1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms loops by placing phi nodes at the end of the loops for 10 // all values that are live across the loop boundary. For example, it turns 11 // the left into the right code: 12 // 13 // for (...) for (...) 14 // if (c) if (c) 15 // X1 = ... X1 = ... 16 // else else 17 // X2 = ... X2 = ... 18 // X3 = phi(X1, X2) X3 = phi(X1, X2) 19 // ... = X3 + 4 X4 = phi(X3) 20 // ... = X4 + 4 21 // 22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 23 // be trivially eliminated by InstCombine. The major benefit of this 24 // transformation is that it makes many other loop optimizations, such as 25 // LoopUnswitching, simpler. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Utils/LCSSA.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BasicAliasAnalysis.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/LoopPass.h" 38 #include "llvm/Analysis/MemorySSA.h" 39 #include "llvm/Analysis/ScalarEvolution.h" 40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/PredIteratorCache.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Transforms/Utils.h" 53 #include "llvm/Transforms/Utils/LoopUtils.h" 54 #include "llvm/Transforms/Utils/SSAUpdater.h" 55 using namespace llvm; 56 57 #define DEBUG_TYPE "lcssa" 58 59 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 60 61 #ifdef EXPENSIVE_CHECKS 62 static bool VerifyLoopLCSSA = true; 63 #else 64 static bool VerifyLoopLCSSA = false; 65 #endif 66 static cl::opt<bool, true> 67 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 68 cl::Hidden, 69 cl::desc("Verify loop lcssa form (time consuming)")); 70 71 /// Return true if the specified block is in the list. 72 static bool isExitBlock(BasicBlock *BB, 73 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 74 return is_contained(ExitBlocks, BB); 75 } 76 77 /// For every instruction from the worklist, check to see if it has any uses 78 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 79 /// rewrite the uses. 80 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 81 const DominatorTree &DT, const LoopInfo &LI, 82 ScalarEvolution *SE, IRBuilderBase &Builder, 83 SmallVectorImpl<PHINode *> *PHIsToRemove) { 84 SmallVector<Use *, 16> UsesToRewrite; 85 SmallSetVector<PHINode *, 16> LocalPHIsToRemove; 86 PredIteratorCache PredCache; 87 bool Changed = false; 88 89 IRBuilderBase::InsertPointGuard InsertPtGuard(Builder); 90 91 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 92 // instructions within the same loops, computing the exit blocks is 93 // expensive, and we're not mutating the loop structure. 94 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 95 96 while (!Worklist.empty()) { 97 UsesToRewrite.clear(); 98 99 Instruction *I = Worklist.pop_back_val(); 100 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 101 BasicBlock *InstBB = I->getParent(); 102 Loop *L = LI.getLoopFor(InstBB); 103 assert(L && "Instruction belongs to a BB that's not part of a loop"); 104 if (!LoopExitBlocks.count(L)) 105 L->getExitBlocks(LoopExitBlocks[L]); 106 assert(LoopExitBlocks.count(L)); 107 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 108 109 if (ExitBlocks.empty()) 110 continue; 111 112 for (Use &U : I->uses()) { 113 Instruction *User = cast<Instruction>(U.getUser()); 114 BasicBlock *UserBB = User->getParent(); 115 116 // For practical purposes, we consider that the use in a PHI 117 // occurs in the respective predecessor block. For more info, 118 // see the `phi` doc in LangRef and the LCSSA doc. 119 if (auto *PN = dyn_cast<PHINode>(User)) 120 UserBB = PN->getIncomingBlock(U); 121 122 if (InstBB != UserBB && !L->contains(UserBB)) 123 UsesToRewrite.push_back(&U); 124 } 125 126 // If there are no uses outside the loop, exit with no change. 127 if (UsesToRewrite.empty()) 128 continue; 129 130 ++NumLCSSA; // We are applying the transformation 131 132 // Invoke instructions are special in that their result value is not 133 // available along their unwind edge. The code below tests to see whether 134 // DomBB dominates the value, so adjust DomBB to the normal destination 135 // block, which is effectively where the value is first usable. 