1 //===- FunctionComparator.h - Function Comparator -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the FunctionComparator and GlobalNumberState classes 10 // which are used by the MergeFunctions pass for comparing functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/FunctionComparator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/IR/Attributes.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalValue.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <cstddef> 46 #include <cstdint> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "functioncomparator" 52 53 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 54 if (L < R) 55 return -1; 56 if (L > R) 57 return 1; 58 return 0; 59 } 60 61 int FunctionComparator::cmpAligns(Align L, Align R) const { 62 if (L.value() < R.value()) 63 return -1; 64 if (L.value() > R.value()) 65 return 1; 66 return 0; 67 } 68 69 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { 70 if ((int)L < (int)R) 71 return -1; 72 if ((int)L > (int)R) 73 return 1; 74 return 0; 75 } 76 77 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 78 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 79 return Res; 80 if (L.ugt(R)) 81 return 1; 82 if (R.ugt(L)) 83 return -1; 84 return 0; 85 } 86 87 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 88 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 89 // then by value interpreted as a bitstring (aka APInt). 90 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 91 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 92 APFloat::semanticsPrecision(SR))) 93 return Res; 94 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 95 APFloat::semanticsMaxExponent(SR))) 96 return Res; 97 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 98 APFloat::semanticsMinExponent(SR))) 99 return Res; 100 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 101 APFloat::semanticsSizeInBits(SR))) 102 return Res; 103 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 104 } 105 106 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 107 // Prevent heavy comparison, compare sizes first. 108 if (int Res = cmpNumbers(L.size(), R.size())) 109 return Res; 110 111 // Compare strings lexicographically only when it is necessary: only when 112 // strings are equal in size. 113 return std::clamp(L.compare(R), -1, 1); 114 } 115 116 int FunctionComparator::cmpAttrs(const AttributeList L, 117 const AttributeList R) const { 118 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets())) 119 return Res; 120 121 for (unsigned i : L.indexes()) { 122 AttributeSet LAS = L.getAttributes(i); 123 AttributeSet RAS = R.getAttributes(i); 124 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); 125 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); 126 for (; LI != LE && RI != RE; ++LI, ++RI) { 127 Attribute LA = *LI; 128 Attribute RA = *RI; 129 if (LA.isTypeAttribute() && RA.isTypeAttribute()) { 130 if (LA.getKindAsEnum() != RA.getKindAsEnum()) 131 return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum()); 132 133 Type *TyL = LA.getValueAsType(); 134 Type *TyR = RA.getValueAsType(); 135 if (TyL && TyR) { 136 if (int Res = cmpTypes(TyL, TyR)) 137 return Res; 138 continue; 139 } 140 141 // Two pointers, at least one null, so the comparison result is 142 // independent of the value of a real pointer. 143 if (int Res = cmpNumbers((uint64_t)TyL, (uint64_t)TyR)) 144 return Res; 145 continue; 146 } 147 if (LA < RA) 148 return -1; 149 if (RA < LA) 150 return 1; 151 } 152 if (LI != LE) 153 return 1; 154 if (RI != RE) 155 return -1; 156 } 157 return 0; 158 } 159 160 int FunctionComparator::cmpMetadata(const MDNode *L, const MDNode *R) const { 161 if (L == R) 162 return 0; 163 if (!L) 164 return -1; 165 if (!R) 166 return 1; 167 // TODO: Note that as this is metadata, it is possible to drop and/or merge 168 // this data when considering functions to merge. Thus this comparison would 169 // return 0 (i.e. equivalent), but merging would become more complicated 170 // because the ranges would need to be unioned. It is not likely that 171 // functions differ ONLY in this metadata if they are actually the same 172 // function semantically. 173 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 174 return Res; 175 for (size_t I = 0; I < L->getNumOperands(); ++I) { 176 // TODO: the following routine coerce the metadata contents into numbers 177 // before comparison. 178 // It ignores any other cases, so that the metadata nodes are considered 179 // equal even though this is not correct. 180 // We should structurally compare the metadata nodes to be perfect here. 181 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); 182 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); 183 if (LLow == RLow) 184 continue; 185 if (!LLow) 186 return -1; 187 if (!RLow) 188 return 1; 189 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) 190 return Res; 191 } 192 return 0; 193 } 194 195 int FunctionComparator::cmpInstMetadata(Instruction const *L, 196 Instruction const *R) const { 197 /// These metadata affects the other optimization passes by making assertions 198 /// or constraints. 