 818 819 // Anything that branched to PredBB now branches to DestBB. 820 PredBB->replaceAllUsesWith(DestBB); 821 822 // Splice all the instructions from PredBB to DestBB. 823 PredBB->getTerminator()->eraseFromParent(); 824 DestBB->splice(DestBB->begin(), PredBB); 825 new UnreachableInst(PredBB->getContext(), PredBB); 826 827 // If the PredBB is the entry block of the function, move DestBB up to 828 // become the entry block after we erase PredBB. 829 if (ReplaceEntryBB) 830 DestBB->moveAfter(PredBB); 831 832 if (DTU) { 833 assert(PredBB->size() == 1 && 834 isa<UnreachableInst>(PredBB->getTerminator()) && 835 "The successor list of PredBB isn't empty before " 836 "applying corresponding DTU updates."); 837 DTU->applyUpdatesPermissive(Updates); 838 DTU->deleteBB(PredBB); 839 // Recalculation of DomTree is needed when updating a forward DomTree and 840 // the Entry BB is replaced. 841 if (ReplaceEntryBB && DTU->hasDomTree()) { 842 // The entry block was removed and there is no external interface for 843 // the dominator tree to be notified of this change. In this corner-case 844 // we recalculate the entire tree. 845 DTU->recalculate(*(DestBB->getParent())); 846 } 847 } 848 849 else { 850 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 851 } 852 } 853 854 /// Return true if we can choose one of these values to use in place of the 855 /// other. Note that we will always choose the non-undef value to keep. 856 static bool CanMergeValues(Value *First, Value *Second) { 857 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 858 } 859 860 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 861 /// branch to Succ, into Succ. 862 /// 863 /// Assumption: Succ is the single successor for BB. 864 static bool 865 CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ, 866 const SmallPtrSetImpl<BasicBlock *> &BBPreds) { 867 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 868 869 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 870 << Succ->getName() << "\n"); 871 // Shortcut, if there is only a single predecessor it must be BB and merging 872 // is always safe 873 if (Succ->getSinglePredecessor()) 874 return true; 875 876 // Look at all the phi nodes in Succ, to see if they present a conflict when 877 // merging these blocks 878 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 879 PHINode *PN = cast<PHINode>(I); 880 881 // If the incoming value from BB is again a PHINode in 882 // BB which has the same incoming value for *PI as PN does, we can 883 // merge the phi nodes and then the blocks can still be merged 884 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 885 if (BBPN && BBPN->getParent() == BB) { 886 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 887 BasicBlock *IBB = PN->getIncomingBlock(PI); 888 if (BBPreds.count(IBB) && 889 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 890 PN->getIncomingValue(PI))) { 891 LLVM_DEBUG(dbgs() 892 << "Can't fold, phi node " << PN->getName() << " in " 893 << Succ->getName() << " is conflicting with " 894 << BBPN->getName() << " with regard to common predecessor " 895 << IBB->getName() << "\n"); 896 return false; 897 } 898 } 899 } else { 900 Value* Val = PN->getIncomingValueForBlock(BB); 901 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 902 // See if the incoming value for the common predecessor is equal to the 903 // one for BB, in which case this phi node will not prevent the merging 904 // of the block. 905 BasicBlock *IBB = PN->getIncomingBlock(PI); 906 if (BBPreds.count(IBB) && 907 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 908 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 909 << " in " << Succ->getName() 910 << " is conflicting with regard to common " 911 << "predecessor " << IBB->getName() << "\n"); 912 return false; 913 } 914 } 915 } 916 } 917 918 return true; 919 } 920 921 using PredBlockVector = SmallVector<BasicBlock *, 16>; 922 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 923 924 /// Determines the value to use as the phi node input for a block. 925 /// 926 /// Select between \p OldVal any value that we know flows from \p BB 927 /// to a particular phi on the basis of which one (if either) is not 928 /// undef. Update IncomingValues based on the selected value. 929 /// 930 /// \param OldVal The value we are considering selecting. 931 /// \param BB The block that the value flows in from. 932 /// \param IncomingValues A map from block-to-value for other phi inputs 933 /// that we have examined. 934 /// 935 /// \returns the selected value. 936 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 937 IncomingValueMap &IncomingValues) { 938 if (!isa<UndefValue>(OldVal)) { 939 assert((!IncomingValues.count(BB) || 940 IncomingValues.find(BB)->second == OldVal) && 941 "Expected OldVal to match incoming value from BB!"); 942 943 IncomingValues.insert(std::make_pair(BB, OldVal)); 944 return OldVal; 945 } 946 947 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 948 if (It != IncomingValues.end()) return It->second; 949 950 return OldVal; 951 } 952 953 /// Create a map from block to value for the operands of a 954 /// given phi. 955 /// 956 /// Create a map from block to value for each non-undef value flowing 957 /// into \p PN. 958 /// 959 /// \param PN The phi we are collecting the map for. 960 /// \param IncomingValues [out] The map from block to value for this phi. 961 static void gatherIncomingValuesToPhi(PHINode *PN, 962 IncomingValueMap &IncomingValues) { 963 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 964 BasicBlock *BB = PN->getIncomingBlock(i); 965 Value *V = PN->getIncomingValue(i); 966 967 if (!isa<UndefValue>(V)) 968 IncomingValues.insert(std::make_pair(BB, V)); 969 } 970 } 971 972 /// Replace the incoming undef values to a phi with the values 973 /// from a block-to-value map. 974 /// 975 /// \param PN The phi we are replacing the undefs in. 976 /// \param IncomingValues A map from block to value. 977 static void replaceUndefValuesInPhi(PHINode *PN, 978 const IncomingValueMap &IncomingValues) { 979 SmallVector<unsigned> TrueUndefOps; 980 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 981 Value *V = PN->getIncomingValue(i); 982 983 if (!isa<UndefValue>(V)) continue; 984 985 BasicBlock *BB = PN->getIncomingBlock(i); 986 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 987 988 // Keep track of undef/poison incoming values. Those must match, so we fix 989 // them up below if needed. 990 // Note: this is conservatively correct, but we could try harder and group 991 // the undef values per incoming basic block. 992 if (It == IncomingValues.end()) { 993 TrueUndefOps.push_back(i); 994 continue; 995 } 996 997 // There is a defined value for this incoming block, so map this undef 998 // incoming value to the defined value. 999 PN->setIncomingValue(i, It->second); 1000 } 1001 1002 // If there are both undef and poison values incoming, then convert those 1003 // values to undef. It is invalid to have different values for the same 1004 // incoming block. 1005 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 1006 return isa<PoisonValue>(PN->getIncomingValue(i)); 1007 }); 1008 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 1009 for (unsigned i : TrueUndefOps) 1010 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 1011 } 1012 } 1013 1014 // Only when they shares a single common predecessor, return true. 1015 // Only handles cases when BB can't be merged while its predecessors can be 1016 // redirected. 1017 static bool 1018 CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ, 1019 const SmallPtrSetImpl<BasicBlock *> &BBPreds, 1020 const SmallPtrSetImpl<BasicBlock *> &SuccPreds, 1021 BasicBlock *&CommonPred) { 1022 1023 // There must be phis in BB, otherwise BB will be merged into Succ directly 1024 if (BB->phis().empty() || Succ->phis().empty()) 1025 return false; 1026 1027 // BB must have predecessors not shared that can be redirected to Succ 1028 if (!BB->hasNPredecessorsOrMore(2)) 1029 return false; 1030 1031 // Get single common predecessors of both BB and Succ 1032 for (BasicBlock *SuccPred : SuccPreds) { 1033 if (BBPreds.count(SuccPred)) { 1034 if (CommonPred) 1035 return false; 1036 CommonPred = SuccPred; 1037 } 1038 } 1039 1040 return true; 1041 } 1042 1043 /// Replace a value flowing from a block to a phi with 1044 /// potentially multiple instances of that value flowing from the 1045 /// block's predecessors to the phi. 1046 /// 1047 /// \param BB The block with the value flowing into the phi. 1048 /// \param BBPreds The predecessors of BB. 1049 /// \param PN The phi that we are updating. 1050 /// \param CommonPred The common predecessor of BB and PN's BasicBlock 1051 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 1052 const PredBlockVector &BBPreds, 1053 PHINode *PN, 1054 BasicBlock *CommonPred) { 1055 Value *OldVal = PN->removeIncomingValue(BB, false); 1056 assert(OldVal && "No entry in PHI for Pred BB!"); 1057 1058 IncomingValueMap IncomingValues; 1059 1060 // We are merging two blocks - BB, and the block containing PN - and 1061 // as a result we need to redirect edges from the predecessors of BB 1062 // to go to the block containing PN, and update PN 1063 // accordingly. Since we allow merging blocks in the case where the 1064 // predecessor and successor blocks both share some predecessors, 1065 // and where some of those common predecessors might have undef 1066 // values flowing into PN, we want to rewrite those values to be 1067 // consistent with the non-undef values. 1068 1069 gatherIncomingValuesToPhi(PN, IncomingValues); 1070 1071 // If this incoming value is one of the PHI nodes in BB, the new entries 1072 // in the PHI node are the entries from the old PHI. 1073 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1074 PHINode *OldValPN = cast<PHINode>(OldVal); 1075 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1076 // Note that, since we are merging phi nodes and BB and Succ might 1077 // have common predecessors, we could end up with a phi node with 1078 // identical incoming branches. This will be cleaned up later (and 1079 // will trigger asserts if we try to clean it up now, without also 1080 // simplifying the corresponding conditional branch). 1081 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1082 1083 if (PredBB == CommonPred) 1084 continue; 1085 1086 Value *PredVal = OldValPN->getIncomingValue(i); 1087 Value *Selected = 1088 selectIncomingValueForBlock(PredVal, PredBB, IncomingValues); 1089 1090 // And add a new incoming value for this predecessor for the 1091 // newly retargeted branch. 1092 PN->addIncoming(Selected, PredBB); 1093 } 1094 if (CommonPred) 1095 PN->addIncoming(OldValPN->getIncomingValueForBlock(CommonPred), BB); 1096 1097 } else { 1098 for (BasicBlock *PredBB : BBPreds) { 1099 // Update existing incoming values in PN for this 1100 // predecessor of BB. 1101 if (PredBB == CommonPred) 1102 continue; 1103 1104 Value *Selected = 1105 selectIncomingValueForBlock(OldVal, PredBB, IncomingValues); 1106 1107 // And add a new incoming value for this predecessor for the 1108 // newly retargeted branch. 1109 PN->addIncoming(Selected, PredBB); 1110 } 1111 if (CommonPred) 1112 PN->addIncoming(OldVal, BB); 1113 } 1114 1115 replaceUndefValuesInPhi(PN, IncomingValues); 1116 } 1117 1118 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1119 DomTreeUpdater *DTU) { 1120 assert(BB != &BB->getParent()->getEntryBlock() && 1121 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1122 1123 // We can't simplify infinite loops. 1124 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1125 if (BB == Succ) 1126 return false; 1127 1128 SmallPtrSet<BasicBlock *, 16> BBPreds(pred_begin(BB), pred_end(BB)); 1129 SmallPtrSet<BasicBlock *, 16> SuccPreds(pred_begin(Succ), pred_end(Succ)); 1130 1131 // The single common predecessor of BB and Succ when BB cannot be killed 1132 BasicBlock *CommonPred = nullptr; 1133 1134 bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds); 1135 1136 // Even if we can not fold bB into Succ, we may be able to redirect the 1137 // predecessors of BB to Succ. 1138 bool BBPhisMergeable = 1139 BBKillable || 1140 CanRedirectPredsOfEmptyBBToSucc(BB, Succ, BBPreds, SuccPreds, CommonPred); 1141 1142 if (!BBKillable && !BBPhisMergeable) 1143 return false; 1144 1145 // Check to see if merging these blocks/phis would cause conflicts for any of 1146 // the phi nodes in BB or Succ. If not, we can safely merge. 1147 1148 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1149 // has uses which will not disappear when the PHI nodes are merged. It is 1150 // possible to handle such cases, but difficult: it requires checking whether 1151 // BB dominates Succ, which is non-trivial to calculate in the case where 1152 // Succ has multiple predecessors. Also, it requires checking whether 1153 // constructing the necessary self-referential PHI node doesn't introduce any 1154 // conflicts; this isn't too difficult, but the previous code for doing this 1155 // was incorrect. 1156 // 1157 // Note that if this check finds a live use, BB dominates Succ, so BB is 1158 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1159 // folding the branch isn't profitable in that case anyway. 1160 if (!Succ->getSinglePredecessor()) { 1161 BasicBlock::iterator BBI = BB->begin(); 1162 while (isa<PHINode>(*BBI)) { 1163 for (Use &U : BBI->uses()) { 1164 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1165 if (PN->getIncomingBlock(U) != BB) 1166 return false; 1167 } else { 1168 return false; 1169 } 1170 } 1171 ++BBI; 1172 } 1173 } 1174 1175 if (BBPhisMergeable && CommonPred) 1176 LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName() 1177 << " and " << Succ->getName() << " : " 1178 << CommonPred->getName() << "\n"); 1179 1180 // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop 1181 // metadata. 1182 // 1183 // FIXME: This is a stop-gap solution to preserve inner-loop metadata given 1184 // current status (that loop metadata is implemented as metadata attached to 1185 // the branch instruction in the loop latch block). To quote from review 1186 // comments, "the current representation of loop metadata (using a loop latch 1187 // terminator attachment) is known to be fundamentally broken. Loop latches 1188 // are not uniquely associated with loops (both in that a latch can be part of 1189 // multiple loops and a loop may have multiple latches). Loop headers are. The 1190 // solution to this problem is also known: Add support for basic block 1191 // metadata, and attach loop metadata to the loop header." 1192 // 1193 // Why bail out: 1194 // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is 1195 // the latch for inner-loop (see reason below), so bail out to prerserve 1196 // inner-loop metadata rather than eliminating 'BB' and attaching its metadata 1197 // to this inner-loop. 1198 // - The reason we believe 'BB' and 'BB->Pred' have different inner-most 1199 // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L, 1200 // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of 1201 // one self-looping basic block, which is contradictory with the assumption. 1202 // 1203 // To illustrate how inner-loop metadata is dropped: 1204 // 1205 // CFG Before 1206 // 1207 // BB is while.cond.exit, attached with loop metdata md2. 1208 // BB->Pred is for.body, attached with loop metadata md1. 1209 // 1210 // entry 1211 // | 1212 // v 1213 // ---> while.cond -------------> while.end 1214 // | | 1215 // | v 1216 // | while.body 1217 // | | 1218 // | v 1219 // | for.body <---- (md1) 1220 // | | |______| 1221 // | v 1222 // | while.cond.exit (md2) 1223 // | | 1224 // |_______| 1225 // 1226 // CFG After 1227 // 1228 // while.cond1 is the merge of while.cond.exit and while.cond above. 1229 // for.body is attached with md2, and md1 is dropped. 