1 //===- FunctionComparator.h - Function Comparator -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the FunctionComparator and GlobalNumberState classes 10 // which are used by the MergeFunctions pass for comparing functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/FunctionComparator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/IR/Attributes.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalValue.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <cstddef> 46 #include <cstdint> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "functioncomparator" 52 53 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 54 if (L < R) 55 return -1; 56 if (L > R) 57 return 1; 58 return 0; 59 } 60 61 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { 62 if ((int)L < (int)R) 63 return -1; 64 if ((int)L > (int)R) 65 return 1; 66 return 0; 67 } 68 69 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 70 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 71 return Res; 72 if (L.ugt(R)) 73 return 1; 74 if (R.ugt(L)) 75 return -1; 76 return 0; 77 } 78 79 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 80 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 81 // then by value interpreted as a bitstring (aka APInt). 82 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 83 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 84 APFloat::semanticsPrecision(SR))) 85 return Res; 86 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 87 APFloat::semanticsMaxExponent(SR))) 88 return Res; 89 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 90 APFloat::semanticsMinExponent(SR))) 91 return Res; 92 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 93 APFloat::semanticsSizeInBits(SR))) 94 return Res; 95 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 96 } 97 98 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 99 // Prevent heavy comparison, compare sizes first. 100 if (int Res = cmpNumbers(L.size(), R.size())) 101 return Res; 102 103 // Compare strings lexicographically only when it is necessary: only when 104 // strings are equal in size. 105 return L.compare(R); 106 } 107 108 int FunctionComparator::cmpAttrs(const AttributeList L, 109 const AttributeList R) const { 110 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets())) 111 return Res; 112 113 for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) { 114 AttributeSet LAS = L.getAttributes(i); 115 AttributeSet RAS = R.getAttributes(i); 116 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); 117 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); 118 for (; LI != LE && RI != RE; ++LI, ++RI) { 119 Attribute LA = *LI; 120 Attribute RA = *RI; 121 if (LA.isTypeAttribute() && RA.isTypeAttribute()) { 122 if (LA.getKindAsEnum() != RA.getKindAsEnum()) 123 return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum()); 124 125 Type *TyL = LA.getValueAsType(); 126 Type *TyR = RA.getValueAsType(); 127 if (TyL && TyR) { 128 if (int Res = cmpTypes(TyL, TyR)) 129 return Res; 130 continue; 131 } 132 133 // Two pointers, at least one null, so the comparison result is 134 // independent of the value of a real pointer. 135 if (int Res = cmpNumbers((uint64_t)TyL, (uint64_t)TyR)) 136 return Res; 137 continue; 138 } 139 if (LA < RA) 140 return -1; 141 if (RA < LA) 142 return 1; 143 } 144 if (LI != LE) 145 return 1; 146 if (RI != RE) 147 return -1; 148 } 149 return 0; 150 } 151 152 int FunctionComparator::cmpRangeMetadata(const MDNode *L, 153 const MDNode *R) const { 154 if (L == R) 155 return 0; 156 if (!L) 157 return -1; 158 if (!R) 159 return 1; 160 // Range metadata is a sequence of numbers. Make sure they are the same 161 // sequence. 162 // TODO: Note that as this is metadata, it is possible to drop and/or merge 163 // this data when considering functions to merge. Thus this comparison would 164 // return 0 (i.e. equivalent), but merging would become more complicated 165 // because the ranges would need to be unioned. It is not likely that 166 // functions differ ONLY in this metadata if they are actually the same 167 // function semantically. 