199 /// Values that carry different expectations should be considered different. 200 SmallVector<std::pair<unsigned, MDNode *>> MDL, MDR; 201 L->getAllMetadataOtherThanDebugLoc(MDL); 202 R->getAllMetadataOtherThanDebugLoc(MDR); 203 if (MDL.size() > MDR.size()) 204 return 1; 205 else if (MDL.size() < MDR.size()) 206 return -1; 207 for (size_t I = 0, N = MDL.size(); I < N; ++I) { 208 auto const [KeyL, ML] = MDL[I]; 209 auto const [KeyR, MR] = MDR[I]; 210 if (int Res = cmpNumbers(KeyL, KeyR)) 211 return Res; 212 if (int Res = cmpMetadata(ML, MR)) 213 return Res; 214 } 215 return 0; 216 } 217 218 int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS, 219 const CallBase &RCS) const { 220 assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!"); 221 222 if (int Res = 223 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) 224 return Res; 225 226 for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) { 227 auto OBL = LCS.getOperandBundleAt(I); 228 auto OBR = RCS.getOperandBundleAt(I); 229 230 if (int Res = OBL.getTagName().compare(OBR.getTagName())) 231 return Res; 232 233 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) 234 return Res; 235 } 236 237 return 0; 238 } 239 240 /// Constants comparison: 241 /// 1. Check whether type of L constant could be losslessly bitcasted to R 242 /// type. 243 /// 2. Compare constant contents. 244 /// For more details see declaration comments. 245 int FunctionComparator::cmpConstants(const Constant *L, 246 const Constant *R) const { 247 Type *TyL = L->getType(); 248 Type *TyR = R->getType(); 249 250 // Check whether types are bitcastable. This part is just re-factored 251 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 252 // we also pack into result which type is "less" for us. 253 int TypesRes = cmpTypes(TyL, TyR); 254 if (TypesRes != 0) { 255 // Types are different, but check whether we can bitcast them. 256 if (!TyL->isFirstClassType()) { 257 if (TyR->isFirstClassType()) 258 return -1; 259 // Neither TyL nor TyR are values of first class type. Return the result 260 // of comparing the types 261 return TypesRes; 262 } 263 if (!TyR->isFirstClassType()) { 264 if (TyL->isFirstClassType()) 265 return 1; 266 return TypesRes; 267 } 268 269 // Vector -> Vector conversions are always lossless if the two vector types 270 // have the same size, otherwise not. 271 unsigned TyLWidth = 0; 272 unsigned TyRWidth = 0; 273 274 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 275 TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedValue(); 276 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 277 TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedValue(); 278 279 if (TyLWidth != TyRWidth) 280 return cmpNumbers(TyLWidth, TyRWidth); 281 282 // Zero bit-width means neither TyL nor TyR are vectors. 283 if (!TyLWidth) { 284 PointerType *PTyL = dyn_cast<PointerType>(TyL); 285 PointerType *PTyR = dyn_cast<PointerType>(TyR); 286 if (PTyL && PTyR) { 287 unsigned AddrSpaceL = PTyL->getAddressSpace(); 288 unsigned AddrSpaceR = PTyR->getAddressSpace(); 289 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 290 return Res; 291 } 292 if (PTyL) 293 return 1; 294 if (PTyR) 295 return -1; 296 297 // TyL and TyR aren't vectors, nor pointers. We don't know how to 298 // bitcast them. 299 return TypesRes; 300 } 301 } 302 303 // OK, types are bitcastable, now check constant contents. 304 305 if (L->isNullValue() && R->isNullValue()) 306 return TypesRes; 307 if (L->isNullValue() && !R->isNullValue()) 308 return 1; 309 if (!L->isNullValue() && R->isNullValue()) 310 return -1; 311 312 auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L)); 313 auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R)); 314 if (GlobalValueL && GlobalValueR) { 315 return cmpGlobalValues(GlobalValueL, GlobalValueR); 316 } 317 318 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 319 return Res; 320 321 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 322 const auto *SeqR = cast<ConstantDataSequential>(R); 323 // This handles ConstantDataArray and ConstantDataVector. Note that we 324 // compare the two raw data arrays, which might differ depending on the host 325 // endianness. This isn't a problem though, because the endiness of a module 326 // will affect the order of the constants, but this order is the same 327 // for a given input module and host platform. 