136 BasicBlock *DomBB = InstBB; 137 if (auto *Inv = dyn_cast<InvokeInst>(I)) 138 DomBB = Inv->getNormalDest(); 139 140 const DomTreeNode *DomNode = DT.getNode(DomBB); 141 142 SmallVector<PHINode *, 16> AddedPHIs; 143 SmallVector<PHINode *, 8> PostProcessPHIs; 144 145 SmallVector<PHINode *, 4> InsertedPHIs; 146 SSAUpdater SSAUpdate(&InsertedPHIs); 147 SSAUpdate.Initialize(I->getType(), I->getName()); 148 149 // Force re-computation of I, as some users now need to use the new PHI 150 // node. 151 if (SE) 152 SE->forgetValue(I); 153 154 // Insert the LCSSA phi's into all of the exit blocks dominated by the 155 // value, and add them to the Phi's map. 156 for (BasicBlock *ExitBB : ExitBlocks) { 157 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 158 continue; 159 160 // If we already inserted something for this BB, don't reprocess it. 161 if (SSAUpdate.HasValueForBlock(ExitBB)) 162 continue; 163 Builder.SetInsertPoint(&ExitBB->front()); 164 PHINode *PN = Builder.CreatePHI(I->getType(), PredCache.size(ExitBB), 165 I->getName() + ".lcssa"); 166 // Get the debug location from the original instruction. 167 PN->setDebugLoc(I->getDebugLoc()); 168 169 // Add inputs from inside the loop for this PHI. This is valid 170 // because `I` dominates `ExitBB` (checked above). This implies 171 // that every incoming block/edge is dominated by `I` as well, 172 // i.e. we can add uses of `I` to those incoming edges/append to the incoming 173 // blocks without violating the SSA dominance property. 174 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 175 PN->addIncoming(I, Pred); 176 177 // If the exit block has a predecessor not within the loop, arrange for 178 // the incoming value use corresponding to that predecessor to be 179 // rewritten in terms of a different LCSSA PHI. 180 if (!L->contains(Pred)) 181 UsesToRewrite.push_back( 182 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 183 PN->getNumIncomingValues() - 1))); 184 } 185 186 AddedPHIs.push_back(PN); 187 188 // Remember that this phi makes the value alive in this block. 189 SSAUpdate.AddAvailableValue(ExitBB, PN); 190 191 // LoopSimplify might fail to simplify some loops (e.g. when indirect 192 // branches are involved). In such situations, it might happen that an 193 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 194 // create PHIs in such an exit block, we are also inserting PHIs into L2's 195 // header. This could break LCSSA form for L2 because these inserted PHIs 196 // can also have uses outside of L2. Remember all PHIs in such situation 197 // as to revisit than later on. FIXME: Remove this if indirectbr support 198 // into LoopSimplify gets improved. 199 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 200 if (!L->contains(OtherLoop)) 201 PostProcessPHIs.push_back(PN); 202 } 203 204 // Rewrite all uses outside the loop in terms of the new PHIs we just 205 // inserted. 206 for (Use *UseToRewrite : UsesToRewrite) { 207 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 208 BasicBlock *UserBB = User->getParent(); 209 210 // For practical purposes, we consider that the use in a PHI 211 // occurs in the respective predecessor block. For more info, 212 // see the `phi` doc in LangRef and the LCSSA doc. 213 if (auto *PN = dyn_cast<PHINode>(User)) 214 UserBB = PN->getIncomingBlock(*UseToRewrite); 215 216 // If this use is in an exit block, rewrite to use the newly inserted PHI. 217 // This is required for correctness because SSAUpdate doesn't handle uses 218 // in the same block. It assumes the PHI we inserted is at the end of the 219 // block. 220 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 221 UseToRewrite->set(&UserBB->front()); 222 continue; 223 } 224 225 // If we added a single PHI, it must dominate all uses and we can directly 226 // rename it. 227 if (AddedPHIs.size() == 1) { 228 UseToRewrite->set(AddedPHIs[0]); 229 continue; 230 } 231 232 // Otherwise, do full PHI insertion. 233 SSAUpdate.RewriteUse(*UseToRewrite); 234 } 235 236 SmallVector<DbgValueInst *, 4> DbgValues; 237 llvm::findDbgValues(DbgValues, I); 238 239 // Update pre-existing debug value uses that reside outside the loop. 240 for (auto DVI : DbgValues) { 241 BasicBlock *UserBB = DVI->getParent(); 242 if (InstBB == UserBB || L->contains(UserBB)) 243 continue; 244 // We currently only handle debug values residing in blocks that were 245 // traversed while rewriting the uses. If we inserted just a single PHI, 246 // we will handle all relevant debug values. 247 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] 248 : SSAUpdate.FindValueForBlock(UserBB); 249 if (V) 250 DVI->replaceVariableLocationOp(I, V); 251 } 252 253 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 254 // to post-process them to keep LCSSA form. 255 for (PHINode *InsertedPN : InsertedPHIs) { 256 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 257 if (!L->contains(OtherLoop)) 258 PostProcessPHIs.push_back(InsertedPN); 259 } 260 261 // Post process PHI instructions that were inserted into another disjoint 262 // loop and update their exits properly. 