168 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 169 return Res; 170 for (size_t I = 0; I < L->getNumOperands(); ++I) { 171 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); 172 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); 173 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) 174 return Res; 175 } 176 return 0; 177 } 178 179 int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS, 180 const CallBase &RCS) const { 181 assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!"); 182 183 if (int Res = 184 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) 185 return Res; 186 187 for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) { 188 auto OBL = LCS.getOperandBundleAt(I); 189 auto OBR = RCS.getOperandBundleAt(I); 190 191 if (int Res = OBL.getTagName().compare(OBR.getTagName())) 192 return Res; 193 194 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) 195 return Res; 196 } 197 198 return 0; 199 } 200 201 /// Constants comparison: 202 /// 1. Check whether type of L constant could be losslessly bitcasted to R 203 /// type. 204 /// 2. Compare constant contents. 205 /// For more details see declaration comments. 206 int FunctionComparator::cmpConstants(const Constant *L, 207 const Constant *R) const { 208 Type *TyL = L->getType(); 209 Type *TyR = R->getType(); 210 211 // Check whether types are bitcastable. This part is just re-factored 212 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 213 // we also pack into result which type is "less" for us. 214 int TypesRes = cmpTypes(TyL, TyR); 215 if (TypesRes != 0) { 216 // Types are different, but check whether we can bitcast them. 217 if (!TyL->isFirstClassType()) { 218 if (TyR->isFirstClassType()) 219 return -1; 220 // Neither TyL nor TyR are values of first class type. Return the result 221 // of comparing the types 222 return TypesRes; 223 } 224 if (!TyR->isFirstClassType()) { 225 if (TyL->isFirstClassType()) 226 return 1; 227 return TypesRes; 228 } 229 230 // Vector -> Vector conversions are always lossless if the two vector types 231 // have the same size, otherwise not. 232 unsigned TyLWidth = 0; 233 unsigned TyRWidth = 0; 234 235 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 236 TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedSize(); 237 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 238 TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedSize(); 239 240 if (TyLWidth != TyRWidth) 241 return cmpNumbers(TyLWidth, TyRWidth); 242 243 // Zero bit-width means neither TyL nor TyR are vectors. 244 if (!TyLWidth) { 245 PointerType *PTyL = dyn_cast<PointerType>(TyL); 246 PointerType *PTyR = dyn_cast<PointerType>(TyR); 247 if (PTyL && PTyR) { 248 unsigned AddrSpaceL = PTyL->getAddressSpace(); 249 unsigned AddrSpaceR = PTyR->getAddressSpace(); 250 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 251 return Res; 252 } 253 if (PTyL) 254 return 1; 255 if (PTyR) 256 return -1; 257 258 // TyL and TyR aren't vectors, nor pointers. We don't know how to 259 // bitcast them. 260 return TypesRes; 261 } 262 } 263 264 // OK, types are bitcastable, now check constant contents. 265 266 if (L->isNullValue() && R->isNullValue()) 267 return TypesRes; 268 if (L->isNullValue() && !R->isNullValue()) 269 return 1; 270 if (!L->isNullValue() && R->isNullValue()) 271 return -1; 272 273 auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L)); 274 auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R)); 275 if (GlobalValueL && GlobalValueR) { 276 return cmpGlobalValues(GlobalValueL, GlobalValueR); 277 } 278 279 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 280 return Res; 281 282 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 283 const auto *SeqR = cast<ConstantDataSequential>(R); 284 // This handles ConstantDataArray and ConstantDataVector. Note that we 285 // compare the two raw data arrays, which might differ depending on the host 286 // endianness. This isn't a problem though, because the endiness of a module 287 // will affect the order of the constants, but this order is the same 288 // for a given input module and host platform. 289 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 290 } 291 292 switch (L->getValueID()) { 293 case Value::UndefValueVal: 294 case Value::ConstantTokenNoneVal: 295 return TypesRes; 296 case Value::ConstantIntVal: { 297 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 298 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 299 return cmpAPInts(LInt, RInt); 300 } 301 case Value::ConstantFPVal: { 302 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 303 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 304 return cmpAPFloats(LAPF, RAPF); 305 } 306 case Value::ConstantArrayVal: { 307 const ConstantArray *LA = cast<ConstantArray>(L); 308 const ConstantArray *RA = cast<ConstantArray>(R); 309 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 310 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 311 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 312 return Res; 313 for (uint64_t i = 0; i < NumElementsL; ++i) { 314 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 