328 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 329 } 330 331 switch (L->getValueID()) { 332 case Value::UndefValueVal: 333 case Value::PoisonValueVal: 334 case Value::ConstantTokenNoneVal: 335 return TypesRes; 336 case Value::ConstantIntVal: { 337 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 338 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 339 return cmpAPInts(LInt, RInt); 340 } 341 case Value::ConstantFPVal: { 342 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 343 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 344 return cmpAPFloats(LAPF, RAPF); 345 } 346 case Value::ConstantArrayVal: { 347 const ConstantArray *LA = cast<ConstantArray>(L); 348 const ConstantArray *RA = cast<ConstantArray>(R); 349 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 350 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 351 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 352 return Res; 353 for (uint64_t i = 0; i < NumElementsL; ++i) { 354 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 355 cast<Constant>(RA->getOperand(i)))) 356 return Res; 357 } 358 return 0; 359 } 360 case Value::ConstantStructVal: { 361 const ConstantStruct *LS = cast<ConstantStruct>(L); 362 const ConstantStruct *RS = cast<ConstantStruct>(R); 363 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 364 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 365 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 366 return Res; 367 for (unsigned i = 0; i != NumElementsL; ++i) { 368 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 369 cast<Constant>(RS->getOperand(i)))) 370 return Res; 371 } 372 return 0; 373 } 374 case Value::ConstantVectorVal: { 375 const ConstantVector *LV = cast<ConstantVector>(L); 376 const ConstantVector *RV = cast<ConstantVector>(R); 377 unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements(); 378 unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements(); 379 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 380 return Res; 381 for (uint64_t i = 0; i < NumElementsL; ++i) { 382 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 383 cast<Constant>(RV->getOperand(i)))) 384 return Res; 385 } 386 return 0; 387 } 388 case Value::ConstantExprVal: { 389 const ConstantExpr *LE = cast<ConstantExpr>(L); 390 const ConstantExpr *RE = cast<ConstantExpr>(R); 391 unsigned NumOperandsL = LE->getNumOperands(); 392 unsigned NumOperandsR = RE->getNumOperands(); 393 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 394 return Res; 395 for (unsigned i = 0; i < NumOperandsL; ++i) { 396 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 397 cast<Constant>(RE->getOperand(i)))) 398 return Res; 399 } 400 return 0; 401 } 402 case Value::BlockAddressVal: { 403 const BlockAddress *LBA = cast<BlockAddress>(L); 404 const BlockAddress *RBA = cast<BlockAddress>(R); 405 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 406 return Res; 407 if (LBA->getFunction() == RBA->getFunction()) { 408 // They are BBs in the same function. Order by which comes first in the 409 // BB order of the function. This order is deterministic. 410 Function *F = LBA->getFunction(); 411 BasicBlock *LBB = LBA->getBasicBlock(); 412 BasicBlock *RBB = RBA->getBasicBlock(); 413 if (LBB == RBB) 414 return 0; 415 for (BasicBlock &BB : *F) { 416 if (&BB == LBB) { 417 assert(&BB != RBB); 418 return -1; 419 } 420 if (&BB == RBB) 421 return 1; 422 } 423 llvm_unreachable("Basic Block Address does not point to a basic block in " 424 "its function."); 425 return -1; 426 } else { 427 // cmpValues said the functions are the same. So because they aren't 428 // literally the same pointer, they must respectively be the left and 429 // right functions. 430 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 431 // cmpValues will tell us if these are equivalent BasicBlocks, in the 432 // context of their respective functions. 433 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 434 } 435 } 436 case Value::DSOLocalEquivalentVal: { 437 // dso_local_equivalent is functionally equivalent to whatever it points to. 438 // This means the behavior of the IR should be the exact same as if the 439 // function was referenced directly rather than through a 440 // dso_local_equivalent. 441 const auto *LEquiv = cast<DSOLocalEquivalent>(L); 442 const auto *REquiv = cast<DSOLocalEquivalent>(R); 443 return cmpGlobalValues(LEquiv->getGlobalValue(), REquiv->getGlobalValue()); 444 } 445 default: // Unknown constant, abort. 446 LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 447 llvm_unreachable("Constant ValueID not recognized."); 448 return -1; 449 } 450 } 451 452 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { 453 uint64_t LNumber = GlobalNumbers->getNumber(L); 454 uint64_t RNumber = GlobalNumbers->getNumber(R); 455 return cmpNumbers(LNumber, RNumber); 456 } 457 458 /// cmpType - compares two types, 459 /// defines total ordering among the types set. 460 /// See method declaration comments for more details. 