263 for (auto *PostProcessPN : PostProcessPHIs) 264 if (!PostProcessPN->use_empty()) 265 Worklist.push_back(PostProcessPN); 266 267 // Keep track of PHI nodes that we want to remove because they did not have 268 // any uses rewritten. 269 for (PHINode *PN : AddedPHIs) 270 if (PN->use_empty()) 271 LocalPHIsToRemove.insert(PN); 272 273 Changed = true; 274 } 275 276 // Remove PHI nodes that did not have any uses rewritten or add them to 277 // PHIsToRemove, so the caller can remove them after some additional cleanup. 278 // We need to redo the use_empty() check here, because even if the PHI node 279 // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be 280 // using it. This cleanup is not guaranteed to handle trees/cycles of PHI 281 // nodes that only are used by each other. Such situations has only been 282 // noticed when the input IR contains unreachable code, and leaving some extra 283 // redundant PHI nodes in such situations is considered a minor problem. 284 if (PHIsToRemove) { 285 PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end()); 286 } else { 287 for (PHINode *PN : LocalPHIsToRemove) 288 if (PN->use_empty()) 289 PN->eraseFromParent(); 290 } 291 return Changed; 292 } 293 294 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 295 static void computeBlocksDominatingExits( 296 Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 297 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 298 // We start from the exit blocks, as every block trivially dominates itself 299 // (not strictly). 300 SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks); 301 302 while (!BBWorklist.empty()) { 303 BasicBlock *BB = BBWorklist.pop_back_val(); 304 305 // Check if this is a loop header. If this is the case, we're done. 306 if (L.getHeader() == BB) 307 continue; 308 309 // Otherwise, add its immediate predecessor in the dominator tree to the 310 // worklist, unless we visited it already. 311 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 312 313 // Exit blocks can have an immediate dominator not belonging to the 314 // loop. For an exit block to be immediately dominated by another block 315 // outside the loop, it implies not all paths from that dominator, to the 316 // exit block, go through the loop. 317 // Example: 318 // 319 // |---- A 320 // | | 321 // | B<-- 322 // | | | 323 // |---> C -- 324 // | 325 // D 326 // 327 // C is the exit block of the loop and it's immediately dominated by A, 328 // which doesn't belong to the loop. 329 if (!L.contains(IDomBB)) 330 continue; 331 332 if (BlocksDominatingExits.insert(IDomBB)) 333 BBWorklist.push_back(IDomBB); 334 } 335 } 336 337 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI, 338 ScalarEvolution *SE) { 339 bool Changed = false; 340 341 #ifdef EXPENSIVE_CHECKS 342 // Verify all sub-loops are in LCSSA form already. 343 for (Loop *SubLoop: L) { 344 (void)SubLoop; // Silence unused variable warning. 345 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!"); 346 } 347 #endif 348 349 SmallVector<BasicBlock *, 8> ExitBlocks; 350 L.getExitBlocks(ExitBlocks); 351 if (ExitBlocks.empty()) 352 return false; 353 354 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 355 356 // We want to avoid use-scanning leveraging dominance informations. 357 // If a block doesn't dominate any of the loop exits, the none of the values 358 // defined in the loop can be used outside. 359 // We compute the set of blocks fullfilling the conditions in advance 360 // walking the dominator tree upwards until we hit a loop header. 361 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 362 363 SmallVector<Instruction *, 8> Worklist; 364 365 // Look at all the instructions in the loop, checking to see if they have uses 366 // outside the loop. If so, put them into the worklist to rewrite those uses. 367 for (BasicBlock *BB : BlocksDominatingExits) { 368 // Skip blocks that are part of any sub-loops, they must be in LCSSA 369 // already. 370 if (LI->getLoopFor(BB) != &L) 371 continue; 372 for (Instruction &I : *BB) { 373 // Reject two common cases fast: instructions with no uses (like stores) 374 // and instructions with one use that is in the same block as this. 375 if (I.use_empty() || 376 (I.hasOneUse() && I.user_back()->getParent() == BB && 377 !isa<PHINode>(I.user_back()))) 378 continue; 379 380 // Tokens cannot be used in PHI nodes, so we skip over them. 381 // We can run into tokens which are live out of a loop with catchswitch 382 // instructions in Windows EH if the catchswitch has one catchpad which 383 // is inside the loop and another which is not. 384 if (I.getType()->isTokenTy()) 385 continue; 386 387 Worklist.push_back(&I); 388 } 389 } 390 391 IRBuilder<> Builder(L.getHeader()->getContext()); 392 Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE, Builder); 393 394 // If we modified the code, remove any caches about the loop from SCEV to 395 // avoid dangling entries. 