xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision c6f0940d99644cd03cf6affb030205125b7cd0fb)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary.  For example, it turns
11 // the left into the right code:
12 //
13 // for (...)                for (...)
14 //   if (c)                   if (c)
15 //     X1 = ...                 X1 = ...
16 //   else                     else
17 //     X2 = ...                 X2 = ...
18 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
19 // ... = X3 + 4             X4 = phi(X3)
20 //                          ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine.  The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/PredIteratorCache.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Transforms/Utils.h"
53 #include "llvm/Transforms/Utils/LoopUtils.h"
54 #include "llvm/Transforms/Utils/SSAUpdater.h"
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "lcssa"
58 
59 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
60 
61 #ifdef EXPENSIVE_CHECKS
62 static bool VerifyLoopLCSSA = true;
63 #else
64 static bool VerifyLoopLCSSA = false;
65 #endif
66 static cl::opt<bool, true>
67     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
68                         cl::Hidden,
69                         cl::desc("Verify loop lcssa form (time consuming)"));
70 
71 /// Return true if the specified block is in the list.
72 static bool isExitBlock(BasicBlock *BB,
73                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
74   return is_contained(ExitBlocks, BB);
75 }
76 
77 /// For every instruction from the worklist, check to see if it has any uses
78 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
79 /// rewrite the uses.
80 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
81                                     const DominatorTree &DT, const LoopInfo &LI,
82                                     ScalarEvolution *SE, IRBuilderBase &Builder,
83                                     SmallVectorImpl<PHINode *> *PHIsToRemove) {
84   SmallVector<Use *, 16> UsesToRewrite;
85   SmallSetVector<PHINode *, 16> LocalPHIsToRemove;
86   PredIteratorCache PredCache;
87   bool Changed = false;
88 
89   IRBuilderBase::InsertPointGuard InsertPtGuard(Builder);
90 
91   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
92   // instructions within the same loops, computing the exit blocks is
93   // expensive, and we're not mutating the loop structure.
94   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
95 
96   while (!Worklist.empty()) {
97     UsesToRewrite.clear();
98 
99     Instruction *I = Worklist.pop_back_val();
100     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
101     BasicBlock *InstBB = I->getParent();
102     Loop *L = LI.getLoopFor(InstBB);
103     assert(L && "Instruction belongs to a BB that's not part of a loop");
104     if (!LoopExitBlocks.count(L))
105       L->getExitBlocks(LoopExitBlocks[L]);
106     assert(LoopExitBlocks.count(L));
107     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
108 
109     if (ExitBlocks.empty())
110       continue;
111 
112     for (Use &U : I->uses()) {
113       Instruction *User = cast<Instruction>(U.getUser());
114       BasicBlock *UserBB = User->getParent();
115 
116       // For practical purposes, we consider that the use in a PHI
117       // occurs in the respective predecessor block. For more info,
118       // see the `phi` doc in LangRef and the LCSSA doc.
119       if (auto *PN = dyn_cast<PHINode>(User))
120         UserBB = PN->getIncomingBlock(U);
121 
122       if (InstBB != UserBB && !L->contains(UserBB))
123         UsesToRewrite.push_back(&U);
124     }
125 
126     // If there are no uses outside the loop, exit with no change.
127     if (UsesToRewrite.empty())
128       continue;
129 
130     ++NumLCSSA; // We are applying the transformation
131 
132     // Invoke instructions are special in that their result value is not
133     // available along their unwind edge. The code below tests to see whether
134     // DomBB dominates the value, so adjust DomBB to the normal destination
135     // block, which is effectively where the value is first usable.
136     BasicBlock *DomBB = InstBB;
137     if (auto *Inv = dyn_cast<InvokeInst>(I))
138       DomBB = Inv->getNormalDest();
139 
140     const DomTreeNode *DomNode = DT.getNode(DomBB);
141 
142     SmallVector<PHINode *, 16> AddedPHIs;
143     SmallVector<PHINode *, 8> PostProcessPHIs;
144 
145     SmallVector<PHINode *, 4> InsertedPHIs;
146     SSAUpdater SSAUpdate(&InsertedPHIs);
147     SSAUpdate.Initialize(I->getType(), I->getName());
148 
149     // Force re-computation of I, as some users now need to use the new PHI
150     // node.
151     if (SE)
152       SE->forgetValue(I);
153 
154     // Insert the LCSSA phi's into all of the exit blocks dominated by the
155     // value, and add them to the Phi's map.