461 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 462 PointerType *PTyL = dyn_cast<PointerType>(TyL); 463 PointerType *PTyR = dyn_cast<PointerType>(TyR); 464 465 const DataLayout &DL = FnL->getParent()->getDataLayout(); 466 if (PTyL && PTyL->getAddressSpace() == 0) 467 TyL = DL.getIntPtrType(TyL); 468 if (PTyR && PTyR->getAddressSpace() == 0) 469 TyR = DL.getIntPtrType(TyR); 470 471 if (TyL == TyR) 472 return 0; 473 474 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 475 return Res; 476 477 switch (TyL->getTypeID()) { 478 default: 479 llvm_unreachable("Unknown type!"); 480 case Type::IntegerTyID: 481 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 482 cast<IntegerType>(TyR)->getBitWidth()); 483 // TyL == TyR would have returned true earlier, because types are uniqued. 484 case Type::VoidTyID: 485 case Type::FloatTyID: 486 case Type::DoubleTyID: 487 case Type::X86_FP80TyID: 488 case Type::FP128TyID: 489 case Type::PPC_FP128TyID: 490 case Type::LabelTyID: 491 case Type::MetadataTyID: 492 case Type::TokenTyID: 493 return 0; 494 495 case Type::PointerTyID: 496 assert(PTyL && PTyR && "Both types must be pointers here."); 497 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 498 499 case Type::StructTyID: { 500 StructType *STyL = cast<StructType>(TyL); 501 StructType *STyR = cast<StructType>(TyR); 502 if (STyL->getNumElements() != STyR->getNumElements()) 503 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 504 505 if (STyL->isPacked() != STyR->isPacked()) 506 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 507 508 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 509 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 510 return Res; 511 } 512 return 0; 513 } 514 515 case Type::FunctionTyID: { 516 FunctionType *FTyL = cast<FunctionType>(TyL); 517 FunctionType *FTyR = cast<FunctionType>(TyR); 518 if (FTyL->getNumParams() != FTyR->getNumParams()) 519 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 520 521 if (FTyL->isVarArg() != FTyR->isVarArg()) 522 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 523 524 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 525 return Res; 526 527 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 528 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 529 return Res; 530 } 531 return 0; 532 } 533 534 case Type::ArrayTyID: { 535 auto *STyL = cast<ArrayType>(TyL); 536 auto *STyR = cast<ArrayType>(TyR); 537 if (STyL->getNumElements() != STyR->getNumElements()) 538 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 539 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 540 } 541 case Type::FixedVectorTyID: 542 case Type::ScalableVectorTyID: { 543 auto *STyL = cast<VectorType>(TyL); 544 auto *STyR = cast<VectorType>(TyR); 545 if (STyL->getElementCount().isScalable() != 546 STyR->getElementCount().isScalable()) 547 return cmpNumbers(STyL->getElementCount().isScalable(), 548 STyR->getElementCount().isScalable()); 549 if (STyL->getElementCount() != STyR->getElementCount()) 550 return cmpNumbers(STyL->getElementCount().getKnownMinValue(), 551 STyR->getElementCount().getKnownMinValue()); 552 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 553 } 554 } 555 } 556 557 // Determine whether the two operations are the same except that pointer-to-A 558 // and pointer-to-B are equivalent. This should be kept in sync with 559 // Instruction::isSameOperationAs. 560 // Read method declaration comments for more details. 561 int FunctionComparator::cmpOperations(const Instruction *L, 562 const Instruction *R, 563 bool &needToCmpOperands) const { 564 needToCmpOperands = true; 565 if (int Res = cmpValues(L, R)) 566 return Res; 567 568 // Differences from Instruction::isSameOperationAs: 569 // * replace type comparison with calls to cmpTypes. 570 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. 571 // * because of the above, we don't test for the tail bit on calls later on. 572 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 573 return Res; 574 575 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { 576 needToCmpOperands = false; 577 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); 578 if (int Res = 579 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 580 return Res; 581 return cmpGEPs(GEPL, GEPR); 582 } 583 584 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 585 return Res; 586 587 if (int Res = cmpTypes(L->getType(), R->getType())) 588 return Res; 589 590 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 591 R->getRawSubclassOptionalData())) 592 return Res; 593 594 // We have two instructions of identical opcode and #operands. Check to see 595 // if all operands are the same type 596 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 597 if (int Res = 598 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 599 return Res; 600 } 601 602 // Check special state that is a part of some instructions. 