1230 // If LoopSimplify runs later (as a part of loop pass), it could create 1231 // dedicated exits for inner-loop (essentially adding `while.cond.exit` 1232 // back), but won't it won't see 'md1' nor restore it for the inner-loop. 1233 // 1234 // entry 1235 // | 1236 // v 1237 // ---> while.cond1 -------------> while.end 1238 // | | 1239 // | v 1240 // | while.body 1241 // | | 1242 // | v 1243 // | for.body <---- (md2) 1244 // |_______| |______| 1245 if (Instruction *TI = BB->getTerminator()) 1246 if (TI->hasMetadata(LLVMContext::MD_loop)) 1247 for (BasicBlock *Pred : predecessors(BB)) 1248 if (Instruction *PredTI = Pred->getTerminator()) 1249 if (PredTI->hasMetadata(LLVMContext::MD_loop)) 1250 return false; 1251 1252 if (BBKillable) 1253 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1254 else if (BBPhisMergeable) 1255 LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB); 1256 1257 SmallVector<DominatorTree::UpdateType, 32> Updates; 1258 1259 if (DTU) { 1260 // To avoid processing the same predecessor more than once. 1261 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1262 // All predecessors of BB (except the common predecessor) will be moved to 1263 // Succ. 1264 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1265 1266 for (auto *PredOfBB : predecessors(BB)) { 1267 // Do not modify those common predecessors of BB and Succ 1268 if (!SuccPreds.contains(PredOfBB)) 1269 if (SeenPreds.insert(PredOfBB).second) 1270 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1271 } 1272 1273 SeenPreds.clear(); 1274 1275 for (auto *PredOfBB : predecessors(BB)) 1276 // When BB cannot be killed, do not remove the edge between BB and 1277 // CommonPred. 1278 if (SeenPreds.insert(PredOfBB).second && PredOfBB != CommonPred) 1279 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1280 1281 if (BBKillable) 1282 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1283 } 1284 1285 if (isa<PHINode>(Succ->begin())) { 1286 // If there is more than one pred of succ, and there are PHI nodes in 1287 // the successor, then we need to add incoming edges for the PHI nodes 1288 // 1289 const PredBlockVector BBPreds(predecessors(BB)); 1290 1291 // Loop over all of the PHI nodes in the successor of BB. 1292 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1293 PHINode *PN = cast<PHINode>(I); 1294 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred); 1295 } 1296 } 1297 1298 if (Succ->getSinglePredecessor()) { 1299 // BB is the only predecessor of Succ, so Succ will end up with exactly 1300 // the same predecessors BB had. 1301 // Copy over any phi, debug or lifetime instruction. 1302 BB->getTerminator()->eraseFromParent(); 1303 Succ->splice(Succ->getFirstNonPHIIt(), BB); 1304 } else { 1305 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1306 // We explicitly check for such uses for merging phis. 1307 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1308 PN->eraseFromParent(); 1309 } 1310 } 1311 1312 // If the unconditional branch we replaced contains llvm.loop metadata, we 1313 // add the metadata to the branch instructions in the predecessors. 1314 if (Instruction *TI = BB->getTerminator()) 1315 if (MDNode *LoopMD = TI->getMetadata(LLVMContext::MD_loop)) 1316 for (BasicBlock *Pred : predecessors(BB)) 1317 Pred->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD); 1318 1319 if (BBKillable) { 1320 // Everything that jumped to BB now goes to Succ. 1321 BB->replaceAllUsesWith(Succ); 1322 1323 if (!Succ->hasName()) 1324 Succ->takeName(BB); 1325 1326 // Clear the successor list of BB to match updates applying to DTU later. 1327 if (BB->getTerminator()) 1328 BB->back().eraseFromParent(); 1329 1330 new UnreachableInst(BB->getContext(), BB); 1331 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1332 "applying corresponding DTU updates."); 1333 } else if (BBPhisMergeable) { 1334 // Everything except CommonPred that jumped to BB now goes to Succ. 1335 BB->replaceUsesWithIf(Succ, [BBPreds, CommonPred](Use &U) -> bool { 1336 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) 1337 return UseInst->getParent() != CommonPred && 1338 BBPreds.contains(UseInst->getParent()); 1339 return false; 1340 }); 1341 } 1342 1343 if (DTU) 1344 DTU->applyUpdates(Updates); 1345 1346 if (BBKillable) 1347 DeleteDeadBlock(BB, DTU); 1348 1349 return true; 1350 } 1351 1352 static bool 1353 EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB, 1354 SmallPtrSetImpl<PHINode *> &ToRemove) { 1355 // This implementation doesn't currently consider undef operands 1356 // specially. Theoretically, two phis which are identical except for 1357 // one having an undef where the other doesn't could be collapsed. 1358 1359 bool Changed = false; 1360 1361 // Examine each PHI. 1362 // Note that increment of I must *NOT* be in the iteration_expression, since 1363 // we don't want to immediately advance when we restart from the beginning. 1364 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1365 ++I; 1366 // Is there an identical PHI node in this basic block? 1367 // Note that we only look in the upper square's triangle, 1368 // we already checked that the lower triangle PHI's aren't identical. 1369 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1370 if (ToRemove.contains(DuplicatePN)) 1371 continue; 1372 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1373 continue; 1374 // A duplicate. Replace this PHI with the base PHI. 1375 ++NumPHICSEs; 1376 DuplicatePN->replaceAllUsesWith(PN); 1377 ToRemove.insert(DuplicatePN); 1378 Changed = true; 1379 1380 // The RAUW can change PHIs that we already visited. 1381 I = BB->begin(); 1382 break; // Start over from the beginning. 1383 } 1384 } 1385 return Changed; 1386 } 1387 1388 static bool 1389 EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB, 1390 SmallPtrSetImpl<PHINode *> &ToRemove) { 1391 // This implementation doesn't currently consider undef operands 1392 // specially. Theoretically, two phis which are identical except for 1393 // one having an undef where the other doesn't could be collapsed. 1394 1395 struct PHIDenseMapInfo { 1396 static PHINode *getEmptyKey() { 1397 return DenseMapInfo<PHINode *>::getEmptyKey(); 1398 } 1399 1400 static PHINode *getTombstoneKey() { 1401 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1402 } 1403 1404 static bool isSentinel(PHINode *PN) { 1405 return PN == getEmptyKey() || PN == getTombstoneKey(); 1406 } 1407 1408 // WARNING: this logic must be kept in sync with 1409 // Instruction::isIdenticalToWhenDefined()! 1410 static unsigned getHashValueImpl(PHINode *PN) { 1411 // Compute a hash value on the operands. Instcombine will likely have 1412 // sorted them, which helps expose duplicates, but we have to check all 1413 // the operands to be safe in case instcombine hasn't run. 1414 return static_cast<unsigned>(hash_combine( 1415 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1416 hash_combine_range(PN->block_begin(), PN->block_end()))); 1417 } 1418 1419 static unsigned getHashValue(PHINode *PN) { 1420 #ifndef NDEBUG 1421 // If -phicse-debug-hash was specified, return a constant -- this 1422 // will force all hashing to collide, so we'll exhaustively search 1423 // the table for a match, and the assertion in isEqual will fire if 1424 // there's a bug causing equal keys to hash differently. 1425 if (PHICSEDebugHash) 1426 return 0; 1427 #endif 1428 return getHashValueImpl(PN); 1429 } 1430 1431 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1432 if (isSentinel(LHS) || isSentinel(RHS)) 1433 return LHS == RHS; 1434 return LHS->isIdenticalTo(RHS); 1435 } 1436 1437 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1438 // These comparisons are nontrivial, so assert that equality implies 1439 // hash equality (DenseMap demands this as an invariant). 1440 bool Result = isEqualImpl(LHS, RHS); 1441 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1442 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1443 return Result; 1444 } 1445 }; 1446 1447 // Set of unique PHINodes. 1448 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1449 PHISet.reserve(4 * PHICSENumPHISmallSize); 1450 1451 // Examine each PHI. 1452 bool Changed = false; 1453 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1454 if (ToRemove.contains(PN)) 1455 continue; 1456 auto Inserted = PHISet.insert(PN); 1457 if (!Inserted.second) { 1458 // A duplicate. Replace this PHI with its duplicate. 1459 ++NumPHICSEs; 1460 PN->replaceAllUsesWith(*Inserted.first); 1461 ToRemove.insert(PN); 1462 Changed = true; 1463 1464 // The RAUW can change PHIs that we already visited. Start over from the 1465 // beginning. 1466 PHISet.clear(); 1467 I = BB->begin(); 1468 } 1469 } 1470 1471 return Changed; 1472 } 1473 1474 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB, 1475 SmallPtrSetImpl<PHINode *> &ToRemove) { 1476 if ( 1477 #ifndef NDEBUG 1478 !PHICSEDebugHash && 1479 #endif 1480 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1481 return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove); 1482 return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove); 1483 } 1484 1485 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1486 SmallPtrSet<PHINode *, 8> ToRemove; 1487 bool Changed = EliminateDuplicatePHINodes(BB, ToRemove); 1488 for (PHINode *PN : ToRemove) 1489 PN->eraseFromParent(); 1490 return Changed; 1491 } 1492 1493 Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign, 1494 const DataLayout &DL) { 1495 V = V->stripPointerCasts(); 1496 1497 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1498 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1499 // than the current alignment, as the known bits calculation should have 1500 // already taken it into account. However, this is not always the case, 1501 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1502 // doesn't. 1503 Align CurrentAlign = AI->getAlign(); 1504 if (PrefAlign <= CurrentAlign) 1505 return CurrentAlign; 1506 1507 // If the preferred alignment is greater than the natural stack alignment 1508 // then don't round up. This avoids dynamic stack realignment. 1509 MaybeAlign StackAlign = DL.getStackAlignment(); 1510 if (StackAlign && PrefAlign > *StackAlign) 1511 return CurrentAlign; 1512 AI->setAlignment(PrefAlign); 1513 return PrefAlign; 1514 } 1515 1516 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1517 // TODO: as above, this shouldn't be necessary. 1518 Align CurrentAlign = GO->getPointerAlignment(DL); 1519 if (PrefAlign <= CurrentAlign) 1520 return CurrentAlign; 1521 1522 // If there is a large requested alignment and we can, bump up the alignment 1523 // of the global. If the memory we set aside for the global may not be the 1524 // memory used by the final program then it is impossible for us to reliably 1525 // enforce the preferred alignment. 1526 if (!GO->canIncreaseAlignment()) 1527 return CurrentAlign; 1528 1529 if (GO->isThreadLocal()) { 1530 unsigned MaxTLSAlign = GO->getParent()->getMaxTLSAlignment() / CHAR_BIT; 1531 if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign)) 1532 PrefAlign = Align(MaxTLSAlign); 1533 } 1534 1535 GO->setAlignment(PrefAlign); 1536 return PrefAlign; 1537 } 1538 1539 return Align(1); 1540 } 1541 1542 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1543 const DataLayout &DL, 1544 const Instruction *CxtI, 1545 AssumptionCache *AC, 1546 const DominatorTree *DT) { 1547 assert(V->getType()->isPointerTy() && 1548 "getOrEnforceKnownAlignment expects a pointer!"); 1549 1550 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1551 unsigned TrailZ = Known.countMinTrailingZeros(); 1552 1553 // Avoid trouble with ridiculously large TrailZ values, such as 1554 // those computed from a null pointer. 1555 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1556 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1557 1558 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1559 1560 if (PrefAlign && *PrefAlign > Alignment) 1561 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1562 1563 // We don't need to make any adjustment. 1564 return Alignment; 1565 } 1566 1567 ///===---------------------------------------------------------------------===// 1568 /// Dbg Intrinsic utilities 1569 /// 1570 1571 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1572 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1573 DIExpression *DIExpr, 1574 PHINode *APN) { 1575 // Since we can't guarantee that the original dbg.declare intrinsic 1576 // is removed by LowerDbgDeclare(), we need to make sure that we are 1577 // not inserting the same dbg.value intrinsic over and over. 1578 SmallVector<DbgValueInst *, 1> DbgValues; 1579 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; 1580 findDbgValues(DbgValues, APN, &DbgVariableRecords); 1581 for (auto *DVI : DbgValues) { 1582 assert(is_contained(DVI->getValues(), APN)); 1583 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1584 return true; 1585 } 1586 for (auto *DVR : DbgVariableRecords) { 1587 assert(is_contained(DVR->location_ops(), APN)); 1588 if ((DVR->getVariable() == DIVar) && (DVR->getExpression() == DIExpr)) 1589 return true; 1590 } 1591 return false; 1592 } 1593 1594 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1595 /// (or fragment of the variable) described by \p DII. 1596 /// 1597 /// This is primarily intended as a helper for the different 1598 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted 1599 /// describes an alloca'd variable, so we need to use the alloc size of the 1600 /// value when doing the comparison. E.g. an i1 value will be identified as 1601 /// covering an n-bit fragment, if the store size of i1 is at least n bits. 1602 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1603 const DataLayout &DL = DII->getDataLayout(); 1604 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1605 if (std::optional<uint64_t> FragmentSize = 1606 DII->getExpression()->getActiveBits(DII->getVariable())) 1607 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1608 1609 // We can't always calculate the size of the DI variable (e.g. if it is a 1610 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1611 // intead. 1612 if (DII->isAddressOfVariable()) { 1613 // DII should have exactly 1 location when it is an address. 1614 assert(DII->getNumVariableLocationOps() == 1 && 1615 "address of variable must have exactly 1 location operand."); 1616 if (auto *AI = 1617 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1618 if (std::optional<TypeSize> FragmentSize = 1619 AI->getAllocationSizeInBits(DL)) { 1620 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1621 } 1622 } 1623 } 1624 // Could not determine size of variable. Conservatively return false. 1625 return false; 1626 } 1627 // RemoveDIs: duplicate implementation of the above, using DbgVariableRecords, 1628 // the replacement for dbg.values. 1629 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableRecord *DVR) { 1630 const DataLayout &DL = DVR->getModule()->getDataLayout(); 1631 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1632 if (std::optional<uint64_t> FragmentSize = 1633 DVR->getExpression()->getActiveBits(DVR->getVariable())) 1634 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1635 1636 // We can't always calculate the size of the DI variable (e.g. if it is a 1637 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1638 // intead. 1639 if (DVR->isAddressOfVariable()) { 1640 // DVR should have exactly 1 location when it is an address. 1641 assert(DVR->getNumVariableLocationOps() == 1 && 1642 "address of variable must have exactly 1 location operand."); 1643 if (auto *AI = 1644 dyn_cast_or_null<AllocaInst>(DVR->getVariableLocationOp(0))) { 1645 if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1646 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1647 } 1648 } 1649 } 1650 // Could not determine size of variable. Conservatively return false. 1651 return false; 1652 } 1653 1654 static void insertDbgValueOrDbgVariableRecord(DIBuilder &Builder, Value *DV, 1655 DILocalVariable *DIVar, 1656 DIExpression *DIExpr, 1657 const DebugLoc &NewLoc, 1658 BasicBlock::iterator Instr) { 1659 if (!UseNewDbgInfoFormat) { 1660 auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1661 (Instruction *)nullptr); 1662 DbgVal.get<Instruction *>()->insertBefore(Instr); 1663 } else { 1664 // RemoveDIs: if we're using the new debug-info format, allocate a 1665 // DbgVariableRecord directly instead of a dbg.value intrinsic. 