1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Utils/LCSSA.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/BasicAliasAnalysis.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/ScalarEvolution.h" 38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/PredIteratorCache.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils/LoopUtils.h" 47 #include "llvm/Transforms/Utils/SSAUpdater.h" 48 using namespace llvm; 49 50 #define DEBUG_TYPE "lcssa" 51 52 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 53 54 #ifdef EXPENSIVE_CHECKS 55 static bool VerifyLoopLCSSA = true; 56 #else 57 static bool VerifyLoopLCSSA = false; 58 #endif 59 static cl::opt<bool, true> 60 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 61 cl::Hidden, 62 cl::desc("Verify loop lcssa form (time consuming)")); 63 64 /// Return true if the specified block is in the list. 65 static bool isExitBlock(BasicBlock *BB, 66 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 67 return is_contained(ExitBlocks, BB); 68 } 69 70 /// For every instruction from the worklist, check to see if it has any uses 71 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 72 /// rewrite the uses. 73 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 74 DominatorTree &DT, LoopInfo &LI) { 75 SmallVector<Use *, 16> UsesToRewrite; 76 SmallSetVector<PHINode *, 16> PHIsToRemove; 77 PredIteratorCache PredCache; 78 bool Changed = false; 79 80 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 81 // instructions within the same loops, computing the exit blocks is 82 // expensive, and we're not mutating the loop structure. 83 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 84 85 while (!Worklist.empty()) { 86 UsesToRewrite.clear(); 87 88 Instruction *I = Worklist.pop_back_val(); 89 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 90 BasicBlock *InstBB = I->getParent(); 91 Loop *L = LI.getLoopFor(InstBB); 92 assert(L && "Instruction belongs to a BB that's not part of a loop"); 93 if (!LoopExitBlocks.count(L)) 94 L->getExitBlocks(LoopExitBlocks[L]); 95 assert(LoopExitBlocks.count(L)); 96 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 97 98 if (ExitBlocks.empty()) 99 continue; 100 101 for (Use &U : I->uses()) { 102 Instruction *User = cast<Instruction>(U.getUser()); 103 BasicBlock *UserBB = User->getParent(); 104 if (auto *PN = dyn_cast<PHINode>(User)) 105 UserBB = PN->getIncomingBlock(U); 106 107 if (InstBB != UserBB && !L->contains(UserBB)) 108 UsesToRewrite.push_back(&U); 109 } 110 111 // If there are no uses outside the loop, exit with no change. 112 if (UsesToRewrite.empty()) 113 continue; 114 115 ++NumLCSSA; // We are applying the transformation 116 117 // Invoke instructions are special in that their result value is not 118 // available along their unwind edge. The code below tests to see whether 119 // DomBB dominates the value, so adjust DomBB to the normal destination 120 // block, which is effectively where the value is first usable. 121 BasicBlock *DomBB = InstBB; 122 if (auto *Inv = dyn_cast<InvokeInst>(I)) 123 DomBB = Inv->getNormalDest(); 124 125 DomTreeNode *DomNode = DT.getNode(DomBB); 126 127 SmallVector<PHINode *, 16> AddedPHIs; 128 SmallVector<PHINode *, 8> PostProcessPHIs; 129 130 SmallVector<PHINode *, 4> InsertedPHIs; 131 SSAUpdater SSAUpdate(&InsertedPHIs); 132 SSAUpdate.Initialize(I->getType(), I->getName()); 133 134 // Insert the LCSSA phi's into all of the exit blocks dominated by the 135 // value, and add them to the Phi's map. 136 for (BasicBlock *ExitBB : ExitBlocks) { 137 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 138 continue; 139 140 // If we already inserted something for this BB, don't reprocess it. 141 if (SSAUpdate.HasValueForBlock(ExitBB)) 142 continue; 143 144 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 145 I->getName() + ".lcssa", &ExitBB->front()); 146 147 // Add inputs from inside the loop for this PHI. 148 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 149 PN->addIncoming(I, Pred); 150 151 // If the exit block has a predecessor not within the loop, arrange for 152 // the incoming value use corresponding to that predecessor to be 153 // rewritten in terms of a different LCSSA PHI. 154 if (!L->contains(Pred)) 155 UsesToRewrite.push_back( 156 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 157 PN->getNumIncomingValues() - 1))); 158 } 159 160 AddedPHIs.push_back(PN); 161 162 // Remember that this phi makes the value alive in this block. 163 SSAUpdate.AddAvailableValue(ExitBB, PN); 164 165 // LoopSimplify might fail to simplify some loops (e.g. when indirect 166 // branches are involved). In such situations, it might happen that an 167 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 168 // create PHIs in such an exit block, we are also inserting PHIs into L2's 169 // header. This could break LCSSA form for L2 because these inserted PHIs 170 // can also have uses outside of L2. Remember all PHIs in such situation 171 // as to revisit than later on. FIXME: Remove this if indirectbr support 172 // into LoopSimplify gets improved. 