603 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 604 if (int Res = cmpTypes(AI->getAllocatedType(), 605 cast<AllocaInst>(R)->getAllocatedType())) 606 return Res; 607 return cmpAligns(AI->getAlign(), cast<AllocaInst>(R)->getAlign()); 608 } 609 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 610 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 611 return Res; 612 if (int Res = cmpAligns(LI->getAlign(), cast<LoadInst>(R)->getAlign())) 613 return Res; 614 if (int Res = 615 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 616 return Res; 617 if (int Res = cmpNumbers(LI->getSyncScopeID(), 618 cast<LoadInst>(R)->getSyncScopeID())) 619 return Res; 620 return cmpInstMetadata(L, R); 621 } 622 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 623 if (int Res = 624 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 625 return Res; 626 if (int Res = cmpAligns(SI->getAlign(), cast<StoreInst>(R)->getAlign())) 627 return Res; 628 if (int Res = 629 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 630 return Res; 631 return cmpNumbers(SI->getSyncScopeID(), 632 cast<StoreInst>(R)->getSyncScopeID()); 633 } 634 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 635 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 636 if (auto *CBL = dyn_cast<CallBase>(L)) { 637 auto *CBR = cast<CallBase>(R); 638 if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv())) 639 return Res; 640 if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes())) 641 return Res; 642 if (int Res = cmpOperandBundlesSchema(*CBL, *CBR)) 643 return Res; 644 if (const CallInst *CI = dyn_cast<CallInst>(L)) 645 if (int Res = cmpNumbers(CI->getTailCallKind(), 646 cast<CallInst>(R)->getTailCallKind())) 647 return Res; 648 return cmpMetadata(L->getMetadata(LLVMContext::MD_range), 649 R->getMetadata(LLVMContext::MD_range)); 650 } 651 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 652 ArrayRef<unsigned> LIndices = IVI->getIndices(); 653 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 654 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 655 return Res; 656 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 657 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 658 return Res; 659 } 660 return 0; 661 } 662 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 663 ArrayRef<unsigned> LIndices = EVI->getIndices(); 664 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 665 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 666 return Res; 667 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 668 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 669 return Res; 670 } 671 } 672 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 673 if (int Res = 674 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 675 return Res; 676 return cmpNumbers(FI->getSyncScopeID(), 677 cast<FenceInst>(R)->getSyncScopeID()); 678 } 679 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 680 if (int Res = cmpNumbers(CXI->isVolatile(), 681 cast<AtomicCmpXchgInst>(R)->isVolatile())) 682 return Res; 683 if (int Res = 684 cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak())) 685 return Res; 686 if (int Res = 687 cmpOrderings(CXI->getSuccessOrdering(), 688 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 689 return Res; 690 if (int Res = 691 cmpOrderings(CXI->getFailureOrdering(), 692 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 693 return Res; 694 return cmpNumbers(CXI->getSyncScopeID(), 695 cast<AtomicCmpXchgInst>(R)->getSyncScopeID()); 696 } 697 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 698 if (int Res = cmpNumbers(RMWI->getOperation(), 699 cast<AtomicRMWInst>(R)->getOperation())) 700 return Res; 701 if (int Res = cmpNumbers(RMWI->isVolatile(), 702 cast<AtomicRMWInst>(R)->isVolatile())) 703 return Res; 704 if (int Res = cmpOrderings(RMWI->getOrdering(), 705 cast<AtomicRMWInst>(R)->getOrdering())) 706 return Res; 707 return cmpNumbers(RMWI->getSyncScopeID(), 708 cast<AtomicRMWInst>(R)->getSyncScopeID()); 709 } 710 if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) { 711 ArrayRef<int> LMask = SVI->getShuffleMask(); 712 ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask(); 713 if (int Res = cmpNumbers(LMask.size(), RMask.size())) 714 return Res; 715 for (size_t i = 0, e = LMask.size(); i != e; ++i) { 716 if (int Res = cmpNumbers(LMask[i], RMask[i])) 717 return Res; 718 } 719 } 720 if (const PHINode *PNL = dyn_cast<PHINode>(L)) { 721 const PHINode *PNR = cast<PHINode>(R); 722 // Ensure that in addition to the incoming values being identical 723 // (checked by the caller of this function), the incoming blocks 724 // are also identical. 725 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { 726 if (int Res = 727 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) 728 return Res; 729 } 730 } 731 return 0; 732 } 733 734 // Determine whether two GEP operations perform the same underlying arithmetic. 