396 // FIXME: This is a big hammer, can we clear the cache more selectively? 397 if (SE && Changed) 398 SE->forgetLoop(&L); 399 400 assert(L.isLCSSAForm(DT)); 401 402 return Changed; 403 } 404 405 /// Process a loop nest depth first. 406 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT, 407 const LoopInfo *LI, ScalarEvolution *SE) { 408 bool Changed = false; 409 410 // Recurse depth-first through inner loops. 411 for (Loop *SubLoop : L.getSubLoops()) 412 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 413 414 Changed |= formLCSSA(L, DT, LI, SE); 415 return Changed; 416 } 417 418 /// Process all loops in the function, inner-most out. 419 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT, 420 ScalarEvolution *SE) { 421 bool Changed = false; 422 for (auto &L : *LI) 423 Changed |= formLCSSARecursively(*L, DT, LI, SE); 424 return Changed; 425 } 426 427 namespace { 428 struct LCSSAWrapperPass : public FunctionPass { 429 static char ID; // Pass identification, replacement for typeid 430 LCSSAWrapperPass() : FunctionPass(ID) { 431 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 432 } 433 434 // Cached analysis information for the current function. 435 DominatorTree *DT; 436 LoopInfo *LI; 437 ScalarEvolution *SE; 438 439 bool runOnFunction(Function &F) override; 440 void verifyAnalysis() const override { 441 // This check is very expensive. On the loop intensive compiles it may cause 442 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 443 // always does limited form of the LCSSA verification. Similar reasoning 444 // was used for the LoopInfo verifier. 445 if (VerifyLoopLCSSA) { 446 assert(all_of(*LI, 447 [&](Loop *L) { 448 return L->isRecursivelyLCSSAForm(*DT, *LI); 449 }) && 450 "LCSSA form is broken!"); 451 } 452 }; 453 454 /// This transformation requires natural loop information & requires that 455 /// loop preheaders be inserted into the CFG. It maintains both of these, 456 /// as well as the CFG. It also requires dominator information. 457 void getAnalysisUsage(AnalysisUsage &AU) const override { 458 AU.setPreservesCFG(); 459 460 AU.addRequired<DominatorTreeWrapperPass>(); 461 AU.addRequired<LoopInfoWrapperPass>(); 462 AU.addPreservedID(LoopSimplifyID); 463 AU.addPreserved<AAResultsWrapperPass>(); 464 AU.addPreserved<BasicAAWrapperPass>(); 465 AU.addPreserved<GlobalsAAWrapperPass>(); 466 AU.addPreserved<ScalarEvolutionWrapperPass>(); 467 AU.addPreserved<SCEVAAWrapperPass>(); 468 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 469 AU.addPreserved<MemorySSAWrapperPass>(); 470 471 // This is needed to perform LCSSA verification inside LPPassManager 472 AU.addRequired<LCSSAVerificationPass>(); 473 AU.addPreserved<LCSSAVerificationPass>(); 474 } 475 }; 476 } 477 478 char LCSSAWrapperPass::ID = 0; 479 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 480 false, false) 481 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 482 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 483 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 484 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 485 false, false) 486 487 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 488 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 489 490 /// Transform \p F into loop-closed SSA form. 491 bool LCSSAWrapperPass::runOnFunction(Function &F) { 492 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 493 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 494 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 495 SE = SEWP ? &SEWP->getSE() : nullptr; 496 497 return formLCSSAOnAllLoops(LI, *DT, SE); 498 } 499 500 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 501 auto &LI = AM.getResult<LoopAnalysis>(F); 502 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 503 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 504 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 505 return PreservedAnalyses::all(); 506 507 PreservedAnalyses PA; 508 PA.preserveSet<CFGAnalyses>(); 509 PA.preserve<ScalarEvolutionAnalysis>(); 510 // BPI maps terminators to probabilities, since we don't modify the CFG, no 511 // updates are needed to preserve it. 512 PA.preserve<BranchProbabilityAnalysis>(); 513 PA.preserve<MemorySSAAnalysis>(); 514 return PA; 515 } 516