1 //===- DemoteRegToStack.cpp - Move a virtual register to the stack --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/DenseMap.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/IR/Function.h" 12 #include "llvm/IR/Instructions.h" 13 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 14 #include "llvm/Transforms/Utils/Local.h" 15 using namespace llvm; 16 17 /// DemoteRegToStack - This function takes a virtual register computed by an 18 /// Instruction and replaces it with a slot in the stack frame, allocated via 19 /// alloca. This allows the CFG to be changed around without fear of 20 /// invalidating the SSA information for the value. It returns the pointer to 21 /// the alloca inserted to create a stack slot for I. 22 AllocaInst *llvm::DemoteRegToStack(Instruction &I, bool VolatileLoads, 23 std::optional<BasicBlock::iterator> AllocaPoint) { 24 if (I.use_empty()) { 25 I.eraseFromParent(); 26 return nullptr; 27 } 28 29 Function *F = I.getParent()->getParent(); 30 const DataLayout &DL = F->getParent()->getDataLayout(); 31 32 // Create a stack slot to hold the value. 33 AllocaInst *Slot; 34 if (AllocaPoint) { 35 Slot = new AllocaInst(I.getType(), DL.getAllocaAddrSpace(), nullptr, 36 I.getName()+".reg2mem", *AllocaPoint); 37 } else { 38 Slot = new AllocaInst(I.getType(), DL.getAllocaAddrSpace(), nullptr, 39 I.getName() + ".reg2mem", F->getEntryBlock().begin()); 40 } 41 42 // We cannot demote invoke instructions to the stack if their normal edge 43 // is critical. Therefore, split the critical edge and create a basic block 44 // into which the store can be inserted. 45 if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 46 if (!II->getNormalDest()->getSinglePredecessor()) { 47 unsigned SuccNum = GetSuccessorNumber(II->getParent(), II->getNormalDest()); 48 assert(isCriticalEdge(II, SuccNum) && "Expected a critical edge!"); 49 BasicBlock *BB = SplitCriticalEdge(II, SuccNum); 50 assert(BB && "Unable to split critical edge."); 51 (void)BB; 52 } 53 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) { 54 for (int i = 0; i < CBI->getNumSuccessors(); i++) { 55 auto *Succ = CBI->getSuccessor(i); 56 if (!Succ->getSinglePredecessor()) { 57 assert(isCriticalEdge(II, i) && "Expected a critical edge!"); 58 BasicBlock *BB = SplitCriticalEdge(II, i); 59 assert(BB && "Unable to split critical edge."); 60 } 61 } 62 } 63 64 // Change all of the users of the instruction to read from the stack slot. 65 while (!I.use_empty()) { 66 Instruction *U = cast<Instruction>(I.user_back()); 67 if (PHINode *PN = dyn_cast<PHINode>(U)) { 68 // If this is a PHI node, we can't insert a load of the value before the 69 // use. Instead insert the load in the predecessor block corresponding 70 // to the incoming value. 71 // 72 // Note that if there are multiple edges from a basic block to this PHI 73 // node that we cannot have multiple loads. The problem is that the 74 // resulting PHI node will have multiple values (from each load) coming in 75 // from the same block, which is illegal SSA form. For this reason, we 76 // keep track of and reuse loads we insert. 77 DenseMap<BasicBlock*, Value*> Loads; 78 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 79 if (PN->getIncomingValue(i) == &I) { 80 Value *&V = Loads[PN->getIncomingBlock(i)]; 81 if (!V) { 82 // Insert the load into the predecessor block 83 V = new LoadInst(I.getType(), Slot, I.getName() + ".reload", 84 VolatileLoads, 85 PN->getIncomingBlock(i)->getTerminator()->getIterator()); 86 Loads[PN->getIncomingBlock(i)] = V; 87 } 88 PN->setIncomingValue(i, V); 89 } 90 91 } else { 92 // If this is a normal instruction, just insert a load. 93 Value *V = new LoadInst(I.getType(), Slot, I.getName() + ".reload", 94 VolatileLoads, U->getIterator()); 95 U->replaceUsesOfWith(&I, V); 96 } 97 } 98 99 // Insert stores of the computed value into the stack slot. We have to be 100 // careful if I is an invoke instruction, because we can't insert the store 101 // AFTER the terminator instruction. 