735 // Read method declaration comments for more details. 736 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 737 const GEPOperator *GEPR) const { 738 unsigned int ASL = GEPL->getPointerAddressSpace(); 739 unsigned int ASR = GEPR->getPointerAddressSpace(); 740 741 if (int Res = cmpNumbers(ASL, ASR)) 742 return Res; 743 744 // When we have target data, we can reduce the GEP down to the value in bytes 745 // added to the address. 746 const DataLayout &DL = FnL->getParent()->getDataLayout(); 747 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 748 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 749 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 750 GEPR->accumulateConstantOffset(DL, OffsetR)) 751 return cmpAPInts(OffsetL, OffsetR); 752 if (int Res = 753 cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType())) 754 return Res; 755 756 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 757 return Res; 758 759 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 760 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 761 return Res; 762 } 763 764 return 0; 765 } 766 767 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 768 const InlineAsm *R) const { 769 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 770 // the same, otherwise compare the fields. 771 if (L == R) 772 return 0; 773 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 774 return Res; 775 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 776 return Res; 777 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 778 return Res; 779 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 780 return Res; 781 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 782 return Res; 783 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 784 return Res; 785 assert(L->getFunctionType() != R->getFunctionType()); 786 return 0; 787 } 788 789 /// Compare two values used by the two functions under pair-wise comparison. If 790 /// this is the first time the values are seen, they're added to the mapping so 791 /// that we will detect mismatches on next use. 792 /// See comments in declaration for more details. 793 int FunctionComparator::cmpValues(const Value *L, const Value *R) const { 794 // Catch self-reference case. 795 if (L == FnL) { 796 if (R == FnR) 797 return 0; 798 return -1; 799 } 800 if (R == FnR) { 801 if (L == FnL) 802 return 0; 803 return 1; 804 } 805 806 const Constant *ConstL = dyn_cast<Constant>(L); 807 const Constant *ConstR = dyn_cast<Constant>(R); 808 if (ConstL && ConstR) { 809 if (L == R) 810 return 0; 811 return cmpConstants(ConstL, ConstR); 812 } 813 814 if (ConstL) 815 return 1; 816 if (ConstR) 817 return -1; 818 819 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 820 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 821 822 if (InlineAsmL && InlineAsmR) 823 return cmpInlineAsm(InlineAsmL, InlineAsmR); 824 if (InlineAsmL) 825 return 1; 826 if (InlineAsmR) 827 return -1; 828 829 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 830 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 831 832 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 833 } 834 835 // Test whether two basic blocks have equivalent behaviour. 836 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 837 const BasicBlock *BBR) const { 838 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 839 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 840 841 do { 842 bool needToCmpOperands = true; 843 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) 844 return Res; 845 if (needToCmpOperands) { 846 assert(InstL->getNumOperands() == InstR->getNumOperands()); 847 848 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 849 Value *OpL = InstL->getOperand(i); 850 Value *OpR = InstR->getOperand(i); 851 if (int Res = cmpValues(OpL, OpR)) 852 return Res; 853 // cmpValues should ensure this is true. 854 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 855 } 856 } 857 858 ++InstL; 859 ++InstR; 860 } while (InstL != InstLE && InstR != InstRE); 861 862 if (InstL != InstLE && InstR == InstRE) 863 return 1; 864 if (InstL == InstLE && InstR != InstRE) 865 return -1; 866 return 0; 867 } 868 869 int FunctionComparator::compareSignature() const { 870 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 871 return Res; 872 873 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 874 return Res; 875 876 if (FnL->hasGC()) { 877 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 878 return Res; 879 } 880 881 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 882 return Res; 883 884 if (FnL->hasSection()) { 885 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 886 return Res; 887 } 888 889 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 890 return Res; 891 892 // TODO: if it's internal and only used