315 cast<Constant>(RA->getOperand(i)))) 316 return Res; 317 } 318 return 0; 319 } 320 case Value::ConstantStructVal: { 321 const ConstantStruct *LS = cast<ConstantStruct>(L); 322 const ConstantStruct *RS = cast<ConstantStruct>(R); 323 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 324 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 325 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 326 return Res; 327 for (unsigned i = 0; i != NumElementsL; ++i) { 328 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 329 cast<Constant>(RS->getOperand(i)))) 330 return Res; 331 } 332 return 0; 333 } 334 case Value::ConstantVectorVal: { 335 const ConstantVector *LV = cast<ConstantVector>(L); 336 const ConstantVector *RV = cast<ConstantVector>(R); 337 unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements(); 338 unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements(); 339 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 340 return Res; 341 for (uint64_t i = 0; i < NumElementsL; ++i) { 342 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 343 cast<Constant>(RV->getOperand(i)))) 344 return Res; 345 } 346 return 0; 347 } 348 case Value::ConstantExprVal: { 349 const ConstantExpr *LE = cast<ConstantExpr>(L); 350 const ConstantExpr *RE = cast<ConstantExpr>(R); 351 unsigned NumOperandsL = LE->getNumOperands(); 352 unsigned NumOperandsR = RE->getNumOperands(); 353 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 354 return Res; 355 for (unsigned i = 0; i < NumOperandsL; ++i) { 356 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 357 cast<Constant>(RE->getOperand(i)))) 358 return Res; 359 } 360 return 0; 361 } 362 case Value::BlockAddressVal: { 363 const BlockAddress *LBA = cast<BlockAddress>(L); 364 const BlockAddress *RBA = cast<BlockAddress>(R); 365 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 366 return Res; 367 if (LBA->getFunction() == RBA->getFunction()) { 368 // They are BBs in the same function. Order by which comes first in the 369 // BB order of the function. This order is deterministic. 370 Function *F = LBA->getFunction(); 371 BasicBlock *LBB = LBA->getBasicBlock(); 372 BasicBlock *RBB = RBA->getBasicBlock(); 373 if (LBB == RBB) 374 return 0; 375 for (BasicBlock &BB : F->getBasicBlockList()) { 376 if (&BB == LBB) { 377 assert(&BB != RBB); 378 return -1; 379 } 380 if (&BB == RBB) 381 return 1; 382 } 383 llvm_unreachable("Basic Block Address does not point to a basic block in " 384 "its function."); 385 return -1; 386 } else { 387 // cmpValues said the functions are the same. So because they aren't 388 // literally the same pointer, they must respectively be the left and 389 // right functions. 390 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 391 // cmpValues will tell us if these are equivalent BasicBlocks, in the 392 // context of their respective functions. 393 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 394 } 395 } 396 default: // Unknown constant, abort. 397 LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 398 llvm_unreachable("Constant ValueID not recognized."); 399 return -1; 400 } 401 } 402 403 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { 404 uint64_t LNumber = GlobalNumbers->getNumber(L); 405 uint64_t RNumber = GlobalNumbers->getNumber(R); 406 return cmpNumbers(LNumber, RNumber); 407 } 408 409 /// cmpType - compares two types, 410 /// defines total ordering among the types set. 411 /// See method declaration comments for more details. 412 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 413 PointerType *PTyL = dyn_cast<PointerType>(TyL); 414 PointerType *PTyR = dyn_cast<PointerType>(TyR); 415 416 const DataLayout &DL = FnL->getParent()->getDataLayout(); 417 if (PTyL && PTyL->getAddressSpace() == 0) 418 TyL = DL.getIntPtrType(TyL); 419 if (PTyR && PTyR->getAddressSpace() == 0) 420 TyR = DL.getIntPtrType(TyR); 421 422 if (TyL == TyR) 423 return 0; 424 425 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 426 return Res; 427 428 switch (TyL->getTypeID()) { 429 default: 430 llvm_unreachable("Unknown type!"); 431 case Type::IntegerTyID: 432 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 433 cast<IntegerType>(TyR)->getBitWidth()); 434 // TyL == TyR would have returned true earlier, because types are uniqued. 