156     for (BasicBlock *ExitBB : ExitBlocks) {
157       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
158         continue;
159 
160       // If we already inserted something for this BB, don't reprocess it.
161       if (SSAUpdate.HasValueForBlock(ExitBB))
162         continue;
163       Builder.SetInsertPoint(&ExitBB->front());
164       PHINode *PN = Builder.CreatePHI(I->getType(), PredCache.size(ExitBB),
165                                       I->getName() + ".lcssa");
166       // Get the debug location from the original instruction.
167       PN->setDebugLoc(I->getDebugLoc());
168 
169       // Add inputs from inside the loop for this PHI. This is valid
170       // because `I` dominates `ExitBB` (checked above).  This implies
171       // that every incoming block/edge is dominated by `I` as well,
172       // i.e. we can add uses of `I` to those incoming edges/append to the incoming
173       // blocks without violating the SSA dominance property.
174       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
175         PN->addIncoming(I, Pred);
176 
177         // If the exit block has a predecessor not within the loop, arrange for
178         // the incoming value use corresponding to that predecessor to be
179         // rewritten in terms of a different LCSSA PHI.
180         if (!L->contains(Pred))
181           UsesToRewrite.push_back(
182               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
183                   PN->getNumIncomingValues() - 1)));
184       }
185 
186       AddedPHIs.push_back(PN);
187 
188       // Remember that this phi makes the value alive in this block.
189       SSAUpdate.AddAvailableValue(ExitBB, PN);
190 
191       // LoopSimplify might fail to simplify some loops (e.g. when indirect
192       // branches are involved). In such situations, it might happen that an
193       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
194       // create PHIs in such an exit block, we are also inserting PHIs into L2's
195       // header. This could break LCSSA form for L2 because these inserted PHIs
196       // can also have uses outside of L2. Remember all PHIs in such situation
197       // as to revisit than later on. FIXME: Remove this if indirectbr support
198       // into LoopSimplify gets improved.
199       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
200         if (!L->contains(OtherLoop))
201           PostProcessPHIs.push_back(PN);
202     }
203 
204     // Rewrite all uses outside the loop in terms of the new PHIs we just
205     // inserted.
206     for (Use *UseToRewrite : UsesToRewrite) {
207       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
208       BasicBlock *UserBB = User->getParent();
209 
210       // For practical purposes, we consider that the use in a PHI
211       // occurs in the respective predecessor block. For more info,
212       // see the `phi` doc in LangRef and the LCSSA doc.
213       if (auto *PN = dyn_cast<PHINode>(User))
214         UserBB = PN->getIncomingBlock(*UseToRewrite);
215 
216       // If this use is in an exit block, rewrite to use the newly inserted PHI.
217       // This is required for correctness because SSAUpdate doesn't handle uses
218       // in the same block.  It assumes the PHI we inserted is at the end of the
219       // block.
220       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
221         UseToRewrite->set(&UserBB->front());
222         continue;
223       }
224 
225       // If we added a single PHI, it must dominate all uses and we can directly
226       // rename it.
227       if (AddedPHIs.size() == 1) {
228         UseToRewrite->set(AddedPHIs[0]);
229         continue;
230       }
231 
232       // Otherwise, do full PHI insertion.
233       SSAUpdate.RewriteUse(*UseToRewrite);
234     }
235 
236     SmallVector<DbgValueInst *, 4> DbgValues;
237     llvm::findDbgValues(DbgValues, I);
238 
239     // Update pre-existing debug value uses that reside outside the loop.
240     for (auto DVI : DbgValues) {
241       BasicBlock *UserBB = DVI->getParent();
242       if (InstBB == UserBB || L->contains(UserBB))
243         continue;
244       // We currently only handle debug values residing in blocks that were
245       // traversed while rewriting the uses. If we inserted just a single PHI,
246       // we will handle all relevant debug values.
247       Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
248                                        : SSAUpdate.FindValueForBlock(UserBB);
249       if (V)
250         DVI->replaceVariableLocationOp(I, V);
251     }
252 
253     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
254     // to post-process them to keep LCSSA form.
255     for (PHINode *InsertedPN : InsertedPHIs) {
256       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
257         if (!L->contains(OtherLoop))
258           PostProcessPHIs.push_back(InsertedPN);
259     }
260 
261     // Post process PHI instructions that were inserted into another disjoint
262     // loop and update their exits properly.