in direct calls, we could handle this 893 // case too. 894 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 895 return Res; 896 897 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 898 return Res; 899 900 assert(FnL->arg_size() == FnR->arg_size() && 901 "Identically typed functions have different numbers of args!"); 902 903 // Visit the arguments so that they get enumerated in the order they're 904 // passed in. 905 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 906 ArgRI = FnR->arg_begin(), 907 ArgLE = FnL->arg_end(); 908 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 909 if (cmpValues(&*ArgLI, &*ArgRI) != 0) 910 llvm_unreachable("Arguments repeat!"); 911 } 912 return 0; 913 } 914 915 // Test whether the two functions have equivalent behaviour. 916 int FunctionComparator::compare() { 917 beginCompare(); 918 919 if (int Res = compareSignature()) 920 return Res; 921 922 // We do a CFG-ordered walk since the actual ordering of the blocks in the 923 // linked list is immaterial. Our walk starts at the entry block for both 924 // functions, then takes each block from each terminator in order. As an 925 // artifact, this also means that unreachable blocks are ignored. 926 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 927 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. 928 929 FnLBBs.push_back(&FnL->getEntryBlock()); 930 FnRBBs.push_back(&FnR->getEntryBlock()); 931 932 VisitedBBs.insert(FnLBBs[0]); 933 while (!FnLBBs.empty()) { 934 const BasicBlock *BBL = FnLBBs.pop_back_val(); 935 const BasicBlock *BBR = FnRBBs.pop_back_val(); 936 937 if (int Res = cmpValues(BBL, BBR)) 938 return Res; 939 940 if (int Res = cmpBasicBlocks(BBL, BBR)) 941 return Res; 942 943 const Instruction *TermL = BBL->getTerminator(); 944 const Instruction *TermR = BBR->getTerminator(); 945 946 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 947 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 948 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 949 continue; 950 951 FnLBBs.push_back(TermL->getSuccessor(i)); 952 FnRBBs.push_back(TermR->getSuccessor(i)); 953 } 954 } 955 return 0; 956 } 957 958 namespace { 959 960 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 961 // hash of a sequence of 64bit ints, but the entire input does not need to be 962 // available at once. This interface is necessary for functionHash because it 963 // needs to accumulate the hash as the structure of the function is traversed 964 // without saving these values to an intermediate buffer. This form of hashing 965 // is not often needed, as usually the object to hash is just read from a 966 // buffer. 967 class HashAccumulator64 { 968 uint64_t Hash; 969 970 public: 971 // Initialize to random constant, so the state isn't zero. 972 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 973 974 void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); } 975 976 // No finishing is required, because the entire hash value is used. 977 uint64_t getHash() { return Hash; } 978 }; 979 980 } // end anonymous namespace 981 982 // A function hash is calculated by considering only the number of arguments and 983 // whether a function is varargs, the order of basic blocks (given by the 984 // successors of each basic block in depth first order), and the order of 985 // opcodes of each instruction within each of these basic blocks. This mirrors 986 // the strategy compare() uses to compare functions by walking the BBs in depth 987 // first order and comparing each instruction in sequence. Because this hash 988 // does not look at the operands, it is insensitive to things such as the 989 // target of calls and the constants used in the function, which makes it useful 990 // when possibly merging functions which are the same modulo constants and call 991 // targets. 992 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 993 HashAccumulator64 H; 994 H.add(F.isVarArg()); 995 H.add(F.arg_size()); 996 997 SmallVector<const BasicBlock *, 8> BBs; 998 SmallPtrSet<const BasicBlock *, 16> VisitedBBs; 999 1000 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 1001 // accumulating the hash of the function "structure." (BB and opcode sequence) 1002 BBs.push_back(&F.getEntryBlock()); 1003 VisitedBBs.insert(BBs[0]); 1004 while (!BBs.empty()) { 1005 const BasicBlock *BB = BBs.pop_back_val(); 1006 // This random value acts as a block header, as otherwise the partition of 1007 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 1008 H.add(45798); 1009 for (const auto &Inst : *BB) { 1010 H.add(Inst.getOpcode()); 1011 } 1012 const Instruction *Term = BB->getTerminator(); 1013 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 1014 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 1015 continue; 1016 BBs.push_back(Term->getSuccessor(i)); 1017 } 1018 } 1019 return H.getHash(); 1020 } 1021