435 case Type::VoidTyID: 436 case Type::FloatTyID: 437 case Type::DoubleTyID: 438 case Type::X86_FP80TyID: 439 case Type::FP128TyID: 440 case Type::PPC_FP128TyID: 441 case Type::LabelTyID: 442 case Type::MetadataTyID: 443 case Type::TokenTyID: 444 return 0; 445 446 case Type::PointerTyID: 447 assert(PTyL && PTyR && "Both types must be pointers here."); 448 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 449 450 case Type::StructTyID: { 451 StructType *STyL = cast<StructType>(TyL); 452 StructType *STyR = cast<StructType>(TyR); 453 if (STyL->getNumElements() != STyR->getNumElements()) 454 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 455 456 if (STyL->isPacked() != STyR->isPacked()) 457 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 458 459 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 460 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 461 return Res; 462 } 463 return 0; 464 } 465 466 case Type::FunctionTyID: { 467 FunctionType *FTyL = cast<FunctionType>(TyL); 468 FunctionType *FTyR = cast<FunctionType>(TyR); 469 if (FTyL->getNumParams() != FTyR->getNumParams()) 470 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 471 472 if (FTyL->isVarArg() != FTyR->isVarArg()) 473 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 474 475 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 476 return Res; 477 478 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 479 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 480 return Res; 481 } 482 return 0; 483 } 484 485 case Type::ArrayTyID: { 486 auto *STyL = cast<ArrayType>(TyL); 487 auto *STyR = cast<ArrayType>(TyR); 488 if (STyL->getNumElements() != STyR->getNumElements()) 489 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 490 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 491 } 492 case Type::FixedVectorTyID: 493 case Type::ScalableVectorTyID: { 494 auto *STyL = cast<VectorType>(TyL); 495 auto *STyR = cast<VectorType>(TyR); 496 if (STyL->getElementCount().isScalable() != 497 STyR->getElementCount().isScalable()) 498 return cmpNumbers(STyL->getElementCount().isScalable(), 499 STyR->getElementCount().isScalable()); 500 if (STyL->getElementCount() != STyR->getElementCount()) 501 return cmpNumbers(STyL->getElementCount().getKnownMinValue(), 502 STyR->getElementCount().getKnownMinValue()); 503 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 504 } 505 } 506 } 507 508 // Determine whether the two operations are the same except that pointer-to-A 509 // and pointer-to-B are equivalent. This should be kept in sync with 510 // Instruction::isSameOperationAs. 511 // Read method declaration comments for more details. 512 int FunctionComparator::cmpOperations(const Instruction *L, 513 const Instruction *R, 514 bool &needToCmpOperands) const { 515 needToCmpOperands = true; 516 if (int Res = cmpValues(L, R)) 517 return Res; 518 519 // Differences from Instruction::isSameOperationAs: 520 // * replace type comparison with calls to cmpTypes. 521 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. 522 // * because of the above, we don't test for the tail bit on calls later on. 523 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 524 return Res; 525 526 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { 527 needToCmpOperands = false; 528 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); 529 if (int Res = 530 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 531 return Res; 532 return cmpGEPs(GEPL, GEPR); 533 } 534 535 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 536 return Res; 537 538 if (int Res = cmpTypes(L->getType(), R->getType())) 539 return Res; 540 541 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 542 R->getRawSubclassOptionalData())) 543 return Res; 544 545 // We have two instructions of identical opcode and #operands. Check to see 546 // if all operands are the same type 547 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 548 if (int Res = 549 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 550 return Res; 551 } 552 553 // Check special state that is a part of some instructions. 554 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 555 if (int Res = cmpTypes(AI->getAllocatedType(), 556 cast<AllocaInst>(R)->getAllocatedType())) 557 return Res; 558 return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()); 559 } 560 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 561 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 562 return Res; 563 if (int Res = 564 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) 565 return Res; 566 if (int Res = 567 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 568 return Res; 569 if (int Res = cmpNumbers(LI->getSyncScopeID(), 570 cast<LoadInst>(R)->getSyncScopeID())) 571 return Res; 572 return cmpRangeMetadata( 573 LI->getMetadata(LLVMContext::MD_range), 574 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 575 } 576 