xref: /llvm-project/llvm/lib/Transforms/Utils/Evaluator.cpp (revision a494ae43bef09c8d0f6a6a98e92f3a89758247d5)
1 //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Function evaluator for LLVM IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/Evaluator.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GlobalAlias.h"
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 
40 #define DEBUG_TYPE "evaluator"
41 
42 using namespace llvm;
43 
44 static inline bool
45 isSimpleEnoughValueToCommit(Constant *C,
46                             SmallPtrSetImpl<Constant *> &SimpleConstants,
47                             const DataLayout &DL);
48 
49 /// Return true if the specified constant can be handled by the code generator.
50 /// We don't want to generate something like:
51 ///   void *X = &X/42;
52 /// because the code generator doesn't have a relocation that can handle that.
53 ///
54 /// This function should be called if C was not found (but just got inserted)
55 /// in SimpleConstants to avoid having to rescan the same constants all the
56 /// time.
57 static bool
58 isSimpleEnoughValueToCommitHelper(Constant *C,
59                                   SmallPtrSetImpl<Constant *> &SimpleConstants,
60                                   const DataLayout &DL) {
61   // Simple global addresses are supported, do not allow dllimport or
62   // thread-local globals.
63   if (auto *GV = dyn_cast<GlobalValue>(C))
64     return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
65 
66   // Simple integer, undef, constant aggregate zero, etc are all supported.
67   if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
68     return true;
69 
70   // Aggregate values are safe if all their elements are.
71   if (isa<ConstantAggregate>(C)) {
72     for (Value *Op : C->operands())
73       if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
74         return false;
75     return true;
76   }
77 
78   // We don't know exactly what relocations are allowed in constant expressions,
79   // so we allow &global+constantoffset, which is safe and uniformly supported
80   // across targets.
81   ConstantExpr *CE = cast<ConstantExpr>(C);
82   switch (CE->getOpcode()) {
83   case Instruction::BitCast:
84     // Bitcast is fine if the casted value is fine.
85     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
86 
87   case Instruction::IntToPtr:
88   case Instruction::PtrToInt:
89     // int <=> ptr is fine if the int type is the same size as the
90     // pointer type.
91     if (DL.getTypeSizeInBits(CE->getType()) !=
92         DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
93       return false;
94     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
95 
96   // GEP is fine if it is simple + constant offset.
97   case Instruction::GetElementPtr:
98     for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
99       if (!isa<ConstantInt>(CE->getOperand(i)))
100         return false;
101     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
102 
103   case Instruction::Add:
104     // We allow simple+cst.
105     if (!isa<ConstantInt>(CE->getOperand(1)))
106       return false;
107     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
108   }
109   return false;
110 }
111 
112 static inline bool
113 isSimpleEnoughValueToCommit(Constant *C,
114                             SmallPtrSetImpl<Constant *> &SimpleConstants,
115                             const DataLayout &DL) {
116   // If we already checked this constant, we win.
117   if (!SimpleConstants.insert(C).second)
118     return true;
119   // Check the constant.
