xref: /llvm-project/llvm/lib/Transforms/Utils/CodeMoverUtils.cpp (revision 9c54b423380d33e58a325c588d305cf9ff1623f9)
1 //===- CodeMoverUtils.cpp - CodeMover Utilities ----------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform movements on basic blocks, and instructions
10 // contained within a function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/CodeMoverUtils.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/DependenceAnalysis.h"
18 #include "llvm/Analysis/OrderedInstructions.h"
19 #include "llvm/Analysis/PostDominators.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/Dominators.h"
22 
23 using namespace llvm;
24 
25 #define DEBUG_TYPE "codemover-utils"
26 
27 STATISTIC(HasDependences,
28           "Cannot move across instructions that has memory dependences");
29 STATISTIC(MayThrowException, "Cannot move across instructions that may throw");
30 STATISTIC(NotControlFlowEquivalent,
31           "Instructions are not control flow equivalent");
32 STATISTIC(NotMovedPHINode, "Movement of PHINodes are not supported");
33 STATISTIC(NotMovedTerminator, "Movement of Terminator are not supported");
34 
35 namespace {
36 /// Represent a control condition. A control condition is a condition of a
37 /// terminator to decide which successors to execute. The pointer field
38 /// represents the address of the condition of the terminator. The integer field
39 /// is a bool, it is true when the basic block is executed when V is true. For
40 /// example, `br %cond, bb0, bb1` %cond is a control condition of bb0 with the
41 /// integer field equals to true, while %cond is a control condition of bb1 with
42 /// the integer field equals to false.
43 using ControlCondition = PointerIntPair<Value *, 1, bool>;
44 #ifndef NDEBUG
45 raw_ostream &operator<<(raw_ostream &OS, const ControlCondition &C) {
46   OS << "[" << *C.getPointer() << ", " << (C.getInt() ? "true" : "false")
47      << "]";
48   return OS;
49 }
50 #endif
51 
52 /// Represent a set of control conditions required to execute ToBB from FromBB.
53 class ControlConditions {
54   using ConditionVectorTy = SmallVector<ControlCondition, 6>;
55 
56   /// A SmallVector of control conditions.
57   ConditionVectorTy Conditions;
58 
59 public:
60   /// Return a ControlConditions which stores all conditions required to execute
61   /// \p BB from \p Dominator. If \p MaxLookup is non-zero, it limits the
62   /// number of conditions to collect. Return None if not all conditions are
63   /// collected successfully, or we hit the limit.
64   static const Optional<ControlConditions>
65   collectControlConditions(const BasicBlock &BB, const BasicBlock &Dominator,
66                            const DominatorTree &DT,
67                            const PostDominatorTree &PDT,
68                            unsigned MaxLookup = 6);
69 
70   /// Return true if there exists no control conditions required to execute ToBB
71   /// from FromBB.
72   bool isUnconditional() const { return Conditions.empty(); }
73 
74   /// Return a constant reference of Conditions.
75   const ConditionVectorTy &getControlConditions() const { return Conditions; }
76 
77   /// Add \p V as one of the ControlCondition in Condition with IsTrueCondition
78   /// equals to \p True. Return true if inserted successfully.
79   bool addControlCondition(ControlCondition C);
80 
81   /// Return true if for all control conditions in Conditions, there exists an
82   /// equivalent control condition in \p Other.Conditions.
83   bool isEquivalent(const ControlConditions &Other) const;
84 
85   /// Return true if \p C1 and \p C2 are equivalent.
86   static bool isEquivalent(const ControlCondition &C1,
87                            const ControlCondition &C2);
88 
89 private:
90   ControlConditions() = default;
91 
92   static bool isEquivalent(const Value &V1, const Value &V2);
93   static bool isInverse(const Value &V1, const Value &V2);
94 };
95 } // namespace
96 
97 const Optional<ControlConditions> ControlConditions::collectControlConditions(
98     const BasicBlock &BB, const BasicBlock &Dominator, const DominatorTree &DT,
99     const PostDominatorTree &PDT, unsigned MaxLookup) {
100   assert(DT.dominates(&Dominator, &BB) && "Expecting Dominator to dominate BB");
101 
102   ControlConditions Conditions;
103   unsigned NumConditions = 0;
104 
105   // BB is executed unconditional from itself.
106   if (&Dominator == &BB)
107     return Conditions;
108 
109   const BasicBlock *CurBlock = &BB;
110   // Walk up the dominator tree from the associated DT node for BB to the
111   // associated DT node for Dominator.
112   do {
113     assert(DT.getNode(CurBlock) && "Expecting a valid DT node for CurBlock");
114     BasicBlock *IDom = DT.getNode(CurBlock)->getIDom()->getBlock();
115     assert(DT.dominates(&Dominator, IDom) &&
116            "Expecting Dominator to dominate IDom");
117 
118     // Limitation: can only handle branch instruction currently.