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 577 if (int Res = 578 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 579 return Res; 580 if (int Res = 581 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) 582 return Res; 583 if (int Res = 584 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 585 return Res; 586 return cmpNumbers(SI->getSyncScopeID(), 587 cast<StoreInst>(R)->getSyncScopeID()); 588 } 589 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 590 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 591 if (auto *CBL = dyn_cast<CallBase>(L)) { 592 auto *CBR = cast<CallBase>(R); 593 if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv())) 594 return Res; 595 if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes())) 596 return Res; 597 if (int Res = cmpOperandBundlesSchema(*CBL, *CBR)) 598 return Res; 599 if (const CallInst *CI = dyn_cast<CallInst>(L)) 600 if (int Res = cmpNumbers(CI->getTailCallKind(), 601 cast<CallInst>(R)->getTailCallKind())) 602 return Res; 603 return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range), 604 R->getMetadata(LLVMContext::MD_range)); 605 } 606 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 607 ArrayRef<unsigned> LIndices = IVI->getIndices(); 608 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 609 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 610 return Res; 611 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 612 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 613 return Res; 614 } 615 return 0; 616 } 617 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 618 ArrayRef<unsigned> LIndices = EVI->getIndices(); 619 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 620 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 621 return Res; 622 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 623 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 624 return Res; 625 } 626 } 627 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 628 if (int Res = 629 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 630 return Res; 631 return cmpNumbers(FI->getSyncScopeID(), 632 cast<FenceInst>(R)->getSyncScopeID()); 633 } 634 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 635 if (int Res = cmpNumbers(CXI->isVolatile(), 636 cast<AtomicCmpXchgInst>(R)->isVolatile())) 637 return Res; 638 if (int Res = 639 cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak())) 640 return Res; 641 if (int Res = 642 cmpOrderings(CXI->getSuccessOrdering(), 643 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 644 return Res; 645 if (int Res = 646 cmpOrderings(CXI->getFailureOrdering(), 647 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 648 return Res; 649 return cmpNumbers(CXI->getSyncScopeID(), 650 cast<AtomicCmpXchgInst>(R)->getSyncScopeID()); 651 } 652 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 653 if (int Res = cmpNumbers(RMWI->getOperation(), 654 cast<AtomicRMWInst>(R)->getOperation())) 655 return Res; 656 if (int Res = cmpNumbers(RMWI->isVolatile(), 657 cast<AtomicRMWInst>(R)->isVolatile())) 658 return Res; 659 if (int Res = cmpOrderings(RMWI->getOrdering(), 660 cast<AtomicRMWInst>(R)->getOrdering())) 661 return Res; 662 return cmpNumbers(RMWI->getSyncScopeID(), 663 cast<AtomicRMWInst>(R)->getSyncScopeID()); 664 } 665 if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) { 666 ArrayRef<int> LMask = SVI->getShuffleMask(); 667 ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask(); 668 if (int Res = cmpNumbers(LMask.size(), RMask.size())) 669 return Res; 670 for (size_t i = 0, e = LMask.size(); i != e; ++i) { 671 if (int Res = cmpNumbers(LMask[i], RMask[i])) 672 return Res; 673 } 674 } 675 if (const PHINode *PNL = dyn_cast<PHINode>(L)) { 676 const PHINode *PNR = cast<PHINode>(R); 677 // Ensure that in addition to the incoming values being identical 678 // (checked by the caller of this function), the incoming blocks 679 // are also identical. 680 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { 681 if (int Res = 682 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) 683 return Res; 684 } 685 } 686 return 0; 687 } 688 689 // Determine whether two GEP operations perform the same underlying arithmetic. 690 // Read method declaration comments for more details. 691 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 692 const GEPOperator *GEPR) const { 693 unsigned int ASL = GEPL->getPointerAddressSpace(); 694 unsigned int ASR = GEPR->getPointerAddressSpace(); 695 696 if (int Res = cmpNumbers(ASL, ASR)) 697 return Res; 698 699 // When we have target data, we can reduce the GEP down to the value in bytes 700 // added to the address. 