263     for (auto *PostProcessPN : PostProcessPHIs)
264       if (!PostProcessPN->use_empty())
265         Worklist.push_back(PostProcessPN);
266 
267     // Keep track of PHI nodes that we want to remove because they did not have
268     // any uses rewritten.
269     for (PHINode *PN : AddedPHIs)
270       if (PN->use_empty())
271         LocalPHIsToRemove.insert(PN);
272 
273     Changed = true;
274   }
275 
276   // Remove PHI nodes that did not have any uses rewritten or add them to
277   // PHIsToRemove, so the caller can remove them after some additional cleanup.
278   // We need to redo the use_empty() check here, because even if the PHI node
279   // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
280   // using it.  This cleanup is not guaranteed to handle trees/cycles of PHI
281   // nodes that only are used by each other. Such situations has only been
282   // noticed when the input IR contains unreachable code, and leaving some extra
283   // redundant PHI nodes in such situations is considered a minor problem.
284   if (PHIsToRemove) {
285     PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end());
286   } else {
287     for (PHINode *PN : LocalPHIsToRemove)
288       if (PN->use_empty())
289         PN->eraseFromParent();
290   }
291   return Changed;
292 }
293 
294 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
295 static void computeBlocksDominatingExits(
296     Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
297     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
298   // We start from the exit blocks, as every block trivially dominates itself
299   // (not strictly).
300   SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks);
301 
302   while (!BBWorklist.empty()) {
303     BasicBlock *BB = BBWorklist.pop_back_val();
304 
305     // Check if this is a loop header. If this is the case, we're done.
306     if (L.getHeader() == BB)
307       continue;
308 
309     // Otherwise, add its immediate predecessor in the dominator tree to the
310     // worklist, unless we visited it already.
311     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
312 
313     // Exit blocks can have an immediate dominator not belonging to the
314     // loop. For an exit block to be immediately dominated by another block
315     // outside the loop, it implies not all paths from that dominator, to the
316     // exit block, go through the loop.
317     // Example:
318     //
319     // |---- A
320     // |     |
321     // |     B<--
322     // |     |  |
323     // |---> C --
324     //       |
325     //       D
326     //
327     // C is the exit block of the loop and it's immediately dominated by A,
328     // which doesn't belong to the loop.
329     if (!L.contains(IDomBB))
330       continue;
331 
332     if (BlocksDominatingExits.insert(IDomBB))
333       BBWorklist.push_back(IDomBB);
334   }
335 }
336 
337 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
338                      ScalarEvolution *SE) {
339   bool Changed = false;
340 
341 #ifdef EXPENSIVE_CHECKS
342   // Verify all sub-loops are in LCSSA form already.
343   for (Loop *SubLoop: L) {
344     (void)SubLoop; // Silence unused variable warning.
345     assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
346   }
347 #endif
348 
349   SmallVector<BasicBlock *, 8> ExitBlocks;
350   L.getExitBlocks(ExitBlocks);
351   if (ExitBlocks.empty())
352     return false;
353 
354   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
355 
356   // We want to avoid use-scanning leveraging dominance informations.
357   // If a block doesn't dominate any of the loop exits, the none of the values
358   // defined in the loop can be used outside.
359   // We compute the set of blocks fullfilling the conditions in advance
360   // walking the dominator tree upwards until we hit a loop header.
361   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
362 
363   SmallVector<Instruction *, 8> Worklist;
364 
365   // Look at all the instructions in the loop, checking to see if they have uses
366   // outside the loop.  If so, put them into the worklist to rewrite those uses.
367   for (BasicBlock *BB : BlocksDominatingExits) {
368     // Skip blocks that are part of any sub-loops, they must be in LCSSA
369     // already.
370     if (LI->getLoopFor(BB) != &L)
371       continue;
372     for (Instruction &I : *BB) {
373       // Reject two common cases fast: instructions with no uses (like stores)
374       // and instructions with one use that is in the same block as this.
375       if (I.use_empty() ||
376           (I.hasOneUse() && I.user_back()->getParent() == BB &&
377            !isa<PHINode>(I.user_back())))
378         continue;
379 
380       // Tokens cannot be used in PHI nodes, so we skip over them.
381       // We can run into tokens which are live out of a loop with catchswitch
382       // instructions in Windows EH if the catchswitch has one catchpad which
383       // is inside the loop and another which is not.