119     const BranchInst *BI = dyn_cast<BranchInst>(IDom->getTerminator());
120     if (!BI)
121       return None;
122 
123     bool Inserted = false;
124     if (PDT.dominates(CurBlock, IDom)) {
125       LLVM_DEBUG(dbgs() << CurBlock->getName()
126                         << " is executed unconditionally from "
127                         << IDom->getName() << "\n");
128     } else if (PDT.dominates(CurBlock, BI->getSuccessor(0))) {
129       LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
130                         << *BI->getCondition() << "\" is true from "
131                         << IDom->getName() << "\n");
132       Inserted = Conditions.addControlCondition(
133           ControlCondition(BI->getCondition(), true));
134     } else if (PDT.dominates(CurBlock, BI->getSuccessor(1))) {
135       LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
136                         << *BI->getCondition() << "\" is false from "
137                         << IDom->getName() << "\n");
138       Inserted = Conditions.addControlCondition(
139           ControlCondition(BI->getCondition(), false));
140     } else
141       return None;
142 
143     if (Inserted)
144       ++NumConditions;
145 
146     if (MaxLookup != 0 && NumConditions > MaxLookup)
147       return None;
148 
149     CurBlock = IDom;
150   } while (CurBlock != &Dominator);
151 
152   return Conditions;
153 }
154 
155 bool ControlConditions::addControlCondition(ControlCondition C) {
156   bool Inserted = false;
157   if (none_of(Conditions, [&C](ControlCondition &Exists) {
158         return ControlConditions::isEquivalent(C, Exists);
159       })) {
160     Conditions.push_back(C);
161     Inserted = true;
162   }
163 
164   LLVM_DEBUG(dbgs() << (Inserted ? "Inserted " : "Not inserted ") << C << "\n");
165   return Inserted;
166 }
167 
168 bool ControlConditions::isEquivalent(const ControlConditions &Other) const {
169   if (Conditions.empty() && Other.Conditions.empty())
170     return true;
171 
172   if (Conditions.size() != Other.Conditions.size())
173     return false;
174 
175   return all_of(Conditions, [&Other](const ControlCondition &C) {
176     return any_of(Other.Conditions, [&C](const ControlCondition &OtherC) {
177       return ControlConditions::isEquivalent(C, OtherC);
178     });
179   });
180 }
181 
182 bool ControlConditions::isEquivalent(const ControlCondition &C1,
183                                      const ControlCondition &C2) {
184   if (C1.getInt() == C2.getInt()) {
185     if (isEquivalent(*C1.getPointer(), *C2.getPointer()))
186       return true;
187   } else if (isInverse(*C1.getPointer(), *C2.getPointer()))
188     return true;
189 
190   return false;
191 }
192 
193 // FIXME: Use SCEV and reuse GVN/CSE logic to check for equivalence between
194 // Values.
195 // Currently, isEquivalent rely on other passes to ensure equivalent conditions
196 // have the same value, e.g. GVN.
197 bool ControlConditions::isEquivalent(const Value &V1, const Value &V2) {
198   return &V1 == &V2;
199 }
200 
201 bool ControlConditions::isInverse(const Value &V1, const Value &V2) {
202   if (const CmpInst *Cmp1 = dyn_cast<CmpInst>(&V1))
203     if (const CmpInst *Cmp2 = dyn_cast<CmpInst>(&V2)) {
204       if (Cmp1->getPredicate() == Cmp2->getInversePredicate() &&
205           Cmp1->getOperand(0) == Cmp2->getOperand(0) &&
206           Cmp1->getOperand(1) == Cmp2->getOperand(1))
207         return true;
208 
209       if (Cmp1->getPredicate() ==
210               CmpInst::getSwappedPredicate(Cmp2->getInversePredicate()) &&
211           Cmp1->getOperand(0) == Cmp2->getOperand(1) &&
212           Cmp1->getOperand(1) == Cmp2->getOperand(0))
213         return true;
214     }
215   return false;
216 }
217 
218 bool llvm::isControlFlowEquivalent(const Instruction &I0, const Instruction &I1,
219                                    const DominatorTree &DT,
220                                    const PostDominatorTree &PDT) {
221   return isControlFlowEquivalent(*I0.getParent(), *I1.getParent(), DT, PDT);
222 }
223 
224 bool llvm::isControlFlowEquivalent(const BasicBlock &BB0, const BasicBlock &BB1,
225                                    const DominatorTree &DT,
226                                    const PostDominatorTree &PDT) {
227   if (&BB0 == &BB1)
228     return true;
229 
230   if ((DT.dominates(&BB0, &BB1) && PDT.dominates(&BB1, &BB0)) ||
231       (PDT.dominates(&BB0, &BB1) && DT.dominates(&BB1, &BB0)))
232     return true;
233 
234   // If the set of conditions required to execute BB0 and BB1 from their common
235   // dominator are the same, then BB0 and BB1 are control flow equivalent.