1666 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1667 DbgVariableRecord *DV = 1668 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1669 Instr->getParent()->insertDbgRecordBefore(DV, Instr); 1670 } 1671 } 1672 1673 static void insertDbgValueOrDbgVariableRecordAfter( 1674 DIBuilder &Builder, Value *DV, DILocalVariable *DIVar, DIExpression *DIExpr, 1675 const DebugLoc &NewLoc, BasicBlock::iterator Instr) { 1676 if (!UseNewDbgInfoFormat) { 1677 auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1678 (Instruction *)nullptr); 1679 DbgVal.get<Instruction *>()->insertAfter(&*Instr); 1680 } else { 1681 // RemoveDIs: if we're using the new debug-info format, allocate a 1682 // DbgVariableRecord directly instead of a dbg.value intrinsic. 1683 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1684 DbgVariableRecord *DV = 1685 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1686 Instr->getParent()->insertDbgRecordAfter(DV, &*Instr); 1687 } 1688 } 1689 1690 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1691 /// that has an associated llvm.dbg.declare intrinsic. 1692 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1693 StoreInst *SI, DIBuilder &Builder) { 1694 assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII)); 1695 auto *DIVar = DII->getVariable(); 1696 assert(DIVar && "Missing variable"); 1697 auto *DIExpr = DII->getExpression(); 1698 Value *DV = SI->getValueOperand(); 1699 1700 DebugLoc NewLoc = getDebugValueLoc(DII); 1701 1702 // If the alloca describes the variable itself, i.e. the expression in the 1703 // dbg.declare doesn't start with a dereference, we can perform the 1704 // conversion if the value covers the entire fragment of DII. 1705 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1706 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1707 // We conservatively ignore other dereferences, because the following two are 1708 // not equivalent: 1709 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1710 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1711 // The former is adding 2 to the address of the variable, whereas the latter 1712 // is adding 2 to the value of the variable. As such, we insist on just a 1713 // deref expression. 1714 bool CanConvert = 1715 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1716 valueCoversEntireFragment(DV->getType(), DII)); 1717 if (CanConvert) { 1718 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1719 SI->getIterator()); 1720 return; 1721 } 1722 1723 // FIXME: If storing to a part of the variable described by the dbg.declare, 1724 // then we want to insert a dbg.value for the corresponding fragment. 1725 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII 1726 << '\n'); 1727 // For now, when there is a store to parts of the variable (but we do not 1728 // know which part) we insert an dbg.value intrinsic to indicate that we 1729 // know nothing about the variable's content. 1730 DV = PoisonValue::get(DV->getType()); 1731 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1732 SI->getIterator()); 1733 } 1734 1735 static DIExpression *dropInitialDeref(const DIExpression *DIExpr) { 1736 int NumEltDropped = DIExpr->getElements()[0] == dwarf::DW_OP_LLVM_arg ? 3 : 1; 1737 return DIExpression::get(DIExpr->getContext(), 1738 DIExpr->getElements().drop_front(NumEltDropped)); 1739 } 1740 1741 void llvm::InsertDebugValueAtStoreLoc(DbgVariableIntrinsic *DII, StoreInst *SI, 1742 DIBuilder &Builder) { 1743 auto *DIVar = DII->getVariable(); 1744 assert(DIVar && "Missing variable"); 1745 auto *DIExpr = DII->getExpression(); 1746 DIExpr = dropInitialDeref(DIExpr); 1747 Value *DV = SI->getValueOperand(); 1748 1749 DebugLoc NewLoc = getDebugValueLoc(DII); 1750 1751 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1752 SI->getIterator()); 1753 } 1754 1755 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1756 /// that has an associated llvm.dbg.declare intrinsic. 1757 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1758 LoadInst *LI, DIBuilder &Builder) { 1759 auto *DIVar = DII->getVariable(); 1760 auto *DIExpr = DII->getExpression(); 1761 assert(DIVar && "Missing variable"); 1762 1763 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1764 // FIXME: If only referring to a part of the variable described by the 1765 // dbg.declare, then we want to insert a dbg.value for the corresponding 1766 // fragment. 1767 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1768 << *DII << '\n'); 1769 return; 1770 } 1771 1772 DebugLoc NewLoc = getDebugValueLoc(DII); 1773 1774 // We are now tracking the loaded value instead of the address. In the 1775 // future if multi-location support is added to the IR, it might be 1776 // preferable to keep tracking both the loaded value and the original 1777 // address in case the alloca can not be elided. 1778 insertDbgValueOrDbgVariableRecordAfter(Builder, LI, DIVar, DIExpr, NewLoc, 1779 LI->getIterator()); 1780 } 1781 1782 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, 1783 StoreInst *SI, DIBuilder &Builder) { 1784 assert(DVR->isAddressOfVariable() || DVR->isDbgAssign()); 1785 auto *DIVar = DVR->getVariable(); 1786 assert(DIVar && "Missing variable"); 1787 auto *DIExpr = DVR->getExpression(); 1788 Value *DV = SI->getValueOperand(); 1789 1790 DebugLoc NewLoc = getDebugValueLoc(DVR); 1791 1792 // If the alloca describes the variable itself, i.e. the expression in the 1793 // dbg.declare doesn't start with a dereference, we can perform the 1794 // conversion if the value covers the entire fragment of DII. 1795 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1796 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1797 // We conservatively ignore other dereferences, because the following two are 1798 // not equivalent: 1799 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1800 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1801 // The former is adding 2 to the address of the variable, whereas the latter 1802 // is adding 2 to the value of the variable. As such, we insist on just a 1803 // deref expression. 1804 bool CanConvert = 1805 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1806 valueCoversEntireFragment(DV->getType(), DVR)); 1807 if (CanConvert) { 1808 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1809 SI->getIterator()); 1810 return; 1811 } 1812 1813 // FIXME: If storing to a part of the variable described by the dbg.declare, 1814 // then we want to insert a dbg.value for the corresponding fragment. 1815 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DVR 1816 << '\n'); 1817 assert(UseNewDbgInfoFormat); 1818 1819 // For now, when there is a store to parts of the variable (but we do not 1820 // know which part) we insert an dbg.value intrinsic to indicate that we 1821 // know nothing about the variable's content. 1822 DV = PoisonValue::get(DV->getType()); 1823 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1824 DbgVariableRecord *NewDVR = 1825 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1826 SI->getParent()->insertDbgRecordBefore(NewDVR, SI->getIterator()); 1827 } 1828 1829 void llvm::InsertDebugValueAtStoreLoc(DbgVariableRecord *DVR, StoreInst *SI, 1830 DIBuilder &Builder) { 1831 auto *DIVar = DVR->getVariable(); 1832 assert(DIVar && "Missing variable"); 1833 auto *DIExpr = DVR->getExpression(); 1834 DIExpr = dropInitialDeref(DIExpr); 1835 Value *DV = SI->getValueOperand(); 1836 1837 DebugLoc NewLoc = getDebugValueLoc(DVR); 1838 1839 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1840 SI->getIterator()); 1841 } 1842 1843 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1844 /// llvm.dbg.declare intrinsic. 1845 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1846 PHINode *APN, DIBuilder &Builder) { 1847 auto *DIVar = DII->getVariable(); 1848 auto *DIExpr = DII->getExpression(); 1849 assert(DIVar && "Missing variable"); 1850 1851 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1852 return; 1853 1854 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1855 // FIXME: If only referring to a part of the variable described by the 1856 // dbg.declare, then we want to insert a dbg.value for the corresponding 1857 // fragment. 1858 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1859 << *DII << '\n'); 1860 return; 1861 } 1862 1863 BasicBlock *BB = APN->getParent(); 1864 auto InsertionPt = BB->getFirstInsertionPt(); 1865 1866 DebugLoc NewLoc = getDebugValueLoc(DII); 1867 1868 // The block may be a catchswitch block, which does not have a valid 1869 // insertion point. 1870 // FIXME: Insert dbg.value markers in the successors when appropriate. 1871 if (InsertionPt != BB->end()) { 1872 insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc, 1873 InsertionPt); 1874 } 1875 } 1876 1877 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, LoadInst *LI, 1878 DIBuilder &Builder) { 1879 auto *DIVar = DVR->getVariable(); 1880 auto *DIExpr = DVR->getExpression(); 1881 assert(DIVar && "Missing variable"); 1882 1883 if (!valueCoversEntireFragment(LI->getType(), DVR)) { 1884 // FIXME: If only referring to a part of the variable described by the 1885 // dbg.declare, then we want to insert a DbgVariableRecord for the 1886 // corresponding fragment. 1887 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " 1888 << *DVR << '\n'); 1889 return; 1890 } 1891 1892 DebugLoc NewLoc = getDebugValueLoc(DVR); 1893 1894 // We are now tracking the loaded value instead of the address. In the 1895 // future if multi-location support is added to the IR, it might be 1896 // preferable to keep tracking both the loaded value and the original 1897 // address in case the alloca can not be elided. 1898 assert(UseNewDbgInfoFormat); 1899 1900 // Create a DbgVariableRecord directly and insert. 1901 ValueAsMetadata *LIVAM = ValueAsMetadata::get(LI); 1902 DbgVariableRecord *DV = 1903 new DbgVariableRecord(LIVAM, DIVar, DIExpr, NewLoc.get()); 1904 LI->getParent()->insertDbgRecordAfter(DV, LI); 1905 } 1906 1907 /// Determine whether this alloca is either a VLA or an array. 1908 static bool isArray(AllocaInst *AI) { 1909 return AI->isArrayAllocation() || 1910 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1911 } 1912 1913 /// Determine whether this alloca is a structure. 1914 static bool isStructure(AllocaInst *AI) { 1915 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1916 } 1917 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, PHINode *APN, 1918 DIBuilder &Builder) { 1919 auto *DIVar = DVR->getVariable(); 1920 auto *DIExpr = DVR->getExpression(); 1921 assert(DIVar && "Missing variable"); 1922 1923 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1924 return; 1925 1926 if (!valueCoversEntireFragment(APN->getType(), DVR)) { 1927 // FIXME: If only referring to a part of the variable described by the 1928 // dbg.declare, then we want to insert a DbgVariableRecord for the 1929 // corresponding fragment. 1930 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " 1931 << *DVR << '\n'); 1932 return; 1933 } 1934 1935 BasicBlock *BB = APN->getParent(); 1936 auto InsertionPt = BB->getFirstInsertionPt(); 1937 1938 DebugLoc NewLoc = getDebugValueLoc(DVR); 1939 1940 // The block may be a catchswitch block, which does not have a valid 1941 // insertion point. 1942 // FIXME: Insert DbgVariableRecord markers in the successors when appropriate. 1943 if (InsertionPt != BB->end()) { 1944 insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc, 1945 InsertionPt); 1946 } 1947 } 1948 1949 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1950 /// of llvm.dbg.value intrinsics. 1951 bool llvm::LowerDbgDeclare(Function &F) { 1952 bool Changed = false; 1953 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1954 SmallVector<DbgDeclareInst *, 4> Dbgs; 1955 SmallVector<DbgVariableRecord *> DVRs; 1956 for (auto &FI : F) { 1957 for (Instruction &BI : FI) { 1958 if (auto *DDI = dyn_cast<DbgDeclareInst>(&BI)) 1959 Dbgs.push_back(DDI); 1960 for (DbgVariableRecord &DVR : filterDbgVars(BI.getDbgRecordRange())) { 1961 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) 1962 DVRs.push_back(&DVR); 1963 } 1964 } 1965 } 1966 1967 if (Dbgs.empty() && DVRs.empty()) 1968 return Changed; 1969 1970 auto LowerOne = [&](auto *DDI) { 1971 AllocaInst *AI = 1972 dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0)); 1973 // If this is an alloca for a scalar variable, insert a dbg.value 1974 // at each load and store to the alloca and erase the dbg.declare. 1975 // The dbg.values allow tracking a variable even if it is not 1976 // stored on the stack, while the dbg.declare can only describe 1977 // the stack slot (and at a lexical-scope granularity). Later 1978 // passes will attempt to elide the stack slot. 1979 if (!AI || isArray(AI) || isStructure(AI)) 1980 return; 1981 1982 // A volatile load/store means that the alloca can't be elided anyway. 1983 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1984 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1985 return LI->isVolatile(); 1986 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1987 return SI->isVolatile(); 1988 return false; 1989 })) 1990 return; 1991 1992 SmallVector<const Value *, 8> WorkList; 1993 WorkList.push_back(AI); 1994 while (!WorkList.empty()) { 1995 const Value *V = WorkList.pop_back_val(); 1996 for (const auto &AIUse : V->uses()) { 1997 User *U = AIUse.getUser(); 1998 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1999 if (AIUse.getOperandNo() == 1) 2000 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 2001 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 2002 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 2003 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 2004 // This is a call by-value or some other instruction that takes a 2005 // pointer to the variable. Insert a *value* intrinsic that describes 2006 // the variable by dereferencing the alloca. 2007 if (!CI->isLifetimeStartOrEnd()) { 2008 DebugLoc NewLoc = getDebugValueLoc(DDI); 2009 auto *DerefExpr = 2010 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 2011 insertDbgValueOrDbgVariableRecord(DIB, AI, DDI->getVariable(), 2012 DerefExpr, NewLoc, 2013 CI->getIterator()); 2014 } 2015 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 2016 if (BI->getType()->isPointerTy()) 2017 WorkList.push_back(BI); 2018 } 2019 } 2020 } 2021 DDI->eraseFromParent(); 2022 Changed = true; 2023 }; 2024 2025 for_each(Dbgs, LowerOne); 2026 for_each(DVRs, LowerOne); 2027 2028 if (Changed) 2029 for (BasicBlock &BB : F) 2030 RemoveRedundantDbgInstrs(&BB); 2031 2032 return Changed; 2033 } 2034 2035 // RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the 2036 // debug-info out of the block's DbgVariableRecords rather than dbg.value 2037 // intrinsics. 2038 static void 2039 insertDbgVariableRecordsForPHIs(BasicBlock *BB, 2040 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2041 assert(BB && "No BasicBlock to clone DbgVariableRecord(s) from."); 2042 if (InsertedPHIs.size() == 0) 2043 return; 2044 2045 // Map existing PHI nodes to their DbgVariableRecords. 2046 DenseMap<Value *, DbgVariableRecord *> DbgValueMap; 2047 for (auto &I : *BB) { 2048 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 2049 for (Value *V : DVR.location_ops()) 2050 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2051 DbgValueMap.insert({Loc, &DVR}); 2052 } 2053 } 2054 if (DbgValueMap.size() == 0) 2055 return; 2056 2057 // Map a pair of the destination BB and old DbgVariableRecord to the new 2058 // DbgVariableRecord, so that if a DbgVariableRecord is being rewritten to use 2059 // more than one of the inserted PHIs in the same destination BB, we can 2060 // update the same DbgVariableRecord with all the new PHIs instead of creating 2061 // one copy for each. 2062 MapVector<std::pair<BasicBlock *, DbgVariableRecord *>, DbgVariableRecord *> 2063 NewDbgValueMap; 2064 // Then iterate through the new PHIs and look to see if they use one of the 2065 // previously mapped PHIs. If so, create a new DbgVariableRecord that will 2066 // propagate the info through the new PHI. If we use more than one new PHI in 2067 // a single destination BB with the same old dbg.value, merge the updates so 2068 // that we get a single new DbgVariableRecord with all the new PHIs. 2069 for (auto PHI : InsertedPHIs) { 2070 BasicBlock *Parent = PHI->getParent(); 2071 // Avoid inserting a debug-info record into an EH block. 