120   return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
121 }
122 
123 void Evaluator::MutableValue::clear() {
124   if (auto *Agg = Val.dyn_cast<MutableAggregate *>())
125     delete Agg;
126   Val = nullptr;
127 }
128 
129 Constant *Evaluator::MutableValue::read(Type *Ty, APInt Offset,
130                                         const DataLayout &DL) const {
131   TypeSize TySize = DL.getTypeStoreSize(Ty);
132   const MutableValue *V = this;
133   while (const auto *Agg = V->Val.dyn_cast<MutableAggregate *>()) {
134     Type *AggTy = Agg->Ty;
135     Optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset);
136     if (!Index || Index->uge(Agg->Elements.size()) ||
137         !TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy)))
138       return nullptr;
139 
140     V = &Agg->Elements[Index->getZExtValue()];
141   }
142 
143   return ConstantFoldLoadFromConst(V->Val.get<Constant *>(), Ty, Offset, DL);
144 }
145 
146 bool Evaluator::MutableValue::makeMutable() {
147   Constant *C = Val.get<Constant *>();
148   Type *Ty = C->getType();
149   unsigned NumElements;
150   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
151     NumElements = VT->getNumElements();
152   } else if (auto *AT = dyn_cast<ArrayType>(Ty))
153     NumElements = AT->getNumElements();
154   else if (auto *ST = dyn_cast<StructType>(Ty))
155     NumElements = ST->getNumElements();
156   else
157     return false;
158 
159   MutableAggregate *MA = new MutableAggregate(Ty);
160   MA->Elements.reserve(NumElements);
161   for (unsigned I = 0; I < NumElements; ++I)
162     MA->Elements.push_back(C->getAggregateElement(I));
163   Val = MA;
164   return true;
165 }
166 
167 bool Evaluator::MutableValue::write(Constant *V, APInt Offset,
168                                     const DataLayout &DL) {
169   Type *Ty = V->getType();
170   TypeSize TySize = DL.getTypeStoreSize(Ty);
171   MutableValue *MV = this;
172   while (Offset != 0 ||
173          !CastInst::isBitOrNoopPointerCastable(Ty, MV->getType(), DL)) {
174     if (MV->Val.is<Constant *>() && !MV->makeMutable())
175       return false;
176 
177     MutableAggregate *Agg = MV->Val.get<MutableAggregate *>();
178     Type *AggTy = Agg->Ty;
179     Optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset);
180     if (!Index || Index->uge(Agg->Elements.size()) ||
181         !TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy)))
182       return false;
183 
184     MV = &Agg->Elements[Index->getZExtValue()];
185   }
186 
187   Type *MVType = MV->getType();
188   MV->clear();
189   if (Ty->isIntegerTy() && MVType->isPointerTy())
190     MV->Val = ConstantExpr::getIntToPtr(V, MVType);
191   else if (Ty->isPointerTy() && MVType->isIntegerTy())
192     MV->Val = ConstantExpr::getPtrToInt(V, MVType);
193   else if (Ty != MVType)
194     MV->Val = ConstantExpr::getBitCast(V, MVType);
195   else
196     MV->Val = V;
197   return true;
198 }
199 
200 Constant *Evaluator::MutableAggregate::toConstant() const {
201   SmallVector<Constant *, 32> Consts;
202   for (const MutableValue &MV : Elements)
203     Consts.push_back(MV.toConstant());
204 
205   if (auto *ST = dyn_cast<StructType>(Ty))
206     return ConstantStruct::get(ST, Consts);
207   if (auto *AT = dyn_cast<ArrayType>(Ty))
208     return ConstantArray::get(AT, Consts);
209   assert(isa<FixedVectorType>(Ty) && "Must be vector");
210   return ConstantVector::get(Consts);
211 }
212 
213 /// Return the value that would be computed by a load from P after the stores
214 /// reflected by 'memory' have been performed.  If we can't decide, return null.