173 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 174 if (!L->contains(OtherLoop)) 175 PostProcessPHIs.push_back(PN); 176 } 177 178 // Rewrite all uses outside the loop in terms of the new PHIs we just 179 // inserted. 180 for (Use *UseToRewrite : UsesToRewrite) { 181 // If this use is in an exit block, rewrite to use the newly inserted PHI. 182 // This is required for correctness because SSAUpdate doesn't handle uses 183 // in the same block. It assumes the PHI we inserted is at the end of the 184 // block. 185 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 186 BasicBlock *UserBB = User->getParent(); 187 if (auto *PN = dyn_cast<PHINode>(User)) 188 UserBB = PN->getIncomingBlock(*UseToRewrite); 189 190 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 191 // Tell the VHs that the uses changed. This updates SCEV's caches. 192 if (UseToRewrite->get()->hasValueHandle()) 193 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); 194 UseToRewrite->set(&UserBB->front()); 195 continue; 196 } 197 198 // Otherwise, do full PHI insertion. 199 SSAUpdate.RewriteUse(*UseToRewrite); 200 } 201 202 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 203 // to post-process them to keep LCSSA form. 204 for (PHINode *InsertedPN : InsertedPHIs) { 205 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 206 if (!L->contains(OtherLoop)) 207 PostProcessPHIs.push_back(InsertedPN); 208 } 209 210 // Post process PHI instructions that were inserted into another disjoint 211 // loop and update their exits properly. 212 for (auto *PostProcessPN : PostProcessPHIs) 213 if (!PostProcessPN->use_empty()) 214 Worklist.push_back(PostProcessPN); 215 216 // Keep track of PHI nodes that we want to remove because they did not have 217 // any uses rewritten. 218 for (PHINode *PN : AddedPHIs) 219 if (PN->use_empty()) 220 PHIsToRemove.insert(PN); 221 222 Changed = true; 223 } 224 // Remove PHI nodes that did not have any uses rewritten. 225 for (PHINode *PN : PHIsToRemove) { 226 assert (PN->use_empty() && "Trying to remove a phi with uses."); 227 PN->eraseFromParent(); 228 } 229 return Changed; 230 } 231 232 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 233 static void computeBlocksDominatingExits( 234 Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 235 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 236 SmallVector<BasicBlock *, 8> BBWorklist; 237 238 // We start from the exit blocks, as every block trivially dominates itself 239 // (not strictly). 240 for (BasicBlock *BB : ExitBlocks) 241 BBWorklist.push_back(BB); 242 243 while (!BBWorklist.empty()) { 244 BasicBlock *BB = BBWorklist.pop_back_val(); 245 246 // Check if this is a loop header. If this is the case, we're done. 247 if (L.getHeader() == BB) 248 continue; 249 250 // Otherwise, add its immediate predecessor in the dominator tree to the 251 // worklist, unless we visited it already. 252 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 253 254 // Exit blocks can have an immediate dominator not beloinging to the 255 // loop. For an exit block to be immediately dominated by another block 256 // outside the loop, it implies not all paths from that dominator, to the 257 // exit block, go through the loop. 258 // Example: 259 // 260 // |---- A 261 // | | 262 // | B<-- 263 // | | | 264 // |---> C -- 265 // | 266 // D 267 // 268 // C is the exit block of the loop and it's immediately dominated by A, 269 // which doesn't belong to the loop. 270 if (!L.contains(IDomBB)) 271 continue; 272 273 if (BlocksDominatingExits.insert(IDomBB)) 274 BBWorklist.push_back(IDomBB); 275 } 276 } 277 278 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 279 ScalarEvolution *SE) { 280 bool Changed = false; 281 282 SmallVector<BasicBlock *, 8> ExitBlocks; 283 L.getExitBlocks(ExitBlocks); 284 if (ExitBlocks.empty()) 285 return false; 286 287 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 288 289 // We want to avoid use-scanning leveraging dominance informations. 290 // If a block doesn't dominate any of the loop exits, the none of the values 291 // defined in the loop can be used outside. 292 // We compute the set of blocks fullfilling the conditions in advance 293 // walking the dominator tree upwards until we hit a loop header. 