2072 if (Parent->getFirstNonPHI()->isEHPad()) 2073 continue; 2074 for (auto VI : PHI->operand_values()) { 2075 auto V = DbgValueMap.find(VI); 2076 if (V != DbgValueMap.end()) { 2077 DbgVariableRecord *DbgII = cast<DbgVariableRecord>(V->second); 2078 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 2079 if (NewDI == NewDbgValueMap.end()) { 2080 DbgVariableRecord *NewDbgII = DbgII->clone(); 2081 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 2082 } 2083 DbgVariableRecord *NewDbgII = NewDI->second; 2084 // If PHI contains VI as an operand more than once, we may 2085 // replaced it in NewDbgII; confirm that it is present. 2086 if (is_contained(NewDbgII->location_ops(), VI)) 2087 NewDbgII->replaceVariableLocationOp(VI, PHI); 2088 } 2089 } 2090 } 2091 // Insert the new DbgVariableRecords into their destination blocks. 2092 for (auto DI : NewDbgValueMap) { 2093 BasicBlock *Parent = DI.first.first; 2094 DbgVariableRecord *NewDbgII = DI.second; 2095 auto InsertionPt = Parent->getFirstInsertionPt(); 2096 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2097 2098 Parent->insertDbgRecordBefore(NewDbgII, InsertionPt); 2099 } 2100 } 2101 2102 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 2103 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 2104 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2105 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 2106 if (InsertedPHIs.size() == 0) 2107 return; 2108 2109 insertDbgVariableRecordsForPHIs(BB, InsertedPHIs); 2110 2111 // Map existing PHI nodes to their dbg.values. 2112 ValueToValueMapTy DbgValueMap; 2113 for (auto &I : *BB) { 2114 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 2115 for (Value *V : DbgII->location_ops()) 2116 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2117 DbgValueMap.insert({Loc, DbgII}); 2118 } 2119 } 2120 if (DbgValueMap.size() == 0) 2121 return; 2122 2123 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 2124 // so that if a dbg.value is being rewritten to use more than one of the 2125 // inserted PHIs in the same destination BB, we can update the same dbg.value 2126 // with all the new PHIs instead of creating one copy for each. 2127 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 2128 DbgVariableIntrinsic *> 2129 NewDbgValueMap; 2130 // Then iterate through the new PHIs and look to see if they use one of the 2131 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 2132 // propagate the info through the new PHI. If we use more than one new PHI in 2133 // a single destination BB with the same old dbg.value, merge the updates so 2134 // that we get a single new dbg.value with all the new PHIs. 2135 for (auto *PHI : InsertedPHIs) { 2136 BasicBlock *Parent = PHI->getParent(); 2137 // Avoid inserting an intrinsic into an EH block. 2138 if (Parent->getFirstNonPHI()->isEHPad()) 2139 continue; 2140 for (auto *VI : PHI->operand_values()) { 2141 auto V = DbgValueMap.find(VI); 2142 if (V != DbgValueMap.end()) { 2143 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 2144 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 2145 if (NewDI == NewDbgValueMap.end()) { 2146 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 2147 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 2148 } 2149 DbgVariableIntrinsic *NewDbgII = NewDI->second; 2150 // If PHI contains VI as an operand more than once, we may 2151 // replaced it in NewDbgII; confirm that it is present. 2152 if (is_contained(NewDbgII->location_ops(), VI)) 2153 NewDbgII->replaceVariableLocationOp(VI, PHI); 2154 } 2155 } 2156 } 2157 // Insert thew new dbg.values into their destination blocks. 2158 for (auto DI : NewDbgValueMap) { 2159 BasicBlock *Parent = DI.first.first; 2160 auto *NewDbgII = DI.second; 2161 auto InsertionPt = Parent->getFirstInsertionPt(); 2162 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2163 NewDbgII->insertBefore(&*InsertionPt); 2164 } 2165 } 2166 2167 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 2168 DIBuilder &Builder, uint8_t DIExprFlags, 2169 int Offset) { 2170 TinyPtrVector<DbgDeclareInst *> DbgDeclares = findDbgDeclares(Address); 2171 TinyPtrVector<DbgVariableRecord *> DVRDeclares = findDVRDeclares(Address); 2172 2173 auto ReplaceOne = [&](auto *DII) { 2174 assert(DII->getVariable() && "Missing variable"); 2175 auto *DIExpr = DII->getExpression(); 2176 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 2177 DII->setExpression(DIExpr); 2178 DII->replaceVariableLocationOp(Address, NewAddress); 2179 }; 2180 2181 for_each(DbgDeclares, ReplaceOne); 2182 for_each(DVRDeclares, ReplaceOne); 2183 2184 return !DbgDeclares.empty() || !DVRDeclares.empty(); 2185 } 2186 2187 static void updateOneDbgValueForAlloca(const DebugLoc &Loc, 2188 DILocalVariable *DIVar, 2189 DIExpression *DIExpr, Value *NewAddress, 2190 DbgValueInst *DVI, 2191 DbgVariableRecord *DVR, 2192 DIBuilder &Builder, int Offset) { 2193 assert(DIVar && "Missing variable"); 2194 2195 // This is an alloca-based dbg.value/DbgVariableRecord. The first thing it 2196 // should do with the alloca pointer is dereference it. Otherwise we don't 2197 // know how to handle it and give up. 2198 if (!DIExpr || DIExpr->getNumElements() < 1 || 2199 DIExpr->getElement(0) != dwarf::DW_OP_deref) 2200 return; 2201 2202 // Insert the offset before the first deref. 2203 if (Offset) 2204 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 2205 2206 if (DVI) { 2207 DVI->setExpression(DIExpr); 2208 DVI->replaceVariableLocationOp(0u, NewAddress); 2209 } else { 2210 assert(DVR); 2211 DVR->setExpression(DIExpr); 2212 DVR->replaceVariableLocationOp(0u, NewAddress); 2213 } 2214 } 2215 2216 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 2217 DIBuilder &Builder, int Offset) { 2218 SmallVector<DbgValueInst *, 1> DbgUsers; 2219 SmallVector<DbgVariableRecord *, 1> DPUsers; 2220 findDbgValues(DbgUsers, AI, &DPUsers); 2221 2222 // Attempt to replace dbg.values that use this alloca. 2223 for (auto *DVI : DbgUsers) 2224 updateOneDbgValueForAlloca(DVI->getDebugLoc(), DVI->getVariable(), 2225 DVI->getExpression(), NewAllocaAddress, DVI, 2226 nullptr, Builder, Offset); 2227 2228 // Replace any DbgVariableRecords that use this alloca. 2229 for (DbgVariableRecord *DVR : DPUsers) 2230 updateOneDbgValueForAlloca(DVR->getDebugLoc(), DVR->getVariable(), 2231 DVR->getExpression(), NewAllocaAddress, nullptr, 2232 DVR, Builder, Offset); 2233 } 2234 2235 /// Where possible to salvage debug information for \p I do so. 2236 /// If not possible mark undef. 2237 void llvm::salvageDebugInfo(Instruction &I) { 2238 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2239 SmallVector<DbgVariableRecord *, 1> DPUsers; 2240 findDbgUsers(DbgUsers, &I, &DPUsers); 2241 salvageDebugInfoForDbgValues(I, DbgUsers, DPUsers); 2242 } 2243 2244 template <typename T> static void salvageDbgAssignAddress(T *Assign) { 2245 Instruction *I = dyn_cast<Instruction>(Assign->getAddress()); 2246 // Only instructions can be salvaged at the moment. 2247 if (!I) 2248 return; 2249 2250 assert(!Assign->getAddressExpression()->getFragmentInfo().has_value() && 2251 "address-expression shouldn't have fragment info"); 2252 2253 // The address component of a dbg.assign cannot be variadic. 2254 uint64_t CurrentLocOps = 0; 2255 SmallVector<Value *, 4> AdditionalValues; 2256 SmallVector<uint64_t, 16> Ops; 2257 Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues); 2258 2259 // Check if the salvage failed. 2260 if (!NewV) 2261 return; 2262 2263 DIExpression *SalvagedExpr = DIExpression::appendOpsToArg( 2264 Assign->getAddressExpression(), Ops, 0, /*StackValue=*/false); 2265 assert(!SalvagedExpr->getFragmentInfo().has_value() && 2266 "address-expression shouldn't have fragment info"); 2267 2268 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2269 2270 // Salvage succeeds if no additional values are required. 2271 if (AdditionalValues.empty()) { 2272 Assign->setAddress(NewV); 2273 Assign->setAddressExpression(SalvagedExpr); 2274 } else { 2275 Assign->setKillAddress(); 2276 } 2277 } 2278 2279 void llvm::salvageDebugInfoForDbgValues( 2280 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers, 2281 ArrayRef<DbgVariableRecord *> DPUsers) { 2282 // These are arbitrary chosen limits on the maximum number of values and the 2283 // maximum size of a debug expression we can salvage up to, used for 2284 // performance reasons. 2285 const unsigned MaxDebugArgs = 16; 2286 const unsigned MaxExpressionSize = 128; 2287 bool Salvaged = false; 2288 2289 for (auto *DII : DbgUsers) { 2290 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) { 2291 if (DAI->getAddress() == &I) { 2292 salvageDbgAssignAddress(DAI); 2293 Salvaged = true; 2294 } 2295 if (DAI->getValue() != &I) 2296 continue; 2297 } 2298 2299 // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly 2300 // pointing out the value as a DWARF memory location description. 2301 bool StackValue = isa<DbgValueInst>(DII); 2302 auto DIILocation = DII->location_ops(); 2303 assert( 2304 is_contained(DIILocation, &I) && 2305 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2306 SmallVector<Value *, 4> AdditionalValues; 2307 // `I` may appear more than once in DII's location ops, and each use of `I` 2308 // must be updated in the DIExpression and potentially have additional 2309 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 2310 // DIILocation. 2311 Value *Op0 = nullptr; 2312 DIExpression *SalvagedExpr = DII->getExpression(); 2313 auto LocItr = find(DIILocation, &I); 2314 while (SalvagedExpr && LocItr != DIILocation.end()) { 2315 SmallVector<uint64_t, 16> Ops; 2316 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 2317 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2318 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2319 if (!Op0) 2320 break; 2321 SalvagedExpr = 2322 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2323 LocItr = std::find(++LocItr, DIILocation.end(), &I); 2324 } 2325 // salvageDebugInfoImpl should fail on examining the first element of 2326 // DbgUsers, or none of them. 2327 if (!Op0) 2328 break; 2329 2330 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2331 DII->replaceVariableLocationOp(&I, Op0); 2332 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 2333 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2334 DII->setExpression(SalvagedExpr); 2335 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && 2336 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 2337 MaxDebugArgs) { 2338 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2339 } else { 2340 // Do not salvage using DIArgList for dbg.declare, as it is not currently 2341 // supported in those instructions. Also do not salvage if the resulting 2342 // DIArgList would contain an unreasonably large number of values. 2343 DII->setKillLocation(); 2344 } 2345 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 2346 Salvaged = true; 2347 } 2348 // Duplicate of above block for DbgVariableRecords. 2349 for (auto *DVR : DPUsers) { 2350 if (DVR->isDbgAssign()) { 2351 if (DVR->getAddress() == &I) { 2352 salvageDbgAssignAddress(DVR); 2353 Salvaged = true; 2354 } 2355 if (DVR->getValue() != &I) 2356 continue; 2357 } 2358 2359 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 2360 // are implicitly pointing out the value as a DWARF memory location 2361 // description. 2362 bool StackValue = 2363 DVR->getType() != DbgVariableRecord::LocationType::Declare; 2364 auto DVRLocation = DVR->location_ops(); 2365 assert( 2366 is_contained(DVRLocation, &I) && 2367 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2368 SmallVector<Value *, 4> AdditionalValues; 2369 // 'I' may appear more than once in DVR's location ops, and each use of 'I' 2370 // must be updated in the DIExpression and potentially have additional 2371 // values added; thus we call salvageDebugInfoImpl for each 'I' instance in 2372 // DVRLocation. 2373 Value *Op0 = nullptr; 2374 DIExpression *SalvagedExpr = DVR->getExpression(); 2375 auto LocItr = find(DVRLocation, &I); 2376 while (SalvagedExpr && LocItr != DVRLocation.end()) { 2377 SmallVector<uint64_t, 16> Ops; 2378 unsigned LocNo = std::distance(DVRLocation.begin(), LocItr); 2379 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2380 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2381 if (!Op0) 2382 break; 2383 SalvagedExpr = 2384 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2385 LocItr = std::find(++LocItr, DVRLocation.end(), &I); 2386 } 2387 // salvageDebugInfoImpl should fail on examining the first element of 2388 // DbgUsers, or none of them. 2389 if (!Op0) 2390 break; 2391 2392 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2393 DVR->replaceVariableLocationOp(&I, Op0); 2394 bool IsValidSalvageExpr = 2395 SalvagedExpr->getNumElements() <= MaxExpressionSize; 2396 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2397 DVR->setExpression(SalvagedExpr); 2398 } else if (DVR->getType() != DbgVariableRecord::LocationType::Declare && 2399 IsValidSalvageExpr && 2400 DVR->getNumVariableLocationOps() + AdditionalValues.size() <= 2401 MaxDebugArgs) { 2402 DVR->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2403 } else { 2404 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 2405 // currently only valid for stack value expressions. 2406 // Also do not salvage if the resulting DIArgList would contain an 2407 // unreasonably large number of values. 2408 DVR->setKillLocation(); 2409 } 2410 LLVM_DEBUG(dbgs() << "SALVAGE: " << DVR << '\n'); 2411 Salvaged = true; 2412 } 2413 2414 if (Salvaged) 2415 return; 2416 2417 for (auto *DII : DbgUsers) 2418 DII->setKillLocation(); 2419 2420 for (auto *DVR : DPUsers) 2421 DVR->setKillLocation(); 2422 } 2423 2424 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 2425 uint64_t CurrentLocOps, 2426 SmallVectorImpl<uint64_t> &Opcodes, 2427 SmallVectorImpl<Value *> &AdditionalValues) { 2428 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 2429 // Rewrite a GEP into a DIExpression. 2430 MapVector<Value *, APInt> VariableOffsets; 2431 APInt ConstantOffset(BitWidth, 0); 2432 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 2433 return nullptr; 2434 if (!VariableOffsets.empty() && !CurrentLocOps) { 2435 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 2436 CurrentLocOps = 1; 2437 } 2438 for (const auto &Offset : VariableOffsets) { 2439 AdditionalValues.push_back(Offset.first); 2440 assert(Offset.second.isStrictlyPositive() && 2441 "Expected strictly positive multiplier for offset."); 2442 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 2443 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 2444 dwarf::DW_OP_plus}); 2445 } 2446 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 2447 return GEP->getOperand(0); 2448 } 2449 2450 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 2451 switch (Opcode) { 2452 case Instruction::Add: 2453 return dwarf::DW_OP_plus; 2454 case Instruction::Sub: 2455 return dwarf::DW_OP_minus; 2456 case Instruction::Mul: 2457 return dwarf::DW_OP_mul; 2458 case Instruction::SDiv: 2459 return dwarf::DW_OP_div; 2460 case Instruction::SRem: 2461 return dwarf::DW_OP_mod; 2462 case Instruction::Or: 2463 return dwarf::DW_OP_or; 2464 case Instruction::And: 2465 return dwarf::DW_OP_and; 2466 case Instruction::Xor: 2467 return dwarf::DW_OP_xor; 2468 case Instruction::Shl: 2469 return dwarf::DW_OP_shl; 2470 case Instruction::LShr: 2471 return dwarf::DW_OP_shr; 2472 case Instruction::AShr: 2473 return dwarf::DW_OP_shra; 2474 default: 2475 // TODO: Salvage from each kind of binop we know about. 2476 return 0; 2477 } 2478 } 2479 2480 static void handleSSAValueOperands(uint64_t CurrentLocOps, 2481 SmallVectorImpl<uint64_t> &Opcodes, 2482 SmallVectorImpl<Value *> &AdditionalValues, 2483 Instruction *I) { 2484 if (!CurrentLocOps) { 2485 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 2486 CurrentLocOps = 1; 2487 } 2488 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 2489 AdditionalValues.push_back(I->getOperand(1)); 2490 } 2491 2492 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 2493 SmallVectorImpl<uint64_t> &Opcodes, 2494 SmallVectorImpl<Value *> &AdditionalValues) { 2495 // Handle binary operations with constant integer operands as a special case. 2496 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 2497 // Values wider than 64 bits cannot be represented within a DIExpression. 