215 Constant *Evaluator::ComputeLoadResult(Constant *P, Type *Ty) {
216   APInt Offset(DL.getIndexTypeSizeInBits(P->getType()), 0);
217   P = cast<Constant>(P->stripAndAccumulateConstantOffsets(
218       DL, Offset, /* AllowNonInbounds */ true));
219   Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(P->getType()));
220   auto *GV = dyn_cast<GlobalVariable>(P);
221   if (!GV)
222     return nullptr;
223 
224   auto It = MutatedMemory.find(GV);
225   if (It != MutatedMemory.end())
226     return It->second.read(Ty, Offset, DL);
227 
228   if (!GV->hasDefinitiveInitializer())
229     return nullptr;
230   return ConstantFoldLoadFromConst(GV->getInitializer(), Ty, Offset, DL);
231 }
232 
233 static Function *getFunction(Constant *C) {
234   if (auto *Fn = dyn_cast<Function>(C))
235     return Fn;
236 
237   if (auto *Alias = dyn_cast<GlobalAlias>(C))
238     if (auto *Fn = dyn_cast<Function>(Alias->getAliasee()))
239       return Fn;
240   return nullptr;
241 }
242 
243 Function *
244 Evaluator::getCalleeWithFormalArgs(CallBase &CB,
245                                    SmallVectorImpl<Constant *> &Formals) {
246   auto *V = CB.getCalledOperand()->stripPointerCasts();
247   if (auto *Fn = getFunction(getVal(V)))
248     return getFormalParams(CB, Fn, Formals) ? Fn : nullptr;
249   return nullptr;
250 }
251 
252 bool Evaluator::getFormalParams(CallBase &CB, Function *F,
253                                 SmallVectorImpl<Constant *> &Formals) {
254   if (!F)
255     return false;
256 
257   auto *FTy = F->getFunctionType();
258   if (FTy->getNumParams() > CB.arg_size()) {
259     LLVM_DEBUG(dbgs() << "Too few arguments for function.\n");
260     return false;
261   }
262 
263   auto ArgI = CB.arg_begin();
264   for (Type *PTy : FTy->params()) {
265     auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), PTy, DL);
266     if (!ArgC) {
267       LLVM_DEBUG(dbgs() << "Can not convert function argument.\n");
268       return false;
269     }
270     Formals.push_back(ArgC);
271     ++ArgI;
272   }
273   return true;
274 }
275 
276 /// If call expression contains bitcast then we may need to cast
277 /// evaluated return value to a type of the call expression.
278 Constant *Evaluator::castCallResultIfNeeded(Type *ReturnType, Constant *RV) {
279   if (!RV || RV->getType() == ReturnType)
280     return RV;
281 
282   RV = ConstantFoldLoadThroughBitcast(RV, ReturnType, DL);
283   if (!RV)
284     LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n");
285   return RV;
286 }
287 
288 /// Evaluate all instructions in block BB, returning true if successful, false
289 /// if we can't evaluate it.  NewBB returns the next BB that control flows into,
290 /// or null upon return. StrippedPointerCastsForAliasAnalysis is set to true if
291 /// we looked through pointer casts to evaluate something.
292 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB,
293                               bool &StrippedPointerCastsForAliasAnalysis) {
294   // This is the main evaluation loop.
295   while (true) {
296     Constant *InstResult = nullptr;
297 
298     LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
299 
300     if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
301       if (!SI->isSimple()) {
302         LLVM_DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
303         return false;  // no volatile/atomic accesses.
304       }
305       Constant *Ptr = getVal(SI->getOperand(1));
306       Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI);
307       if (Ptr != FoldedPtr) {
308         LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
309         Ptr = FoldedPtr;
310         LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n");
311       }
312 
313       APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
314       Ptr = cast<Constant>(Ptr->stripAndAccumulateConstantOffsets(
315           DL, Offset, /* AllowNonInbounds */ true));
316       Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(Ptr->getType()));
317       auto *GV = dyn_cast<GlobalVariable>(Ptr);
318       if (!GV || !GV->hasUniqueInitializer()) {
319         LLVM_DEBUG(dbgs() << "Store is not to global with unique initializer: "
320                           << *Ptr << "\n");
321         return false;
322       }
323 
324       // If this might be too difficult for the backend to handle (e.g. the addr
325       // of one global variable divided by another) then we can't commit it.