384       if (I.getType()->isTokenTy())
385         continue;
386 
387       Worklist.push_back(&I);
388     }
389   }
390 
391   IRBuilder<> Builder(L.getHeader()->getContext());
392   Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE, Builder);
393 
394   // If we modified the code, remove any caches about the loop from SCEV to
395   // avoid dangling entries.
396   // FIXME: This is a big hammer, can we clear the cache more selectively?
397   if (SE && Changed)
398     SE->forgetLoop(&L);
399 
400   assert(L.isLCSSAForm(DT));
401 
402   return Changed;
403 }
404 
405 /// Process a loop nest depth first.
406 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
407                                 const LoopInfo *LI, ScalarEvolution *SE) {
408   bool Changed = false;
409 
410   // Recurse depth-first through inner loops.
411   for (Loop *SubLoop : L.getSubLoops())
412     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
413 
414   Changed |= formLCSSA(L, DT, LI, SE);
415   return Changed;
416 }
417 
418 /// Process all loops in the function, inner-most out.
419 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT,
420                                 ScalarEvolution *SE) {
421   bool Changed = false;
422   for (auto &L : *LI)
423     Changed |= formLCSSARecursively(*L, DT, LI, SE);
424   return Changed;
425 }
426 
427 namespace {
428 struct LCSSAWrapperPass : public FunctionPass {
429   static char ID; // Pass identification, replacement for typeid
430   LCSSAWrapperPass() : FunctionPass(ID) {
431     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
432   }
433 
434   // Cached analysis information for the current function.
435   DominatorTree *DT;
436   LoopInfo *LI;
437   ScalarEvolution *SE;
438 
439   bool runOnFunction(Function &F) override;
440   void verifyAnalysis() const override {
441     // This check is very expensive. On the loop intensive compiles it may cause
442     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
443     // always does limited form of the LCSSA verification. Similar reasoning
444     // was used for the LoopInfo verifier.
445     if (VerifyLoopLCSSA) {
446       assert(all_of(*LI,
447                     [&](Loop *L) {
448                       return L->isRecursivelyLCSSAForm(*DT, *LI);
449                     }) &&
450              "LCSSA form is broken!");
451     }
452   };
453 
454   /// This transformation requires natural loop information & requires that
455   /// loop preheaders be inserted into the CFG.  It maintains both of these,
456   /// as well as the CFG.  It also requires dominator information.
457   void getAnalysisUsage(AnalysisUsage &AU) const override {
458     AU.setPreservesCFG();
459 
460     AU.addRequired<DominatorTreeWrapperPass>();
461     AU.addRequired<LoopInfoWrapperPass>();
462     AU.addPreservedID(LoopSimplifyID);
463     AU.addPreserved<AAResultsWrapperPass>();
464     AU.addPreserved<BasicAAWrapperPass>();
465     AU.addPreserved<GlobalsAAWrapperPass>();
466     AU.addPreserved<ScalarEvolutionWrapperPass>();
467     AU.addPreserved<SCEVAAWrapperPass>();
468     AU.addPreserved<BranchProbabilityInfoWrapperPass>();
469     AU.addPreserved<MemorySSAWrapperPass>();
470 
471     // This is needed to perform LCSSA verification inside LPPassManager
472     AU.addRequired<LCSSAVerificationPass>();
473     AU.addPreserved<LCSSAVerificationPass>();
474   }
475 };
476 }
477 
478 char LCSSAWrapperPass::ID = 0;
479 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
480                       false, false)
481 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
482 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
483 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
484 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
485                     false, false)
486 
487 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
488 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
489 
490 /// Transform \p F into loop-closed SSA form.
491 bool LCSSAWrapperPass::runOnFunction(Function &F) {
492   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
493   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
494   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
495   SE = SEWP ? &SEWP->getSE() : nullptr;
496 
497   return formLCSSAOnAllLoops(LI, *DT, SE);
498 }
499 
500 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
501   auto &LI = AM.getResult<LoopAnalysis>(F);
502   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
503   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
504   if (!formLCSSAOnAllLoops(&LI, DT, SE))
505     return PreservedAnalyses::all();
506 
507   PreservedAnalyses PA;
508   PA.preserveSet<CFGAnalyses>();
509   PA.preserve<ScalarEvolutionAnalysis>();
510   // BPI maps terminators to probabilities, since we don't modify the CFG, no
511   // updates are needed to preserve it.
512   PA.preserve<BranchProbabilityAnalysis>();
513   PA.preserve<MemorySSAAnalysis>();
514   return PA;
515 }
516