2498 if (ConstInt && ConstInt->getBitWidth() > 64) 2499 return nullptr; 2500 2501 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 2502 // Push any Constant Int operand onto the expression stack. 2503 if (ConstInt) { 2504 uint64_t Val = ConstInt->getSExtValue(); 2505 // Add or Sub Instructions with a constant operand can potentially be 2506 // simplified. 2507 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 2508 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 2509 DIExpression::appendOffset(Opcodes, Offset); 2510 return BI->getOperand(0); 2511 } 2512 Opcodes.append({dwarf::DW_OP_constu, Val}); 2513 } else { 2514 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, BI); 2515 } 2516 2517 // Add salvaged binary operator to expression stack, if it has a valid 2518 // representation in a DIExpression. 2519 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 2520 if (!DwarfBinOp) 2521 return nullptr; 2522 Opcodes.push_back(DwarfBinOp); 2523 return BI->getOperand(0); 2524 } 2525 2526 uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) { 2527 // The signedness of the operation is implicit in the typed stack, signed and 2528 // unsigned instructions map to the same DWARF opcode. 2529 switch (Pred) { 2530 case CmpInst::ICMP_EQ: 2531 return dwarf::DW_OP_eq; 2532 case CmpInst::ICMP_NE: 2533 return dwarf::DW_OP_ne; 2534 case CmpInst::ICMP_UGT: 2535 case CmpInst::ICMP_SGT: 2536 return dwarf::DW_OP_gt; 2537 case CmpInst::ICMP_UGE: 2538 case CmpInst::ICMP_SGE: 2539 return dwarf::DW_OP_ge; 2540 case CmpInst::ICMP_ULT: 2541 case CmpInst::ICMP_SLT: 2542 return dwarf::DW_OP_lt; 2543 case CmpInst::ICMP_ULE: 2544 case CmpInst::ICMP_SLE: 2545 return dwarf::DW_OP_le; 2546 default: 2547 return 0; 2548 } 2549 } 2550 2551 Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps, 2552 SmallVectorImpl<uint64_t> &Opcodes, 2553 SmallVectorImpl<Value *> &AdditionalValues) { 2554 // Handle icmp operations with constant integer operands as a special case. 2555 auto *ConstInt = dyn_cast<ConstantInt>(Icmp->getOperand(1)); 2556 // Values wider than 64 bits cannot be represented within a DIExpression. 2557 if (ConstInt && ConstInt->getBitWidth() > 64) 2558 return nullptr; 2559 // Push any Constant Int operand onto the expression stack. 2560 if (ConstInt) { 2561 if (Icmp->isSigned()) 2562 Opcodes.push_back(dwarf::DW_OP_consts); 2563 else 2564 Opcodes.push_back(dwarf::DW_OP_constu); 2565 uint64_t Val = ConstInt->getSExtValue(); 2566 Opcodes.push_back(Val); 2567 } else { 2568 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, Icmp); 2569 } 2570 2571 // Add salvaged binary operator to expression stack, if it has a valid 2572 // representation in a DIExpression. 2573 uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Icmp->getPredicate()); 2574 if (!DwarfIcmpOp) 2575 return nullptr; 2576 Opcodes.push_back(DwarfIcmpOp); 2577 return Icmp->getOperand(0); 2578 } 2579 2580 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 2581 SmallVectorImpl<uint64_t> &Ops, 2582 SmallVectorImpl<Value *> &AdditionalValues) { 2583 auto &M = *I.getModule(); 2584 auto &DL = M.getDataLayout(); 2585 2586 if (auto *CI = dyn_cast<CastInst>(&I)) { 2587 Value *FromValue = CI->getOperand(0); 2588 // No-op casts are irrelevant for debug info. 2589 if (CI->isNoopCast(DL)) { 2590 return FromValue; 2591 } 2592 2593 Type *Type = CI->getType(); 2594 if (Type->isPointerTy()) 2595 Type = DL.getIntPtrType(Type); 2596 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 2597 if (Type->isVectorTy() || 2598 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 2599 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 2600 return nullptr; 2601 2602 llvm::Type *FromType = FromValue->getType(); 2603 if (FromType->isPointerTy()) 2604 FromType = DL.getIntPtrType(FromType); 2605 2606 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 2607 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 2608 2609 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 2610 isa<SExtInst>(&I)); 2611 Ops.append(ExtOps.begin(), ExtOps.end()); 2612 return FromValue; 2613 } 2614 2615 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 2616 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 2617 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 2618 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 2619 if (auto *IC = dyn_cast<ICmpInst>(&I)) 2620 return getSalvageOpsForIcmpOp(IC, CurrentLocOps, Ops, AdditionalValues); 2621 2622 // *Not* to do: we should not attempt to salvage load instructions, 2623 // because the validity and lifetime of a dbg.value containing 2624 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 2625 return nullptr; 2626 } 2627 2628 /// A replacement for a dbg.value expression. 2629 using DbgValReplacement = std::optional<DIExpression *>; 2630 2631 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 2632 /// possibly moving/undefing users to prevent use-before-def. Returns true if 2633 /// changes are made. 2634 static bool rewriteDebugUsers( 2635 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 2636 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr, 2637 function_ref<DbgValReplacement(DbgVariableRecord &DVR)> RewriteDVRExpr) { 2638 // Find debug users of From. 2639 SmallVector<DbgVariableIntrinsic *, 1> Users; 2640 SmallVector<DbgVariableRecord *, 1> DPUsers; 2641 findDbgUsers(Users, &From, &DPUsers); 2642 if (Users.empty() && DPUsers.empty()) 2643 return false; 2644 2645 // Prevent use-before-def of To. 2646 bool Changed = false; 2647 2648 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 2649 SmallPtrSet<DbgVariableRecord *, 1> UndefOrSalvageDVR; 2650 if (isa<Instruction>(&To)) { 2651 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 2652 2653 for (auto *DII : Users) { 2654 // It's common to see a debug user between From and DomPoint. Move it 2655 // after DomPoint to preserve the variable update without any reordering. 2656 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 2657 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 2658 DII->moveAfter(&DomPoint); 2659 Changed = true; 2660 2661 // Users which otherwise aren't dominated by the replacement value must 2662 // be salvaged or deleted. 2663 } else if (!DT.dominates(&DomPoint, DII)) { 2664 UndefOrSalvage.insert(DII); 2665 } 2666 } 2667 2668 // DbgVariableRecord implementation of the above. 2669 for (auto *DVR : DPUsers) { 2670 Instruction *MarkedInstr = DVR->getMarker()->MarkedInstr; 2671 Instruction *NextNonDebug = MarkedInstr; 2672 // The next instruction might still be a dbg.declare, skip over it. 2673 if (isa<DbgVariableIntrinsic>(NextNonDebug)) 2674 NextNonDebug = NextNonDebug->getNextNonDebugInstruction(); 2675 2676 if (DomPointAfterFrom && NextNonDebug == &DomPoint) { 2677 LLVM_DEBUG(dbgs() << "MOVE: " << *DVR << '\n'); 2678 DVR->removeFromParent(); 2679 // Ensure there's a marker. 2680 DomPoint.getParent()->insertDbgRecordAfter(DVR, &DomPoint); 2681 Changed = true; 2682 } else if (!DT.dominates(&DomPoint, MarkedInstr)) { 2683 UndefOrSalvageDVR.insert(DVR); 2684 } 2685 } 2686 } 2687 2688 // Update debug users without use-before-def risk. 2689 for (auto *DII : Users) { 2690 if (UndefOrSalvage.count(DII)) 2691 continue; 2692 2693 DbgValReplacement DVRepl = RewriteExpr(*DII); 2694 if (!DVRepl) 2695 continue; 2696 2697 DII->replaceVariableLocationOp(&From, &To); 2698 DII->setExpression(*DVRepl); 2699 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2700 Changed = true; 2701 } 2702 for (auto *DVR : DPUsers) { 2703 if (UndefOrSalvageDVR.count(DVR)) 2704 continue; 2705 2706 DbgValReplacement DVRepl = RewriteDVRExpr(*DVR); 2707 if (!DVRepl) 2708 continue; 2709 2710 DVR->replaceVariableLocationOp(&From, &To); 2711 DVR->setExpression(*DVRepl); 2712 LLVM_DEBUG(dbgs() << "REWRITE: " << DVR << '\n'); 2713 Changed = true; 2714 } 2715 2716 if (!UndefOrSalvage.empty() || !UndefOrSalvageDVR.empty()) { 2717 // Try to salvage the remaining debug users. 2718 salvageDebugInfo(From); 2719 Changed = true; 2720 } 2721 2722 return Changed; 2723 } 2724 2725 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2726 /// losslessly preserve the bits and semantics of the value. This predicate is 2727 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2728 /// 2729 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2730 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2731 /// and also does not allow lossless pointer <-> integer conversions. 2732 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2733 Type *ToTy) { 2734 // Trivially compatible types. 2735 if (FromTy == ToTy) 2736 return true; 2737 2738 // Handle compatible pointer <-> integer conversions. 2739 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2740 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2741 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2742 !DL.isNonIntegralPointerType(ToTy); 2743 return SameSize && LosslessConversion; 2744 } 2745 2746 // TODO: This is not exhaustive. 2747 return false; 2748 } 2749 2750 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2751 Instruction &DomPoint, DominatorTree &DT) { 2752 // Exit early if From has no debug users. 2753 if (!From.isUsedByMetadata()) 2754 return false; 2755 2756 assert(&From != &To && "Can't replace something with itself"); 2757 2758 Type *FromTy = From.getType(); 2759 Type *ToTy = To.getType(); 2760 2761 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2762 return DII.getExpression(); 2763 }; 2764 auto IdentityDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { 2765 return DVR.getExpression(); 2766 }; 2767 2768 // Handle no-op conversions. 2769 Module &M = *From.getModule(); 2770 const DataLayout &DL = M.getDataLayout(); 2771 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2772 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR); 2773 2774 // Handle integer-to-integer widening and narrowing. 2775 // FIXME: Use DW_OP_convert when it's available everywhere. 2776 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2777 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2778 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2779 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2780 2781 // When the width of the result grows, assume that a debugger will only 2782 // access the low `FromBits` bits when inspecting the source variable. 2783 if (FromBits < ToBits) 2784 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR); 2785 2786 // The width of the result has shrunk. Use sign/zero extension to describe 2787 // the source variable's high bits. 2788 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2789 DILocalVariable *Var = DII.getVariable(); 2790 2791 // Without knowing signedness, sign/zero extension isn't possible. 2792 auto Signedness = Var->getSignedness(); 2793 if (!Signedness) 2794 return std::nullopt; 2795 2796 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2797 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2798 Signed); 2799 }; 2800 // RemoveDIs: duplicate implementation working on DbgVariableRecords rather 2801 // than on dbg.value intrinsics. 2802 auto SignOrZeroExtDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { 2803 DILocalVariable *Var = DVR.getVariable(); 2804 2805 // Without knowing signedness, sign/zero extension isn't possible. 2806 auto Signedness = Var->getSignedness(); 2807 if (!Signedness) 2808 return std::nullopt; 2809 2810 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2811 return DIExpression::appendExt(DVR.getExpression(), ToBits, FromBits, 2812 Signed); 2813 }; 2814 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt, 2815 SignOrZeroExtDVR); 2816 } 2817 2818 // TODO: Floating-point conversions, vectors. 2819 return false; 2820 } 2821 2822 bool llvm::handleUnreachableTerminator( 2823 Instruction *I, SmallVectorImpl<Value *> &PoisonedValues) { 2824 bool Changed = false; 2825 // RemoveDIs: erase debug-info on this instruction manually. 2826 I->dropDbgRecords(); 2827 for (Use &U : I->operands()) { 2828 Value *Op = U.get(); 2829 if (isa<Instruction>(Op) && !Op->getType()->isTokenTy()) { 2830 U.set(PoisonValue::get(Op->getType())); 2831 PoisonedValues.push_back(Op); 2832 Changed = true; 2833 } 2834 } 2835 2836 return Changed; 2837 } 2838 2839 std::pair<unsigned, unsigned> 2840 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2841 unsigned NumDeadInst = 0; 2842 unsigned NumDeadDbgInst = 0; 2843 // Delete the instructions backwards, as it has a reduced likelihood of 2844 // having to update as many def-use and use-def chains. 2845 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2846 SmallVector<Value *> Uses; 2847 handleUnreachableTerminator(EndInst, Uses); 2848 2849 while (EndInst != &BB->front()) { 2850 // Delete the next to last instruction. 2851 Instruction *Inst = &*--EndInst->getIterator(); 2852 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2853 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType())); 2854 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2855 // EHPads can't have DbgVariableRecords attached to them, but it might be 2856 // possible for things with token type. 2857 Inst->dropDbgRecords(); 2858 EndInst = Inst; 2859 continue; 2860 } 2861 if (isa<DbgInfoIntrinsic>(Inst)) 2862 ++NumDeadDbgInst; 2863 else 2864 ++NumDeadInst; 2865 // RemoveDIs: erasing debug-info must be done manually. 2866 Inst->dropDbgRecords(); 2867 Inst->eraseFromParent(); 2868 } 2869 return {NumDeadInst, NumDeadDbgInst}; 2870 } 2871 2872 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2873 DomTreeUpdater *DTU, 2874 MemorySSAUpdater *MSSAU) { 2875 BasicBlock *BB = I->getParent(); 2876 2877 if (MSSAU) 2878 MSSAU->changeToUnreachable(I); 2879 2880 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2881 2882 // Loop over all of the successors, removing BB's entry from any PHI 2883 // nodes. 2884 for (BasicBlock *Successor : successors(BB)) { 2885 Successor->removePredecessor(BB, PreserveLCSSA); 2886 if (DTU) 2887 UniqueSuccessors.insert(Successor); 2888 } 2889 auto *UI = new UnreachableInst(I->getContext(), I->getIterator()); 2890 UI->setDebugLoc(I->getDebugLoc()); 2891 2892 // All instructions after this are dead. 2893 unsigned NumInstrsRemoved = 0; 2894 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2895 while (BBI != BBE) { 2896 if (!BBI->use_empty()) 2897 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 2898 BBI++->eraseFromParent(); 2899 ++NumInstrsRemoved; 2900 } 2901 if (DTU) { 2902 SmallVector<DominatorTree::UpdateType, 8> Updates; 2903 Updates.reserve(UniqueSuccessors.size()); 2904 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2905 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2906 DTU->applyUpdates(Updates); 2907 } 2908 BB->flushTerminatorDbgRecords(); 2909 return NumInstrsRemoved; 2910 } 2911 2912 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2913 SmallVector<Value *, 8> Args(II->args()); 2914 SmallVector<OperandBundleDef, 1> OpBundles; 2915 II->getOperandBundlesAsDefs(OpBundles); 2916 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2917 II->getCalledOperand(), Args, OpBundles); 2918 NewCall->setCallingConv(II->getCallingConv()); 2919 NewCall->setAttributes(II->getAttributes()); 2920 NewCall->setDebugLoc(II->getDebugLoc()); 2921 NewCall->copyMetadata(*II); 2922 2923 // If the invoke had profile metadata, try converting them for CallInst. 2924 uint64_t TotalWeight; 2925 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2926 // Set the total weight if it fits into i32, otherwise reset. 2927 MDBuilder MDB(NewCall->getContext()); 2928 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2929 ? nullptr 2930 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2931 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2932 } 2933 2934 return NewCall; 2935 } 2936 2937 // changeToCall - Convert the specified invoke into a normal call. 2938 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2939 CallInst *NewCall = createCallMatchingInvoke(II); 2940 NewCall->takeName(II); 2941 NewCall->insertBefore(II); 2942 II->replaceAllUsesWith(NewCall); 2943 2944 // Follow the call by a branch to the normal destination. 