326       Constant *Val = getVal(SI->getOperand(0));
327       if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
328         LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. "
329                           << *Val << "\n");
330         return false;
331       }
332 
333       auto Res = MutatedMemory.try_emplace(GV, GV->getInitializer());
334       if (!Res.first->second.write(Val, Offset, DL))
335         return false;
336     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
337       InstResult = ConstantExpr::get(BO->getOpcode(),
338                                      getVal(BO->getOperand(0)),
339                                      getVal(BO->getOperand(1)));
340       LLVM_DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: "
341                         << *InstResult << "\n");
342     } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
343       InstResult = ConstantExpr::getCompare(CI->getPredicate(),
344                                             getVal(CI->getOperand(0)),
345                                             getVal(CI->getOperand(1)));
346       LLVM_DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
347                         << "\n");
348     } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
349       InstResult = ConstantExpr::getCast(CI->getOpcode(),
350                                          getVal(CI->getOperand(0)),
351                                          CI->getType());
352       LLVM_DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
353                         << "\n");
354     } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
355       InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
356                                            getVal(SI->getOperand(1)),
357                                            getVal(SI->getOperand(2)));
358       LLVM_DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
359                         << "\n");
360     } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
361       InstResult = ConstantExpr::getExtractValue(
362           getVal(EVI->getAggregateOperand()), EVI->getIndices());
363       LLVM_DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: "
364                         << *InstResult << "\n");
365     } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
366       InstResult = ConstantExpr::getInsertValue(
367           getVal(IVI->getAggregateOperand()),
368           getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
369       LLVM_DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: "
370                         << *InstResult << "\n");
371     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
372       Constant *P = getVal(GEP->getOperand(0));
373       SmallVector<Constant*, 8> GEPOps;
374       for (Use &Op : llvm::drop_begin(GEP->operands()))
375         GEPOps.push_back(getVal(Op));
376       InstResult =
377           ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
378                                          cast<GEPOperator>(GEP)->isInBounds());
379       LLVM_DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult << "\n");
380     } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
381       if (!LI->isSimple()) {
382         LLVM_DEBUG(
383             dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
384         return false;  // no volatile/atomic accesses.
385       }
386 
387       Constant *Ptr = getVal(LI->getOperand(0));
388       Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI);
389       if (Ptr != FoldedPtr) {
390         Ptr = FoldedPtr;
391         LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant "
392                              "folding: "
393                           << *Ptr << "\n");
394       }
395       InstResult = ComputeLoadResult(Ptr, LI->getType());
396       if (!InstResult) {
397         LLVM_DEBUG(
398             dbgs() << "Failed to compute load result. Can not evaluate load."
399                       "\n");
400         return false; // Could not evaluate load.
401       }
402 
403       LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
404     } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
405       if (AI->isArrayAllocation()) {
406         LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
407         return false;  // Cannot handle array allocs.
408       }
409       Type *Ty = AI->getAllocatedType();
410       AllocaTmps.push_back(std::make_unique<GlobalVariable>(
411           Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty),
412           AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal,
413           AI->getType()->getPointerAddressSpace()));
414       InstResult = AllocaTmps.back().get();
415       LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
416     } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
417       CallBase &CB = *cast<CallBase>(&*CurInst);
418 
419       // Debug info can safely be ignored here.
420       if (isa<DbgInfoIntrinsic>(CB)) {
421         LLVM_DEBUG(dbgs() << "Ignoring debug info.\n");
422         ++CurInst;
423         continue;
424       }
425 
426       // Cannot handle inline asm.
427       if (CB.isInlineAsm()) {
428         LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
429         return false;
430       }
431 
432       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CB)) {
433         if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
434           if (MSI->isVolatile()) {
435             LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset "
436                               << "intrinsic.\n");
437             return false;
438           }
439           Constant *Ptr = getVal(MSI->getDest());
440           Constant *Val = getVal(MSI->getValue());
441           Constant *DestVal =
442               ComputeLoadResult(getVal(Ptr), MSI->getValue()->getType());
443           if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
444             // This memset is a no-op.
445             LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n");
446             ++CurInst;
447             continue;
448           }
449         }
450 
451         if (II->isLifetimeStartOrEnd()) {
452           LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
453           ++CurInst;
454           continue;
455         }
456 
457         if (II->getIntrinsicID() == Intrinsic::invariant_start) {
458           // We don't insert an entry into Values, as it doesn't have a
459           // meaningful return value.