701 const DataLayout &DL = FnL->getParent()->getDataLayout(); 702 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 703 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 704 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 705 GEPR->accumulateConstantOffset(DL, OffsetR)) 706 return cmpAPInts(OffsetL, OffsetR); 707 if (int Res = 708 cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType())) 709 return Res; 710 711 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 712 return Res; 713 714 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 715 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 716 return Res; 717 } 718 719 return 0; 720 } 721 722 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 723 const InlineAsm *R) const { 724 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 725 // the same, otherwise compare the fields. 726 if (L == R) 727 return 0; 728 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 729 return Res; 730 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 731 return Res; 732 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 733 return Res; 734 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 735 return Res; 736 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 737 return Res; 738 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 739 return Res; 740 assert(L->getFunctionType() != R->getFunctionType()); 741 return 0; 742 } 743 744 /// Compare two values used by the two functions under pair-wise comparison. If 745 /// this is the first time the values are seen, they're added to the mapping so 746 /// that we will detect mismatches on next use. 747 /// See comments in declaration for more details. 748 int FunctionComparator::cmpValues(const Value *L, const Value *R) const { 749 // Catch self-reference case. 750 if (L == FnL) { 751 if (R == FnR) 752 return 0; 753 return -1; 754 } 755 if (R == FnR) { 756 if (L == FnL) 757 return 0; 758 return 1; 759 } 760 761 const Constant *ConstL = dyn_cast<Constant>(L); 762 const Constant *ConstR = dyn_cast<Constant>(R); 763 if (ConstL && ConstR) { 764 if (L == R) 765 return 0; 766 return cmpConstants(ConstL, ConstR); 767 } 768 769 if (ConstL) 770 return 1; 771 if (ConstR) 772 return -1; 773 774 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 775 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 776 777 if (InlineAsmL && InlineAsmR) 778 return cmpInlineAsm(InlineAsmL, InlineAsmR); 779 if (InlineAsmL) 780 return 1; 781 if (InlineAsmR) 782 return -1; 783 784 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 785 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 786 787 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 788 } 789 790 // Test whether two basic blocks have equivalent behaviour. 791 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 792 const BasicBlock *BBR) const { 793 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 794 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 795 796 do { 797 bool needToCmpOperands = true; 798 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) 799 return Res; 800 if (needToCmpOperands) { 801 assert(InstL->getNumOperands() == InstR->getNumOperands()); 802 803 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 804 Value *OpL = InstL->getOperand(i); 805 Value *OpR = InstR->getOperand(i); 806 if (int Res = cmpValues(OpL, OpR)) 807 return Res; 808 // cmpValues should ensure this is true. 809 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 810 } 811 } 812 813 ++InstL; 814 ++InstR; 815 } while (InstL != InstLE && InstR != InstRE); 816 817 if (InstL != InstLE && InstR == InstRE) 818 return 1; 819 if (InstL == InstLE && InstR != InstRE) 820 return -1; 821 return 0; 822 } 823 824 int FunctionComparator::compareSignature() const { 825 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 826 return Res; 827 828 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 829 return Res; 830 831 if (FnL->hasGC()) { 832 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 833 return Res; 834 } 835 836 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 837 return Res; 838 839 if (FnL->hasSection()) { 840 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 841 return Res; 842 } 843 844 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 845 return Res; 846 847 // TODO: if it's internal and only used in direct calls, we could handle this 848 // case too. 849 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 850 return Res; 851 852 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 853 return Res; 854 855 assert(FnL->arg_size() == FnR->arg_size() && 856 "Identically typed functions have different numbers of args!"); 857 858 // Visit the arguments so that they get enumerated in the order they're 859 // passed in. 860 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 861 ArgRI = FnR->arg_begin(), 862 ArgLE = FnL->arg_end(); 863 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 864 if (cmpValues(&*ArgLI, &*ArgRI) != 0) 865 llvm_unreachable("Arguments repeat!"); 866 } 867 return 0; 868 } 869 870 // Test whether the two functions have equivalent behaviour. 