2945 BasicBlock *NormalDestBB = II->getNormalDest(); 2946 BranchInst::Create(NormalDestBB, II->getIterator()); 2947 2948 // Update PHI nodes in the unwind destination 2949 BasicBlock *BB = II->getParent(); 2950 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2951 UnwindDestBB->removePredecessor(BB); 2952 II->eraseFromParent(); 2953 if (DTU) 2954 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2955 return NewCall; 2956 } 2957 2958 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2959 BasicBlock *UnwindEdge, 2960 DomTreeUpdater *DTU) { 2961 BasicBlock *BB = CI->getParent(); 2962 2963 // Convert this function call into an invoke instruction. First, split the 2964 // basic block. 2965 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2966 CI->getName() + ".noexc"); 2967 2968 // Delete the unconditional branch inserted by SplitBlock 2969 BB->back().eraseFromParent(); 2970 2971 // Create the new invoke instruction. 2972 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2973 SmallVector<OperandBundleDef, 1> OpBundles; 2974 2975 CI->getOperandBundlesAsDefs(OpBundles); 2976 2977 // Note: we're round tripping operand bundles through memory here, and that 2978 // can potentially be avoided with a cleverer API design that we do not have 2979 // as of this time. 2980 2981 InvokeInst *II = 2982 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2983 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2984 II->setDebugLoc(CI->getDebugLoc()); 2985 II->setCallingConv(CI->getCallingConv()); 2986 II->setAttributes(CI->getAttributes()); 2987 II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof)); 2988 2989 if (DTU) 2990 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2991 2992 // Make sure that anything using the call now uses the invoke! This also 2993 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2994 CI->replaceAllUsesWith(II); 2995 2996 // Delete the original call 2997 Split->front().eraseFromParent(); 2998 return Split; 2999 } 3000 3001 static bool markAliveBlocks(Function &F, 3002 SmallPtrSetImpl<BasicBlock *> &Reachable, 3003 DomTreeUpdater *DTU = nullptr) { 3004 SmallVector<BasicBlock*, 128> Worklist; 3005 BasicBlock *BB = &F.front(); 3006 Worklist.push_back(BB); 3007 Reachable.insert(BB); 3008 bool Changed = false; 3009 do { 3010 BB = Worklist.pop_back_val(); 3011 3012 // Do a quick scan of the basic block, turning any obviously unreachable 3013 // instructions into LLVM unreachable insts. The instruction combining pass 3014 // canonicalizes unreachable insts into stores to null or undef. 3015 for (Instruction &I : *BB) { 3016 if (auto *CI = dyn_cast<CallInst>(&I)) { 3017 Value *Callee = CI->getCalledOperand(); 3018 // Handle intrinsic calls. 3019 if (Function *F = dyn_cast<Function>(Callee)) { 3020 auto IntrinsicID = F->getIntrinsicID(); 3021 // Assumptions that are known to be false are equivalent to 3022 // unreachable. Also, if the condition is undefined, then we make the 3023 // choice most beneficial to the optimizer, and choose that to also be 3024 // unreachable. 3025 if (IntrinsicID == Intrinsic::assume) { 3026 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 3027 // Don't insert a call to llvm.trap right before the unreachable. 3028 changeToUnreachable(CI, false, DTU); 3029 Changed = true; 3030 break; 3031 } 3032 } else if (IntrinsicID == Intrinsic::experimental_guard) { 3033 // A call to the guard intrinsic bails out of the current 3034 // compilation unit if the predicate passed to it is false. If the 3035 // predicate is a constant false, then we know the guard will bail 3036 // out of the current compile unconditionally, so all code following 3037 // it is dead. 3038 // 3039 // Note: unlike in llvm.assume, it is not "obviously profitable" for 3040 // guards to treat `undef` as `false` since a guard on `undef` can 3041 // still be useful for widening. 3042 if (match(CI->getArgOperand(0), m_Zero())) 3043 if (!isa<UnreachableInst>(CI->getNextNode())) { 3044 changeToUnreachable(CI->getNextNode(), false, DTU); 3045 Changed = true; 3046 break; 3047 } 3048 } 3049 } else if ((isa<ConstantPointerNull>(Callee) && 3050 !NullPointerIsDefined(CI->getFunction(), 3051 cast<PointerType>(Callee->getType()) 3052 ->getAddressSpace())) || 3053 isa<UndefValue>(Callee)) { 3054 changeToUnreachable(CI, false, DTU); 3055 Changed = true; 3056 break; 3057 } 3058 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 3059 // If we found a call to a no-return function, insert an unreachable 3060 // instruction after it. Make sure there isn't *already* one there 3061 // though. 3062 if (!isa<UnreachableInst>(CI->getNextNonDebugInstruction())) { 3063 // Don't insert a call to llvm.trap right before the unreachable. 3064 changeToUnreachable(CI->getNextNonDebugInstruction(), false, DTU); 3065 Changed = true; 3066 } 3067 break; 3068 } 3069 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 3070 // Store to undef and store to null are undefined and used to signal 3071 // that they should be changed to unreachable by passes that can't 3072 // modify the CFG. 3073 3074 // Don't touch volatile stores. 3075 if (SI->isVolatile()) continue; 3076 3077 Value *Ptr = SI->getOperand(1); 3078 3079 if (isa<UndefValue>(Ptr) || 3080 (isa<ConstantPointerNull>(Ptr) && 3081 !NullPointerIsDefined(SI->getFunction(), 3082 SI->getPointerAddressSpace()))) { 3083 changeToUnreachable(SI, false, DTU); 3084 Changed = true; 3085 break; 3086 } 3087 } 3088 } 3089 3090 Instruction *Terminator = BB->getTerminator(); 3091 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 3092 // Turn invokes that call 'nounwind' functions into ordinary calls. 3093 Value *Callee = II->getCalledOperand(); 3094 if ((isa<ConstantPointerNull>(Callee) && 3095 !NullPointerIsDefined(BB->getParent())) || 3096 isa<UndefValue>(Callee)) { 3097 changeToUnreachable(II, false, DTU); 3098 Changed = true; 3099 } else { 3100 if (II->doesNotReturn() && 3101 !isa<UnreachableInst>(II->getNormalDest()->front())) { 3102 // If we found an invoke of a no-return function, 3103 // create a new empty basic block with an `unreachable` terminator, 3104 // and set it as the normal destination for the invoke, 3105 // unless that is already the case. 3106 // Note that the original normal destination could have other uses. 3107 BasicBlock *OrigNormalDest = II->getNormalDest(); 3108 OrigNormalDest->removePredecessor(II->getParent()); 3109 LLVMContext &Ctx = II->getContext(); 3110 BasicBlock *UnreachableNormalDest = BasicBlock::Create( 3111 Ctx, OrigNormalDest->getName() + ".unreachable", 3112 II->getFunction(), OrigNormalDest); 3113 new UnreachableInst(Ctx, UnreachableNormalDest); 3114 II->setNormalDest(UnreachableNormalDest); 3115 if (DTU) 3116 DTU->applyUpdates( 3117 {{DominatorTree::Delete, BB, OrigNormalDest}, 3118 {DominatorTree::Insert, BB, UnreachableNormalDest}}); 3119 Changed = true; 3120 } 3121 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 3122 if (II->use_empty() && !II->mayHaveSideEffects()) { 3123 // jump to the normal destination branch. 3124 BasicBlock *NormalDestBB = II->getNormalDest(); 3125 BasicBlock *UnwindDestBB = II->getUnwindDest(); 3126 BranchInst::Create(NormalDestBB, II->getIterator()); 3127 UnwindDestBB->removePredecessor(II->getParent()); 3128 II->eraseFromParent(); 3129 if (DTU) 3130 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 3131 } else 3132 changeToCall(II, DTU); 3133 Changed = true; 3134 } 3135 } 3136 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 3137 // Remove catchpads which cannot be reached. 3138 struct CatchPadDenseMapInfo { 3139 static CatchPadInst *getEmptyKey() { 3140 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 3141 } 3142 3143 static CatchPadInst *getTombstoneKey() { 3144 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 3145 } 3146 3147 static unsigned getHashValue(CatchPadInst *CatchPad) { 3148 return static_cast<unsigned>(hash_combine_range( 3149 CatchPad->value_op_begin(), CatchPad->value_op_end())); 3150 } 3151 3152 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 3153 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 3154 RHS == getEmptyKey() || RHS == getTombstoneKey()) 3155 return LHS == RHS; 3156 return LHS->isIdenticalTo(RHS); 3157 } 3158 }; 3159 3160 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 3161 // Set of unique CatchPads. 3162 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 3163 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 3164 HandlerSet; 3165 detail::DenseSetEmpty Empty; 3166 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 3167 E = CatchSwitch->handler_end(); 3168 I != E; ++I) { 3169 BasicBlock *HandlerBB = *I; 3170 if (DTU) 3171 ++NumPerSuccessorCases[HandlerBB]; 3172 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 3173 if (!HandlerSet.insert({CatchPad, Empty}).second) { 3174 if (DTU) 3175 --NumPerSuccessorCases[HandlerBB]; 3176 CatchSwitch->removeHandler(I); 3177 --I; 3178 --E; 3179 Changed = true; 3180 } 3181 } 3182 if (DTU) { 3183 std::vector<DominatorTree::UpdateType> Updates; 3184 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 3185 if (I.second == 0) 3186 Updates.push_back({DominatorTree::Delete, BB, I.first}); 3187 DTU->applyUpdates(Updates); 3188 } 3189 } 3190 3191 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 3192 for (BasicBlock *Successor : successors(BB)) 3193 if (Reachable.insert(Successor).second) 3194 Worklist.push_back(Successor); 3195 } while (!Worklist.empty()); 3196 return Changed; 3197 } 3198 3199 Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 3200 Instruction *TI = BB->getTerminator(); 3201 3202 if (auto *II = dyn_cast<InvokeInst>(TI)) 3203 return changeToCall(II, DTU); 3204 3205 Instruction *NewTI; 3206 BasicBlock *UnwindDest; 3207 3208 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3209 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI->getIterator()); 3210 UnwindDest = CRI->getUnwindDest(); 3211 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 3212 auto *NewCatchSwitch = CatchSwitchInst::Create( 3213 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 3214 CatchSwitch->getName(), CatchSwitch->getIterator()); 3215 for (BasicBlock *PadBB : CatchSwitch->handlers()) 3216 NewCatchSwitch->addHandler(PadBB); 3217 3218 NewTI = NewCatchSwitch; 3219 UnwindDest = CatchSwitch->getUnwindDest(); 3220 } else { 3221 llvm_unreachable("Could not find unwind successor"); 3222 } 3223 3224 NewTI->takeName(TI); 3225 NewTI->setDebugLoc(TI->getDebugLoc()); 3226 UnwindDest->removePredecessor(BB); 3227 TI->replaceAllUsesWith(NewTI); 3228 TI->eraseFromParent(); 3229 if (DTU) 3230 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 3231 return NewTI; 3232 } 3233 3234 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 3235 /// if they are in a dead cycle. Return true if a change was made, false 3236 /// otherwise. 3237 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 3238 MemorySSAUpdater *MSSAU) { 3239 SmallPtrSet<BasicBlock *, 16> Reachable; 3240 bool Changed = markAliveBlocks(F, Reachable, DTU); 3241 3242 // If there are unreachable blocks in the CFG... 3243 if (Reachable.size() == F.size()) 3244 return Changed; 3245 3246 assert(Reachable.size() < F.size()); 3247 3248 // Are there any blocks left to actually delete? 3249 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 3250 for (BasicBlock &BB : F) { 3251 // Skip reachable basic blocks 3252 if (Reachable.count(&BB)) 3253 continue; 3254 // Skip already-deleted blocks 3255 if (DTU && DTU->isBBPendingDeletion(&BB)) 3256 continue; 3257 BlocksToRemove.insert(&BB); 3258 } 3259 3260 if (BlocksToRemove.empty()) 3261 return Changed; 3262 3263 Changed = true; 3264 NumRemoved += BlocksToRemove.size(); 3265 3266 if (MSSAU) 3267 MSSAU->removeBlocks(BlocksToRemove); 3268 3269 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 3270 3271 return Changed; 3272 } 3273 3274 void llvm::combineMetadata(Instruction *K, const Instruction *J, 3275 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 3276 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 3277 K->dropUnknownNonDebugMetadata(KnownIDs); 3278 K->getAllMetadataOtherThanDebugLoc(Metadata); 3279 for (const auto &MD : Metadata) { 3280 unsigned Kind = MD.first; 3281 MDNode *JMD = J->getMetadata(Kind); 3282 MDNode *KMD = MD.second; 3283 3284 switch (Kind) { 3285 default: 3286 K->setMetadata(Kind, nullptr); // Remove unknown metadata 3287 break; 3288 case LLVMContext::MD_dbg: 3289 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 3290 case LLVMContext::MD_DIAssignID: 3291 K->mergeDIAssignID(J); 3292 break; 3293 case LLVMContext::MD_tbaa: 3294 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 3295 break; 3296 case LLVMContext::MD_alias_scope: 3297 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 3298 break; 3299 case LLVMContext::MD_noalias: 3300 case LLVMContext::MD_mem_parallel_loop_access: 3301 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 3302 break; 3303 case LLVMContext::MD_access_group: 3304 K->setMetadata(LLVMContext::MD_access_group, 3305 intersectAccessGroups(K, J)); 3306 break; 3307 case LLVMContext::MD_range: 3308 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3309 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 3310 break; 3311 case LLVMContext::MD_fpmath: 3312 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 3313 break; 3314 case LLVMContext::MD_invariant_load: 3315 // If K moves, only set the !invariant.load if it is present in both 3316 // instructions. 3317 if (DoesKMove) 3318 K->setMetadata(Kind, JMD); 3319 break; 3320 case LLVMContext::MD_nonnull: 3321 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3322 K->setMetadata(Kind, JMD); 3323 break; 3324 case LLVMContext::MD_invariant_group: 3325 // Preserve !invariant.group in K. 3326 break; 3327 case LLVMContext::MD_mmra: 3328 // Combine MMRAs 3329 break; 3330 case LLVMContext::MD_align: 3331 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3332 K->setMetadata( 3333 Kind, MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3334 break; 3335 case LLVMContext::MD_dereferenceable: 3336 case LLVMContext::MD_dereferenceable_or_null: 3337 if (DoesKMove) 3338 K->setMetadata(Kind, 3339 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3340 break; 3341 case LLVMContext::MD_preserve_access_index: 3342 // Preserve !preserve.access.index in K. 3343 break; 3344 case LLVMContext::MD_noundef: 3345 // If K does move, keep noundef if it is present in both instructions. 3346 if (DoesKMove) 3347 K->setMetadata(Kind, JMD); 3348 break; 3349 case LLVMContext::MD_nontemporal: 3350 // Preserve !nontemporal if it is present on both instructions. 3351 K->setMetadata(Kind, JMD); 3352 break; 3353 case LLVMContext::MD_prof: 3354 if (DoesKMove) 3355 K->setMetadata(Kind, MDNode::getMergedProfMetadata(KMD, JMD, K, J)); 3356 break; 3357 } 3358 } 3359 // Set !invariant.group from J if J has it. If both instructions have it 3360 // then we will just pick it from J - even when they are different. 3361 // Also make sure that K is load or store - f.e. combining bitcast with load 3362 // could produce bitcast with invariant.group metadata, which is invalid. 3363 // FIXME: we should try to preserve both invariant.group md if they are 3364 // different, but right now instruction can only have one invariant.group. 3365 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 3366 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 3367 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 3368 3369 // Merge MMRAs. 3370 // This is handled separately because we also want to handle cases where K 3371 // doesn't have tags but J does. 3372 auto JMMRA = J->getMetadata(LLVMContext::MD_mmra); 3373 auto KMMRA = K->getMetadata(LLVMContext::MD_mmra); 3374 if (JMMRA || KMMRA) { 3375 K->setMetadata(LLVMContext::MD_mmra, 3376 MMRAMetadata::combine(K->getContext(), JMMRA, KMMRA)); 3377 } 3378 } 3379 3380 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 3381 bool KDominatesJ) { 3382 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 3383 LLVMContext::MD_alias_scope, 3384 LLVMContext::MD_noalias, 3385 LLVMContext::MD_range, 3386 LLVMContext::MD_fpmath, 3387 LLVMContext::MD_invariant_load, 3388 LLVMContext::MD_nonnull, 3389 LLVMContext::MD_invariant_group, 3390 LLVMContext::MD_align, 3391 LLVMContext::MD_dereferenceable, 3392 LLVMContext::MD_dereferenceable_or_null, 3393 LLVMContext::MD_access_group, 3394 LLVMContext::MD_preserve_access_index, 3395 LLVMContext::MD_prof, 3396 LLVMContext::MD_nontemporal, 3397 LLVMContext::MD_noundef, 3398 LLVMContext::MD_mmra}; 3399 combineMetadata(K, J, KnownIDs, KDominatesJ); 3400 } 3401 3402 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 3403 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 3404 Source.getAllMetadata(MD); 3405 MDBuilder MDB(Dest.getContext()); 3406 Type *NewType = Dest.getType(); 3407 const DataLayout &DL = Source.getDataLayout(); 3408 for (const auto &MDPair : MD) { 3409 unsigned ID = MDPair.first; 3410 MDNode *N = MDPair.second; 3411 // Note, essentially every kind of metadata should be preserved here! This 3412 // routine is supposed to clone a load instruction changing *only its type*. 