460           if (!II->use_empty()) {
461             LLVM_DEBUG(dbgs()
462                        << "Found unused invariant_start. Can't evaluate.\n");
463             return false;
464           }
465           ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
466           Value *PtrArg = getVal(II->getArgOperand(1));
467           Value *Ptr = PtrArg->stripPointerCasts();
468           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
469             Type *ElemTy = GV->getValueType();
470             if (!Size->isMinusOne() &&
471                 Size->getValue().getLimitedValue() >=
472                     DL.getTypeStoreSize(ElemTy)) {
473               Invariants.insert(GV);
474               LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: "
475                                 << *GV << "\n");
476             } else {
477               LLVM_DEBUG(dbgs()
478                          << "Found a global var, but can not treat it as an "
479                             "invariant.\n");
480             }
481           }
482           // Continue even if we do nothing.
483           ++CurInst;
484           continue;
485         } else if (II->getIntrinsicID() == Intrinsic::assume) {
486           LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n");
487           ++CurInst;
488           continue;
489         } else if (II->getIntrinsicID() == Intrinsic::sideeffect) {
490           LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n");
491           ++CurInst;
492           continue;
493         } else if (II->getIntrinsicID() == Intrinsic::pseudoprobe) {
494           LLVM_DEBUG(dbgs() << "Skipping pseudoprobe intrinsic.\n");
495           ++CurInst;
496           continue;
497         } else {
498           Value *Stripped = CurInst->stripPointerCastsForAliasAnalysis();
499           // Only attempt to getVal() if we've actually managed to strip
500           // anything away, or else we'll call getVal() on the current
501           // instruction.
502           if (Stripped != &*CurInst) {
503             InstResult = getVal(Stripped);
504           }
505           if (InstResult) {
506             LLVM_DEBUG(dbgs()
507                        << "Stripped pointer casts for alias analysis for "
508                           "intrinsic call.\n");
509             StrippedPointerCastsForAliasAnalysis = true;
510             InstResult = ConstantExpr::getBitCast(InstResult, II->getType());
511           } else {
512             LLVM_DEBUG(dbgs() << "Unknown intrinsic. Cannot evaluate.\n");
513             return false;
514           }
515         }
516       }
517 
518       if (!InstResult) {
519         // Resolve function pointers.
520         SmallVector<Constant *, 8> Formals;
521         Function *Callee = getCalleeWithFormalArgs(CB, Formals);
522         if (!Callee || Callee->isInterposable()) {
523           LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n");
524           return false; // Cannot resolve.
525         }
526 
527         if (Callee->isDeclaration()) {
528           // If this is a function we can constant fold, do it.
529           if (Constant *C = ConstantFoldCall(&CB, Callee, Formals, TLI)) {
530             InstResult = castCallResultIfNeeded(CB.getType(), C);
531             if (!InstResult)
532               return false;
533             LLVM_DEBUG(dbgs() << "Constant folded function call. Result: "
534                               << *InstResult << "\n");
535           } else {
536             LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n");
537             return false;
538           }
539         } else {
540           if (Callee->getFunctionType()->isVarArg()) {
541             LLVM_DEBUG(dbgs()
542                        << "Can not constant fold vararg function call.\n");
543             return false;
544           }
545 
546           Constant *RetVal = nullptr;
547           // Execute the call, if successful, use the return value.
548           ValueStack.emplace_back();
549           if (!EvaluateFunction(Callee, RetVal, Formals)) {
550             LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n");
551             return false;
552           }
553           ValueStack.pop_back();
554           InstResult = castCallResultIfNeeded(CB.getType(), RetVal);
555           if (RetVal && !InstResult)
556             return false;
557 
558           if (InstResult) {
559             LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: "
560                               << *InstResult << "\n\n");
561           } else {
562             LLVM_DEBUG(dbgs()
563                        << "Successfully evaluated function. Result: 0\n\n");
564           }
565         }
566       }
567     } else if (CurInst->isTerminator()) {
568       LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n");
569 
570       if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
571         if (BI->isUnconditional()) {
572           NextBB = BI->getSuccessor(0);
573         } else {
574           ConstantInt *Cond =
575             dyn_cast<ConstantInt>(getVal(BI->getCondition()));
576           if (!Cond) return false;  // Cannot determine.
577 
578           NextBB = BI->getSuccessor(!Cond->getZExtValue());
579         }
580       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
581         ConstantInt *Val =
582           dyn_cast<ConstantInt>(getVal(SI->getCondition()));
583         if (!Val) return false;  // Cannot determine.