102 BasicBlock::iterator InsertPt; 103 if (!I.isTerminator()) { 104 InsertPt = ++I.getIterator(); 105 // Don't insert before PHI nodes or landingpad instrs. 106 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt) 107 if (isa<CatchSwitchInst>(InsertPt)) 108 break; 109 if (isa<CatchSwitchInst>(InsertPt)) { 110 for (BasicBlock *Handler : successors(&*InsertPt)) 111 new StoreInst(&I, Slot, Handler->getFirstInsertionPt()); 112 return Slot; 113 } 114 } else if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 115 InsertPt = II->getNormalDest()->getFirstInsertionPt(); 116 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) { 117 for (BasicBlock *Succ : successors(CBI)) 118 new StoreInst(CBI, Slot, Succ->getFirstInsertionPt()); 119 return Slot; 120 } else { 121 llvm_unreachable("Unsupported terminator for Reg2Mem"); 122 } 123 124 new StoreInst(&I, Slot, InsertPt); 125 return Slot; 126 } 127 128 /// DemotePHIToStack - This function takes a virtual register computed by a PHI 129 /// node and replaces it with a slot in the stack frame allocated via alloca. 130 /// The PHI node is deleted. It returns the pointer to the alloca inserted. 131 AllocaInst *llvm::DemotePHIToStack(PHINode *P, std::optional<BasicBlock::iterator> AllocaPoint) { 132 if (P->use_empty()) { 133 P->eraseFromParent(); 134 return nullptr; 135 } 136 137 const DataLayout &DL = P->getModule()->getDataLayout(); 138 139 // Create a stack slot to hold the value. 140 AllocaInst *Slot; 141 if (AllocaPoint) { 142 Slot = new AllocaInst(P->getType(), DL.getAllocaAddrSpace(), nullptr, 143 P->getName()+".reg2mem", *AllocaPoint); 144 } else { 145 Function *F = P->getParent()->getParent(); 146 Slot = new AllocaInst(P->getType(), DL.getAllocaAddrSpace(), nullptr, 147 P->getName() + ".reg2mem", 148 F->getEntryBlock().begin()); 149 } 150 151 // Iterate over each operand inserting a store in each predecessor. 152 for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) { 153 if (InvokeInst *II = dyn_cast<InvokeInst>(P->getIncomingValue(i))) { 154 assert(II->getParent() != P->getIncomingBlock(i) && 155 "Invoke edge not supported yet"); (void)II; 156 } 157 new StoreInst(P->getIncomingValue(i), Slot, 158 P->getIncomingBlock(i)->getTerminator()->getIterator()); 159 } 160 161 // Insert a load in place of the PHI and replace all uses. 162 BasicBlock::iterator InsertPt = P->getIterator(); 163 // Don't insert before PHI nodes or landingpad instrs. 164 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt) 165 if (isa<CatchSwitchInst>(InsertPt)) 166 break; 167 if (isa<CatchSwitchInst>(InsertPt)) { 168 // We need a separate load before each actual use of the PHI 169 SmallVector<Instruction *, 4> Users; 170 for (User *U : P->users()) { 171 Instruction *User = cast<Instruction>(U); 172 Users.push_back(User); 173 } 174 for (Instruction *User : Users) { 175 Value *V = 176 new LoadInst(P->getType(), Slot, P->getName() + ".reload", User->getIterator()); 177 User->replaceUsesOfWith(P, V); 178 } 179 } else { 180 Value *V = 181 new LoadInst(P->getType(), Slot, P->getName() + ".reload", InsertPt); 182 P->replaceAllUsesWith(V); 183 } 184 // Delete PHI. 185 P->eraseFromParent(); 186 return Slot; 187 } 188