3413 // The only metadata it makes sense to drop is metadata which is invalidated 3414 // when the pointer type changes. This should essentially never be the case 3415 // in LLVM, but we explicitly switch over only known metadata to be 3416 // conservatively correct. If you are adding metadata to LLVM which pertains 3417 // to loads, you almost certainly want to add it here. 3418 switch (ID) { 3419 case LLVMContext::MD_dbg: 3420 case LLVMContext::MD_tbaa: 3421 case LLVMContext::MD_prof: 3422 case LLVMContext::MD_fpmath: 3423 case LLVMContext::MD_tbaa_struct: 3424 case LLVMContext::MD_invariant_load: 3425 case LLVMContext::MD_alias_scope: 3426 case LLVMContext::MD_noalias: 3427 case LLVMContext::MD_nontemporal: 3428 case LLVMContext::MD_mem_parallel_loop_access: 3429 case LLVMContext::MD_access_group: 3430 case LLVMContext::MD_noundef: 3431 // All of these directly apply. 3432 Dest.setMetadata(ID, N); 3433 break; 3434 3435 case LLVMContext::MD_nonnull: 3436 copyNonnullMetadata(Source, N, Dest); 3437 break; 3438 3439 case LLVMContext::MD_align: 3440 case LLVMContext::MD_dereferenceable: 3441 case LLVMContext::MD_dereferenceable_or_null: 3442 // These only directly apply if the new type is also a pointer. 3443 if (NewType->isPointerTy()) 3444 Dest.setMetadata(ID, N); 3445 break; 3446 3447 case LLVMContext::MD_range: 3448 copyRangeMetadata(DL, Source, N, Dest); 3449 break; 3450 } 3451 } 3452 } 3453 3454 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 3455 auto *ReplInst = dyn_cast<Instruction>(Repl); 3456 if (!ReplInst) 3457 return; 3458 3459 // Patch the replacement so that it is not more restrictive than the value 3460 // being replaced. 3461 WithOverflowInst *UnusedWO; 3462 // When replacing the result of a llvm.*.with.overflow intrinsic with a 3463 // overflowing binary operator, nuw/nsw flags may no longer hold. 3464 if (isa<OverflowingBinaryOperator>(ReplInst) && 3465 match(I, m_ExtractValue<0>(m_WithOverflowInst(UnusedWO)))) 3466 ReplInst->dropPoisonGeneratingFlags(); 3467 // Note that if 'I' is a load being replaced by some operation, 3468 // for example, by an arithmetic operation, then andIRFlags() 3469 // would just erase all math flags from the original arithmetic 3470 // operation, which is clearly not wanted and not needed. 3471 else if (!isa<LoadInst>(I)) 3472 ReplInst->andIRFlags(I); 3473 3474 // FIXME: If both the original and replacement value are part of the 3475 // same control-flow region (meaning that the execution of one 3476 // guarantees the execution of the other), then we can combine the 3477 // noalias scopes here and do better than the general conservative 3478 // answer used in combineMetadata(). 3479 3480 // In general, GVN unifies expressions over different control-flow 3481 // regions, and so we need a conservative combination of the noalias 3482 // scopes. 3483 combineMetadataForCSE(ReplInst, I, false); 3484 } 3485 3486 template <typename RootType, typename ShouldReplaceFn> 3487 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 3488 const RootType &Root, 3489 const ShouldReplaceFn &ShouldReplace) { 3490 assert(From->getType() == To->getType()); 3491 3492 unsigned Count = 0; 3493 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3494 if (!ShouldReplace(Root, U)) 3495 continue; 3496 LLVM_DEBUG(dbgs() << "Replace dominated use of '"; 3497 From->printAsOperand(dbgs()); 3498 dbgs() << "' with " << *To << " in " << *U.getUser() << "\n"); 3499 U.set(To); 3500 ++Count; 3501 } 3502 return Count; 3503 } 3504 3505 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 3506 assert(From->getType() == To->getType()); 3507 auto *BB = From->getParent(); 3508 unsigned Count = 0; 3509 3510 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3511 auto *I = cast<Instruction>(U.getUser()); 3512 if (I->getParent() == BB) 3513 continue; 3514 U.set(To); 3515 ++Count; 3516 } 3517 return Count; 3518 } 3519 3520 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3521 DominatorTree &DT, 3522 const BasicBlockEdge &Root) { 3523 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 3524 return DT.dominates(Root, U); 3525 }; 3526 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 3527 } 3528 3529 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3530 DominatorTree &DT, 3531 const BasicBlock *BB) { 3532 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 3533 return DT.dominates(BB, U); 3534 }; 3535 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 3536 } 3537 3538 unsigned llvm::replaceDominatedUsesWithIf( 3539 Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Root, 3540 function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { 3541 auto DominatesAndShouldReplace = 3542 [&DT, &ShouldReplace, To](const BasicBlockEdge &Root, const Use &U) { 3543 return DT.dominates(Root, U) && ShouldReplace(U, To); 3544 }; 3545 return ::replaceDominatedUsesWith(From, To, Root, DominatesAndShouldReplace); 3546 } 3547 3548 unsigned llvm::replaceDominatedUsesWithIf( 3549 Value *From, Value *To, DominatorTree &DT, const BasicBlock *BB, 3550 function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { 3551 auto DominatesAndShouldReplace = [&DT, &ShouldReplace, 3552 To](const BasicBlock *BB, const Use &U) { 3553 return DT.dominates(BB, U) && ShouldReplace(U, To); 3554 }; 3555 return ::replaceDominatedUsesWith(From, To, BB, DominatesAndShouldReplace); 3556 } 3557 3558 bool llvm::callsGCLeafFunction(const CallBase *Call, 3559 const TargetLibraryInfo &TLI) { 3560 // Check if the function is specifically marked as a gc leaf function. 3561 if (Call->hasFnAttr("gc-leaf-function")) 3562 return true; 3563 if (const Function *F = Call->getCalledFunction()) { 3564 if (F->hasFnAttribute("gc-leaf-function")) 3565 return true; 3566 3567 if (auto IID = F->getIntrinsicID()) { 3568 // Most LLVM intrinsics do not take safepoints. 3569 return IID != Intrinsic::experimental_gc_statepoint && 3570 IID != Intrinsic::experimental_deoptimize && 3571 IID != Intrinsic::memcpy_element_unordered_atomic && 3572 IID != Intrinsic::memmove_element_unordered_atomic; 3573 } 3574 } 3575 3576 // Lib calls can be materialized by some passes, and won't be 3577 // marked as 'gc-leaf-function.' All available Libcalls are 3578 // GC-leaf. 3579 LibFunc LF; 3580 if (TLI.getLibFunc(*Call, LF)) { 3581 return TLI.has(LF); 3582 } 3583 3584 return false; 3585 } 3586 3587 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 3588 LoadInst &NewLI) { 3589 auto *NewTy = NewLI.getType(); 3590 3591 // This only directly applies if the new type is also a pointer. 3592 if (NewTy->isPointerTy()) { 3593 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 3594 return; 3595 } 3596 3597 // The only other translation we can do is to integral loads with !range 3598 // metadata. 3599 if (!NewTy->isIntegerTy()) 3600 return; 3601 3602 MDBuilder MDB(NewLI.getContext()); 3603 const Value *Ptr = OldLI.getPointerOperand(); 3604 auto *ITy = cast<IntegerType>(NewTy); 3605 auto *NullInt = ConstantExpr::getPtrToInt( 3606 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 3607 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 3608 NewLI.setMetadata(LLVMContext::MD_range, 3609 MDB.createRange(NonNullInt, NullInt)); 3610 } 3611 3612 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 3613 MDNode *N, LoadInst &NewLI) { 3614 auto *NewTy = NewLI.getType(); 3615 // Simply copy the metadata if the type did not change. 3616 if (NewTy == OldLI.getType()) { 3617 NewLI.setMetadata(LLVMContext::MD_range, N); 3618 return; 3619 } 3620 3621 // Give up unless it is converted to a pointer where there is a single very 3622 // valuable mapping we can do reliably. 3623 // FIXME: It would be nice to propagate this in more ways, but the type 3624 // conversions make it hard. 3625 if (!NewTy->isPointerTy()) 3626 return; 3627 3628 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 3629 if (BitWidth == OldLI.getType()->getScalarSizeInBits() && 3630 !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 3631 MDNode *NN = MDNode::get(OldLI.getContext(), std::nullopt); 3632 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 3633 } 3634 } 3635 3636 void llvm::dropDebugUsers(Instruction &I) { 3637 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 3638 SmallVector<DbgVariableRecord *, 1> DPUsers; 3639 findDbgUsers(DbgUsers, &I, &DPUsers); 3640 for (auto *DII : DbgUsers) 3641 DII->eraseFromParent(); 3642 for (auto *DVR : DPUsers) 3643 DVR->eraseFromParent(); 3644 } 3645 3646 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 3647 BasicBlock *BB) { 3648 // Since we are moving the instructions out of its basic block, we do not 3649 // retain their original debug locations (DILocations) and debug intrinsic 3650 // instructions. 3651 // 3652 // Doing so would degrade the debugging experience and adversely affect the 3653 // accuracy of profiling information. 3654 // 3655 // Currently, when hoisting the instructions, we take the following actions: 3656 // - Remove their debug intrinsic instructions. 3657 // - Set their debug locations to the values from the insertion point. 3658 // 3659 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 3660 // need to be deleted, is because there will not be any instructions with a 3661 // DILocation in either branch left after performing the transformation. We 3662 // can only insert a dbg.value after the two branches are joined again. 3663 // 3664 // See PR38762, PR39243 for more details. 3665 // 3666 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 3667 // encode predicated DIExpressions that yield different results on different 3668 // code paths. 3669 3670 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 3671 Instruction *I = &*II; 3672 I->dropUBImplyingAttrsAndMetadata(); 3673 if (I->isUsedByMetadata()) 3674 dropDebugUsers(*I); 3675 // RemoveDIs: drop debug-info too as the following code does. 3676 I->dropDbgRecords(); 3677 if (I->isDebugOrPseudoInst()) { 3678 // Remove DbgInfo and pseudo probe Intrinsics. 3679 II = I->eraseFromParent(); 3680 continue; 3681 } 3682 I->setDebugLoc(InsertPt->getDebugLoc()); 3683 ++II; 3684 } 3685 DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(), 3686 BB->getTerminator()->getIterator()); 3687 } 3688 3689 DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C, 3690 Type &Ty) { 3691 // Create integer constant expression. 3692 auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * { 3693 const APInt &API = cast<ConstantInt>(&CV)->getValue(); 3694 std::optional<int64_t> InitIntOpt = API.trySExtValue(); 3695 return InitIntOpt ? DIB.createConstantValueExpression( 3696 static_cast<uint64_t>(*InitIntOpt)) 3697 : nullptr; 3698 }; 3699 3700 if (isa<ConstantInt>(C)) 3701 return createIntegerExpression(C); 3702 3703 auto *FP = dyn_cast<ConstantFP>(&C); 3704 if (FP && Ty.isFloatingPointTy() && Ty.getScalarSizeInBits() <= 64) { 3705 const APFloat &APF = FP->getValueAPF(); 3706 APInt const &API = APF.bitcastToAPInt(); 3707 if (auto Temp = API.getZExtValue()) 3708 return DIB.createConstantValueExpression(static_cast<uint64_t>(Temp)); 3709 return DIB.createConstantValueExpression(*API.getRawData()); 3710 } 3711 3712 if (!Ty.isPointerTy()) 3713 return nullptr; 3714 3715 if (isa<ConstantPointerNull>(C)) 3716 return DIB.createConstantValueExpression(0); 3717 3718 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(&C)) 3719 if (CE->getOpcode() == Instruction::IntToPtr) { 3720 const Value *V = CE->getOperand(0); 3721 if (auto CI = dyn_cast_or_null<ConstantInt>(V)) 3722 return createIntegerExpression(*CI); 3723 } 3724 return nullptr; 3725 } 3726 3727 void llvm::remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst) { 3728 auto RemapDebugOperands = [&Mapping](auto *DV, auto Set) { 3729 for (auto *Op : Set) { 3730 auto I = Mapping.find(Op); 3731 if (I != Mapping.end()) 3732 DV->replaceVariableLocationOp(Op, I->second, /*AllowEmpty=*/true); 3733 } 3734 }; 3735 auto RemapAssignAddress = [&Mapping](auto *DA) { 3736 auto I = Mapping.find(DA->getAddress()); 3737 if (I != Mapping.end()) 3738 DA->setAddress(I->second); 3739 }; 3740 if (auto DVI = dyn_cast<DbgVariableIntrinsic>(Inst)) 3741 RemapDebugOperands(DVI, DVI->location_ops()); 3742 if (auto DAI = dyn_cast<DbgAssignIntrinsic>(Inst)) 3743 RemapAssignAddress(DAI); 3744 for (DbgVariableRecord &DVR : filterDbgVars(Inst->getDbgRecordRange())) { 3745 RemapDebugOperands(&DVR, DVR.location_ops()); 3746 if (DVR.isDbgAssign()) 3747 RemapAssignAddress(&DVR); 3748 } 3749 } 3750 3751 namespace { 3752 3753 /// A potential constituent of a bitreverse or bswap expression. See 3754 /// collectBitParts for a fuller explanation. 3755 struct BitPart { 3756 BitPart(Value *P, unsigned BW) : Provider(P) { 3757 Provenance.resize(BW); 3758 } 3759 3760 /// The Value that this is a bitreverse/bswap of. 3761 Value *Provider; 3762 3763 /// The "provenance" of each bit. Provenance[A] = B means that bit A 3764 /// in Provider becomes bit B in the result of this expression. 3765 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 3766 3767 enum { Unset = -1 }; 3768 }; 3769 3770 } // end anonymous namespace 3771 3772 /// Analyze the specified subexpression and see if it is capable of providing 3773 /// pieces of a bswap or bitreverse. The subexpression provides a potential 3774 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 3775 /// the output of the expression came from a corresponding bit in some other 3776 /// value. This function is recursive, and the end result is a mapping of 3777 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 3778 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 3779 /// 3780 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 3781 /// that the expression deposits the low byte of %X into the high byte of the 3782 /// result and that all other bits are zero. This expression is accepted and a 3783 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 3784 /// [0-7]. 3785 /// 3786 /// For vector types, all analysis is performed at the per-element level. No 3787 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 3788 /// constant masks must be splatted across all elements. 3789 /// 3790 /// To avoid revisiting values, the BitPart results are memoized into the 3791 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 3792 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 3793 /// store BitParts objects, not pointers. As we need the concept of a nullptr 3794 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 3795 /// type instead to provide the same functionality. 3796 /// 3797 /// Because we pass around references into \c BPS, we must use a container that 3798 /// does not invalidate internal references (std::map instead of DenseMap). 3799 static const std::optional<BitPart> & 3800 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 3801 std::map<Value *, std::optional<BitPart>> &BPS, int Depth, 3802 bool &FoundRoot) { 3803 auto I = BPS.find(V); 3804 if (I != BPS.end()) 3805 return I->second; 3806 3807 auto &Result = BPS[V] = std::nullopt; 3808 auto BitWidth = V->getType()->getScalarSizeInBits(); 3809 3810 // Can't do integer/elements > 128 bits. 3811 if (BitWidth > 128) 3812 return Result; 3813 3814 // Prevent stack overflow by limiting the recursion depth 3815 if (Depth == BitPartRecursionMaxDepth) { 3816 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 3817 return Result; 3818 } 3819 3820 if (auto *I = dyn_cast<Instruction>(V)) { 3821 Value *X, *Y; 3822 const APInt *C; 3823 3824 // If this is an or instruction, it may be an inner node of the bswap. 