294 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 295 296 SmallVector<Instruction *, 8> Worklist; 297 298 // Look at all the instructions in the loop, checking to see if they have uses 299 // outside the loop. If so, put them into the worklist to rewrite those uses. 300 for (BasicBlock *BB : BlocksDominatingExits) { 301 for (Instruction &I : *BB) { 302 // Reject two common cases fast: instructions with no uses (like stores) 303 // and instructions with one use that is in the same block as this. 304 if (I.use_empty() || 305 (I.hasOneUse() && I.user_back()->getParent() == BB && 306 !isa<PHINode>(I.user_back()))) 307 continue; 308 309 // Tokens cannot be used in PHI nodes, so we skip over them. 310 // We can run into tokens which are live out of a loop with catchswitch 311 // instructions in Windows EH if the catchswitch has one catchpad which 312 // is inside the loop and another which is not. 313 if (I.getType()->isTokenTy()) 314 continue; 315 316 Worklist.push_back(&I); 317 } 318 } 319 Changed = formLCSSAForInstructions(Worklist, DT, *LI); 320 321 // If we modified the code, remove any caches about the loop from SCEV to 322 // avoid dangling entries. 323 // FIXME: This is a big hammer, can we clear the cache more selectively? 324 if (SE && Changed) 325 SE->forgetLoop(&L); 326 327 assert(L.isLCSSAForm(DT)); 328 329 return Changed; 330 } 331 332 /// Process a loop nest depth first. 333 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 334 ScalarEvolution *SE) { 335 bool Changed = false; 336 337 // Recurse depth-first through inner loops. 338 for (Loop *SubLoop : L.getSubLoops()) 339 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 340 341 Changed |= formLCSSA(L, DT, LI, SE); 342 return Changed; 343 } 344 345 /// Process all loops in the function, inner-most out. 346 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, 347 ScalarEvolution *SE) { 348 bool Changed = false; 349 for (auto &L : *LI) 350 Changed |= formLCSSARecursively(*L, DT, LI, SE); 351 return Changed; 352 } 353 354 namespace { 355 struct LCSSAWrapperPass : public FunctionPass { 356 static char ID; // Pass identification, replacement for typeid 357 LCSSAWrapperPass() : FunctionPass(ID) { 358 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 359 } 360 361 // Cached analysis information for the current function. 362 DominatorTree *DT; 363 LoopInfo *LI; 364 ScalarEvolution *SE; 365 366 bool runOnFunction(Function &F) override; 367 void verifyAnalysis() const override { 368 // This check is very expensive. On the loop intensive compiles it may cause 369 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 370 // always does limited form of the LCSSA verification. Similar reasoning 371 // was used for the LoopInfo verifier. 372 if (VerifyLoopLCSSA) { 373 assert(all_of(*LI, 374 [&](Loop *L) { 375 return L->isRecursivelyLCSSAForm(*DT, *LI); 376 }) && 377 "LCSSA form is broken!"); 378 } 379 }; 380 381 /// This transformation requires natural loop information & requires that 382 /// loop preheaders be inserted into the CFG. It maintains both of these, 383 /// as well as the CFG. It also requires dominator information. 384 void getAnalysisUsage(AnalysisUsage &AU) const override { 385 AU.setPreservesCFG(); 386 387 AU.addRequired<DominatorTreeWrapperPass>(); 388 AU.addRequired<LoopInfoWrapperPass>(); 389 AU.addPreservedID(LoopSimplifyID); 390 AU.addPreserved<AAResultsWrapperPass>(); 391 AU.addPreserved<BasicAAWrapperPass>(); 392 AU.addPreserved<GlobalsAAWrapperPass>(); 393 AU.addPreserved<ScalarEvolutionWrapperPass>(); 394 AU.addPreserved<SCEVAAWrapperPass>(); 395 396 // This is needed to perform LCSSA verification inside LPPassManager 397 AU.addRequired<LCSSAVerificationPass>(); 398 AU.addPreserved<LCSSAVerificationPass>(); 399 } 400 }; 401 } 402 403 char LCSSAWrapperPass::ID = 0; 404 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 405 false, false) 406 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 407 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 408 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 409 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 410 false, false) 411 412 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 413 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 414 415 /// Transform \p F into loop-closed SSA form. 416 bool LCSSAWrapperPass::runOnFunction(Function &F) { 417 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 418 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 419 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 420 SE = SEWP ? &SEWP->getSE() : nullptr; 421 422 return formLCSSAOnAllLoops(LI, *DT, SE); 423 } 424 425 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 426 auto &LI = AM.getResult<LoopAnalysis>(F); 427 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 428 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 429 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 430 return PreservedAnalyses::all(); 431 432 PreservedAnalyses PA; 433 PA.preserveSet<CFGAnalyses>(); 434 PA.preserve<BasicAA>(); 435 PA.preserve<GlobalsAA>(); 436 PA.preserve<SCEVAA>(); 437 PA.preserve<ScalarEvolutionAnalysis>(); 438 return PA; 439 } 440