584         NextBB = SI->findCaseValue(Val)->getCaseSuccessor();
585       } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
586         Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
587         if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
588           NextBB = BA->getBasicBlock();
589         else
590           return false;  // Cannot determine.
591       } else if (isa<ReturnInst>(CurInst)) {
592         NextBB = nullptr;
593       } else {
594         // invoke, unwind, resume, unreachable.
595         LLVM_DEBUG(dbgs() << "Can not handle terminator.");
596         return false;  // Cannot handle this terminator.
597       }
598 
599       // We succeeded at evaluating this block!
600       LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n");
601       return true;
602     } else {
603       // Did not know how to evaluate this!
604       LLVM_DEBUG(
605           dbgs() << "Failed to evaluate block due to unhandled instruction."
606                     "\n");
607       return false;
608     }
609 
610     if (!CurInst->use_empty()) {
611       InstResult = ConstantFoldConstant(InstResult, DL, TLI);
612       setVal(&*CurInst, InstResult);
613     }
614 
615     // If we just processed an invoke, we finished evaluating the block.
616     if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
617       NextBB = II->getNormalDest();
618       LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
619       return true;
620     }
621 
622     // Advance program counter.
623     ++CurInst;
624   }
625 }
626 
627 /// Evaluate a call to function F, returning true if successful, false if we
628 /// can't evaluate it.  ActualArgs contains the formal arguments for the
629 /// function.
630 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
631                                  const SmallVectorImpl<Constant*> &ActualArgs) {
632   // Check to see if this function is already executing (recursion).  If so,
633   // bail out.  TODO: we might want to accept limited recursion.
634   if (is_contained(CallStack, F))
635     return false;
636 
637   CallStack.push_back(F);
638 
639   // Initialize arguments to the incoming values specified.
640   unsigned ArgNo = 0;
641   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
642        ++AI, ++ArgNo)
643     setVal(&*AI, ActualArgs[ArgNo]);
644 
645   // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
646   // we can only evaluate any one basic block at most once.  This set keeps
647   // track of what we have executed so we can detect recursive cases etc.
648   SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
649 
650   // CurBB - The current basic block we're evaluating.
651   BasicBlock *CurBB = &F->front();
652 
653   BasicBlock::iterator CurInst = CurBB->begin();
654 
655   while (true) {
656     BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
657     LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
658 
659     bool StrippedPointerCastsForAliasAnalysis = false;
660 
661     if (!EvaluateBlock(CurInst, NextBB, StrippedPointerCastsForAliasAnalysis))
662       return false;
663 
664     if (!NextBB) {
665       // Successfully running until there's no next block means that we found
666       // the return.  Fill it the return value and pop the call stack.
667       ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
668       if (RI->getNumOperands()) {
669         // The Evaluator can look through pointer casts as long as alias
670         // analysis holds because it's just a simple interpreter and doesn't
671         // skip memory accesses due to invariant group metadata, but we can't
672         // let users of Evaluator use a value that's been gleaned looking
673         // through stripping pointer casts.
674         if (StrippedPointerCastsForAliasAnalysis &&
675             !RI->getReturnValue()->getType()->isVoidTy()) {
676           return false;
677         }
678         RetVal = getVal(RI->getOperand(0));
679       }
680       CallStack.pop_back();
681       return true;
682     }
683 
684     // Okay, we succeeded in evaluating this control flow.  See if we have
685     // executed the new block before.  If so, we have a looping function,
686     // which we cannot evaluate in reasonable time.
687     if (!ExecutedBlocks.insert(NextBB).second)
688       return false;  // looped!
689 
690     // Okay, we have never been in this block before.  Check to see if there
691     // are any PHI nodes.  If so, evaluate them with information about where
692     // we came from.
693     PHINode *PN = nullptr;
694     for (CurInst = NextBB->begin();
695          (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
696       setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
697 
698     // Advance to the next block.
699     CurBB = NextBB;
700   }
701 }
702