3825 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 3826 // Check we have both sources and they are from the same provider. 3827 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3828 Depth + 1, FoundRoot); 3829 if (!A || !A->Provider) 3830 return Result; 3831 3832 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3833 Depth + 1, FoundRoot); 3834 if (!B || A->Provider != B->Provider) 3835 return Result; 3836 3837 // Try and merge the two together. 3838 Result = BitPart(A->Provider, BitWidth); 3839 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 3840 if (A->Provenance[BitIdx] != BitPart::Unset && 3841 B->Provenance[BitIdx] != BitPart::Unset && 3842 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 3843 return Result = std::nullopt; 3844 3845 if (A->Provenance[BitIdx] == BitPart::Unset) 3846 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 3847 else 3848 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 3849 } 3850 3851 return Result; 3852 } 3853 3854 // If this is a logical shift by a constant, recurse then shift the result. 3855 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 3856 const APInt &BitShift = *C; 3857 3858 // Ensure the shift amount is defined. 3859 if (BitShift.uge(BitWidth)) 3860 return Result; 3861 3862 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3863 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 3864 return Result; 3865 3866 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3867 Depth + 1, FoundRoot); 3868 if (!Res) 3869 return Result; 3870 Result = Res; 3871 3872 // Perform the "shift" on BitProvenance. 3873 auto &P = Result->Provenance; 3874 if (I->getOpcode() == Instruction::Shl) { 3875 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 3876 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 3877 } else { 3878 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 3879 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 3880 } 3881 3882 return Result; 3883 } 3884 3885 // If this is a logical 'and' with a mask that clears bits, recurse then 3886 // unset the appropriate bits. 3887 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3888 const APInt &AndMask = *C; 3889 3890 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3891 // early exit. 3892 unsigned NumMaskedBits = AndMask.popcount(); 3893 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3894 return Result; 3895 3896 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3897 Depth + 1, FoundRoot); 3898 if (!Res) 3899 return Result; 3900 Result = Res; 3901 3902 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3903 // If the AndMask is zero for this bit, clear the bit. 3904 if (AndMask[BitIdx] == 0) 3905 Result->Provenance[BitIdx] = BitPart::Unset; 3906 return Result; 3907 } 3908 3909 // If this is a zext instruction zero extend the result. 3910 if (match(V, m_ZExt(m_Value(X)))) { 3911 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3912 Depth + 1, FoundRoot); 3913 if (!Res) 3914 return Result; 3915 3916 Result = BitPart(Res->Provider, BitWidth); 3917 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3918 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3919 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3920 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3921 Result->Provenance[BitIdx] = BitPart::Unset; 3922 return Result; 3923 } 3924 3925 // If this is a truncate instruction, extract the lower bits. 3926 if (match(V, m_Trunc(m_Value(X)))) { 3927 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3928 Depth + 1, FoundRoot); 3929 if (!Res) 3930 return Result; 3931 3932 Result = BitPart(Res->Provider, BitWidth); 3933 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3934 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3935 return Result; 3936 } 3937 3938 // BITREVERSE - most likely due to us previous matching a partial 3939 // bitreverse. 3940 if (match(V, m_BitReverse(m_Value(X)))) { 3941 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3942 Depth + 1, FoundRoot); 3943 if (!Res) 3944 return Result; 3945 3946 Result = BitPart(Res->Provider, BitWidth); 3947 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3948 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3949 return Result; 3950 } 3951 3952 // BSWAP - most likely due to us previous matching a partial bswap. 3953 if (match(V, m_BSwap(m_Value(X)))) { 3954 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3955 Depth + 1, FoundRoot); 3956 if (!Res) 3957 return Result; 3958 3959 unsigned ByteWidth = BitWidth / 8; 3960 Result = BitPart(Res->Provider, BitWidth); 3961 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3962 unsigned ByteBitOfs = ByteIdx * 8; 3963 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3964 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3965 Res->Provenance[ByteBitOfs + BitIdx]; 3966 } 3967 return Result; 3968 } 3969 3970 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3971 // amount (modulo). 3972 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3973 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3974 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3975 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3976 // We can treat fshr as a fshl by flipping the modulo amount. 3977 unsigned ModAmt = C->urem(BitWidth); 3978 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3979 ModAmt = BitWidth - ModAmt; 3980 3981 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3982 if (!MatchBitReversals && (ModAmt % 8) != 0) 3983 return Result; 3984 3985 // Check we have both sources and they are from the same provider. 3986 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3987 Depth + 1, FoundRoot); 3988 if (!LHS || !LHS->Provider) 3989 return Result; 3990 3991 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3992 Depth + 1, FoundRoot); 3993 if (!RHS || LHS->Provider != RHS->Provider) 3994 return Result; 3995 3996 unsigned StartBitRHS = BitWidth - ModAmt; 3997 Result = BitPart(LHS->Provider, BitWidth); 3998 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3999 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 4000 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 4001 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 4002 return Result; 4003 } 4004 } 4005 4006 // If we've already found a root input value then we're never going to merge 4007 // these back together. 4008 if (FoundRoot) 4009 return Result; 4010 4011 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 4012 // be the root input value to the bswap/bitreverse. 4013 FoundRoot = true; 4014 Result = BitPart(V, BitWidth); 4015 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 4016 Result->Provenance[BitIdx] = BitIdx; 4017 return Result; 4018 } 4019 4020 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 4021 unsigned BitWidth) { 4022 if (From % 8 != To % 8) 4023 return false; 4024 // Convert from bit indices to byte indices and check for a byte reversal. 4025 From >>= 3; 4026 To >>= 3; 4027 BitWidth >>= 3; 4028 return From == BitWidth - To - 1; 4029 } 4030 4031 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 4032 unsigned BitWidth) { 4033 return From == BitWidth - To - 1; 4034 } 4035 4036 bool llvm::recognizeBSwapOrBitReverseIdiom( 4037 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 4038 SmallVectorImpl<Instruction *> &InsertedInsts) { 4039 if (!match(I, m_Or(m_Value(), m_Value())) && 4040 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 4041 !match(I, m_FShr(m_Value(), m_Value(), m_Value())) && 4042 !match(I, m_BSwap(m_Value()))) 4043 return false; 4044 if (!MatchBSwaps && !MatchBitReversals) 4045 return false; 4046 Type *ITy = I->getType(); 4047 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 4048 return false; // Can't do integer/elements > 128 bits. 4049 4050 // Try to find all the pieces corresponding to the bswap. 4051 bool FoundRoot = false; 4052 std::map<Value *, std::optional<BitPart>> BPS; 4053 const auto &Res = 4054 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 4055 if (!Res) 4056 return false; 4057 ArrayRef<int8_t> BitProvenance = Res->Provenance; 4058 assert(all_of(BitProvenance, 4059 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 4060 "Illegal bit provenance index"); 4061 4062 // If the upper bits are zero, then attempt to perform as a truncated op. 4063 Type *DemandedTy = ITy; 4064 if (BitProvenance.back() == BitPart::Unset) { 4065 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 4066 BitProvenance = BitProvenance.drop_back(); 4067 if (BitProvenance.empty()) 4068 return false; // TODO - handle null value? 4069 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 4070 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 4071 DemandedTy = VectorType::get(DemandedTy, IVecTy); 4072 } 4073 4074 // Check BitProvenance hasn't found a source larger than the result type. 4075 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 4076 if (DemandedBW > ITy->getScalarSizeInBits()) 4077 return false; 4078 4079 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 4080 // only byteswap values with an even number of bytes. 4081 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 4082 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 4083 bool OKForBitReverse = MatchBitReversals; 4084 for (unsigned BitIdx = 0; 4085 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 4086 if (BitProvenance[BitIdx] == BitPart::Unset) { 4087 DemandedMask.clearBit(BitIdx); 4088 continue; 4089 } 4090 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 4091 DemandedBW); 4092 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 4093 BitIdx, DemandedBW); 4094 } 4095 4096 Intrinsic::ID Intrin; 4097 if (OKForBSwap) 4098 Intrin = Intrinsic::bswap; 4099 else if (OKForBitReverse) 4100 Intrin = Intrinsic::bitreverse; 4101 else 4102 return false; 4103 4104 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 4105 Value *Provider = Res->Provider; 4106 4107 // We may need to truncate the provider. 4108 if (DemandedTy != Provider->getType()) { 4109 auto *Trunc = 4110 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I->getIterator()); 4111 InsertedInsts.push_back(Trunc); 4112 Provider = Trunc; 4113 } 4114 4115 Instruction *Result = CallInst::Create(F, Provider, "rev", I->getIterator()); 4116 InsertedInsts.push_back(Result); 4117 4118 if (!DemandedMask.isAllOnes()) { 4119 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 4120 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I->getIterator()); 4121 InsertedInsts.push_back(Result); 4122 } 4123 4124 // We may need to zeroextend back to the result type. 4125 if (ITy != Result->getType()) { 4126 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I->getIterator()); 4127 InsertedInsts.push_back(ExtInst); 4128 } 4129 4130 return true; 4131 } 4132 4133 // CodeGen has special handling for some string functions that may replace 4134 // them with target-specific intrinsics. Since that'd skip our interceptors 4135 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 4136 // we mark affected calls as NoBuiltin, which will disable optimization 4137 // in CodeGen. 4138 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 4139 CallInst *CI, const TargetLibraryInfo *TLI) { 4140 Function *F = CI->getCalledFunction(); 4141 LibFunc Func; 4142 if (F && !F->hasLocalLinkage() && F->hasName() && 4143 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 4144 !F->doesNotAccessMemory()) 4145 CI->addFnAttr(Attribute::NoBuiltin); 4146 } 4147 4148 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 4149 // We can't have a PHI with a metadata type. 4150 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 4151 return false; 4152 4153 // Early exit. 4154 if (!isa<Constant>(I->getOperand(OpIdx))) 4155 return true; 4156 4157 switch (I->getOpcode()) { 4158 default: 4159 return true; 4160 case Instruction::Call: 4161 case Instruction::Invoke: { 4162 const auto &CB = cast<CallBase>(*I); 4163 4164 // Can't handle inline asm. Skip it. 4165 if (CB.isInlineAsm()) 4166 return false; 4167 4168 // Constant bundle operands may need to retain their constant-ness for 4169 // correctness. 4170 if (CB.isBundleOperand(OpIdx)) 4171 return false; 4172 4173 if (OpIdx < CB.arg_size()) { 4174 // Some variadic intrinsics require constants in the variadic arguments, 4175 // which currently aren't markable as immarg. 4176 if (isa<IntrinsicInst>(CB) && 4177 OpIdx >= CB.getFunctionType()->getNumParams()) { 4178 // This is known to be OK for stackmap. 4179 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 4180 } 4181 4182 // gcroot is a special case, since it requires a constant argument which 4183 // isn't also required to be a simple ConstantInt. 4184 if (CB.getIntrinsicID() == Intrinsic::gcroot) 4185 return false; 4186 4187 // Some intrinsic operands are required to be immediates. 4188 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 4189 } 4190 4191 // It is never allowed to replace the call argument to an intrinsic, but it 4192 // may be possible for a call. 4193 return !isa<IntrinsicInst>(CB); 4194 } 4195 case Instruction::ShuffleVector: 4196 // Shufflevector masks are constant. 4197 return OpIdx != 2; 4198 case Instruction::Switch: 4199 case Instruction::ExtractValue: 4200 // All operands apart from the first are constant. 4201 return OpIdx == 0; 4202 case Instruction::InsertValue: 4203 // All operands apart from the first and the second are constant. 4204 return OpIdx < 2; 4205 case Instruction::Alloca: 4206 // Static allocas (constant size in the entry block) are handled by 4207 // prologue/epilogue insertion so they're free anyway. We definitely don't 4208 // want to make them non-constant. 4209 return !cast<AllocaInst>(I)->isStaticAlloca(); 4210 case Instruction::GetElementPtr: 4211 if (OpIdx == 0) 4212 return true; 4213 gep_type_iterator It = gep_type_begin(I); 4214 for (auto E = std::next(It, OpIdx); It != E; ++It) 4215 if (It.isStruct()) 4216 return false; 4217 return true; 4218 } 4219 } 4220 4221 Value *llvm::invertCondition(Value *Condition) { 4222 // First: Check if it's a constant 4223 if (Constant *C = dyn_cast<Constant>(Condition)) 4224 return ConstantExpr::getNot(C); 4225 4226 // Second: If the condition is already inverted, return the original value 4227 Value *NotCondition; 4228 if (match(Condition, m_Not(m_Value(NotCondition)))) 4229 return NotCondition; 4230 4231 BasicBlock *Parent = nullptr; 4232 Instruction *Inst = dyn_cast<Instruction>(Condition); 4233 if (Inst) 4234 Parent = Inst->getParent(); 4235 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 4236 Parent = &Arg->getParent()->getEntryBlock(); 4237 assert(Parent && "Unsupported condition to invert"); 4238 4239 // Third: Check all the users for an invert 4240 for (User *U : Condition->users()) 4241 if (Instruction *I = dyn_cast<Instruction>(U)) 4242 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 4243 return I; 4244 4245 // Last option: Create a new instruction 4246 auto *Inverted = 4247 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 4248 if (Inst && !isa<PHINode>(Inst)) 4249 Inverted->insertAfter(Inst); 4250 else 4251 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 4252 return Inverted; 4253 } 4254 4255 bool llvm::inferAttributesFromOthers(Function &F) { 4256 // Note: We explicitly check for attributes rather than using cover functions 4257 // because some of the cover functions include the logic being implemented. 4258 4259 bool Changed = false; 4260 // readnone + not convergent implies nosync 4261 if (!F.hasFnAttribute(Attribute::NoSync) && 4262 F.doesNotAccessMemory() && !F.isConvergent()) { 4263 F.setNoSync(); 4264 Changed = true; 4265 } 4266 4267 // readonly implies nofree 4268 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 4269 F.setDoesNotFreeMemory(); 4270 Changed = true; 4271 } 4272 4273 // willreturn implies mustprogress 4274 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 4275 F.setMustProgress(); 4276 Changed = true; 4277 } 4278 4279 // TODO: There are a bunch of cases of restrictive memory effects we 4280 // can infer by inspecting arguments of argmemonly-ish functions. 4281 4282 return Changed; 4283 } 4284