871 int FunctionComparator::compare() { 872 beginCompare(); 873 874 if (int Res = compareSignature()) 875 return Res; 876 877 // We do a CFG-ordered walk since the actual ordering of the blocks in the 878 // linked list is immaterial. Our walk starts at the entry block for both 879 // functions, then takes each block from each terminator in order. As an 880 // artifact, this also means that unreachable blocks are ignored. 881 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 882 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. 883 884 FnLBBs.push_back(&FnL->getEntryBlock()); 885 FnRBBs.push_back(&FnR->getEntryBlock()); 886 887 VisitedBBs.insert(FnLBBs[0]); 888 while (!FnLBBs.empty()) { 889 const BasicBlock *BBL = FnLBBs.pop_back_val(); 890 const BasicBlock *BBR = FnRBBs.pop_back_val(); 891 892 if (int Res = cmpValues(BBL, BBR)) 893 return Res; 894 895 if (int Res = cmpBasicBlocks(BBL, BBR)) 896 return Res; 897 898 const Instruction *TermL = BBL->getTerminator(); 899 const Instruction *TermR = BBR->getTerminator(); 900 901 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 902 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 903 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 904 continue; 905 906 FnLBBs.push_back(TermL->getSuccessor(i)); 907 FnRBBs.push_back(TermR->getSuccessor(i)); 908 } 909 } 910 return 0; 911 } 912 913 namespace { 914 915 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 916 // hash of a sequence of 64bit ints, but the entire input does not need to be 917 // available at once. This interface is necessary for functionHash because it 918 // needs to accumulate the hash as the structure of the function is traversed 919 // without saving these values to an intermediate buffer. This form of hashing 920 // is not often needed, as usually the object to hash is just read from a 921 // buffer. 922 class HashAccumulator64 { 923 uint64_t Hash; 924 925 public: 926 // Initialize to random constant, so the state isn't zero. 927 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 928 929 void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); } 930 931 // No finishing is required, because the entire hash value is used. 932 uint64_t getHash() { return Hash; } 933 }; 934 935 } // end anonymous namespace 936 937 // A function hash is calculated by considering only the number of arguments and 938 // whether a function is varargs, the order of basic blocks (given by the 939 // successors of each basic block in depth first order), and the order of 940 // opcodes of each instruction within each of these basic blocks. This mirrors 941 // the strategy compare() uses to compare functions by walking the BBs in depth 942 // first order and comparing each instruction in sequence. Because this hash 943 // does not look at the operands, it is insensitive to things such as the 944 // target of calls and the constants used in the function, which makes it useful 945 // when possibly merging functions which are the same modulo constants and call 946 // targets. 947 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 948 HashAccumulator64 H; 949 H.add(F.isVarArg()); 950 H.add(F.arg_size()); 951 952 SmallVector<const BasicBlock *, 8> BBs; 953 SmallPtrSet<const BasicBlock *, 16> VisitedBBs; 954 955 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 956 // accumulating the hash of the function "structure." (BB and opcode sequence) 957 BBs.push_back(&F.getEntryBlock()); 958 VisitedBBs.insert(BBs[0]); 959 while (!BBs.empty()) { 960 const BasicBlock *BB = BBs.pop_back_val(); 961 // This random value acts as a block header, as otherwise the partition of 962 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 963 H.add(45798); 964 for (auto &Inst : *BB) { 965 H.add(Inst.getOpcode()); 966 } 967 const Instruction *Term = BB->getTerminator(); 968 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 969 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 970 continue; 971 BBs.push_back(Term->getSuccessor(i)); 972 } 973 } 974 return H.getHash(); 975 } 976