236   const BasicBlock *CommonDominator = DT.findNearestCommonDominator(&BB0, &BB1);
237   LLVM_DEBUG(dbgs() << "The nearest common dominator of " << BB0.getName()
238                     << " and " << BB1.getName() << " is "
239                     << CommonDominator->getName() << "\n");
240 
241   const Optional<ControlConditions> BB0Conditions =
242       ControlConditions::collectControlConditions(BB0, *CommonDominator, DT,
243                                                   PDT);
244   if (BB0Conditions == None)
245     return false;
246 
247   const Optional<ControlConditions> BB1Conditions =
248       ControlConditions::collectControlConditions(BB1, *CommonDominator, DT,
249                                                   PDT);
250   if (BB1Conditions == None)
251     return false;
252 
253   return BB0Conditions->isEquivalent(*BB1Conditions);
254 }
255 
256 static bool reportInvalidCandidate(const Instruction &I,
257                                    llvm::Statistic &Stat) {
258   ++Stat;
259   LLVM_DEBUG(dbgs() << "Unable to move instruction: " << I << ". "
260                     << Stat.getDesc());
261   return false;
262 }
263 
264 /// Collect all instructions in between \p StartInst and \p EndInst, and store
265 /// them in \p InBetweenInsts.
266 static void
267 collectInstructionsInBetween(Instruction &StartInst, const Instruction &EndInst,
268                              SmallPtrSetImpl<Instruction *> &InBetweenInsts) {
269   assert(InBetweenInsts.empty() && "Expecting InBetweenInsts to be empty");
270 
271   /// Get the next instructions of \p I, and push them to \p WorkList.
272   auto getNextInsts = [](Instruction &I,
273                          SmallPtrSetImpl<Instruction *> &WorkList) {
274     if (Instruction *NextInst = I.getNextNode())
275       WorkList.insert(NextInst);
276     else {
277       assert(I.isTerminator() && "Expecting a terminator instruction");
278       for (BasicBlock *Succ : successors(&I))
279         WorkList.insert(&Succ->front());
280     }
281   };
282 
283   SmallPtrSet<Instruction *, 10> WorkList;
284   getNextInsts(StartInst, WorkList);
285   while (!WorkList.empty()) {
286     Instruction *CurInst = *WorkList.begin();
287     WorkList.erase(CurInst);
288 
289     if (CurInst == &EndInst)
290       continue;
291 
292     if (!InBetweenInsts.insert(CurInst).second)
293       continue;
294 
295     getNextInsts(*CurInst, WorkList);
296   }
297 }
298 
299 bool llvm::isSafeToMoveBefore(Instruction &I, Instruction &InsertPoint,
300                               DominatorTree &DT, const PostDominatorTree &PDT,
301                               DependenceInfo &DI) {
302   // Cannot move itself before itself.
303   if (&I == &InsertPoint)
304     return false;
305 
306   // Not moved.
307   if (I.getNextNode() == &InsertPoint)
308     return true;
309 
310   if (isa<PHINode>(I) || isa<PHINode>(InsertPoint))
311     return reportInvalidCandidate(I, NotMovedPHINode);
312 
313   if (I.isTerminator())
314     return reportInvalidCandidate(I, NotMovedTerminator);
315 
316   // TODO remove this limitation.
317   if (!isControlFlowEquivalent(I, InsertPoint, DT, PDT))
318     return reportInvalidCandidate(I, NotControlFlowEquivalent);
319 
320   OrderedInstructions OI(&DT);
321   DT.updateDFSNumbers();
322   const bool MoveForward = OI.dfsBefore(&I, &InsertPoint);
323   if (MoveForward) {
324     // When I is being moved forward, we need to make sure the InsertPoint
325     // dominates every users. Or else, a user may be using an undefined I.
326     for (const Use &U : I.uses())
327       if (auto *UserInst = dyn_cast<Instruction>(U.getUser()))
328         if (UserInst != &InsertPoint && !DT.dominates(&InsertPoint, U))
329           return false;
330   } else {
331     // When I is being moved backward, we need to make sure all its opernads
332     // dominates the InsertPoint. Or else, an operand may be undefined for I.
333     for (const Value *Op : I.operands())
334       if (auto *OpInst = dyn_cast<Instruction>(Op))
335         if (&InsertPoint == OpInst || !OI.dominates(OpInst, &InsertPoint))
336           return false;
337   }
338 
339   Instruction &StartInst = (MoveForward ? I : InsertPoint);
340   Instruction &EndInst = (MoveForward ? InsertPoint : I);
341   SmallPtrSet<Instruction *, 10> InstsToCheck;
342   collectInstructionsInBetween(StartInst, EndInst, InstsToCheck);
343   if (!MoveForward)
344     InstsToCheck.insert(&InsertPoint);
345 
346   // Check if there exists instructions which may throw, may synchonize, or may
347   // never return, from I to InsertPoint.
348   if (!isSafeToSpeculativelyExecute(&I))
349     if (std::any_of(InstsToCheck.begin(), InstsToCheck.end(),
350                     [](Instruction *I) {
351                       if (I->mayThrow())
352                         return true;
353 
354                       const CallBase *CB = dyn_cast<CallBase>(I);
355                       if (!CB)
356                         return false;
357                       if (!CB->hasFnAttr(Attribute::WillReturn))
358                         return true;
359                       if (!CB->hasFnAttr(Attribute::NoSync))
360                         return true;
361 
362                       return false;
363                     })) {
364       return reportInvalidCandidate(I, MayThrowException);
365     }
366 
367   // Check if I has any output/flow/anti dependences with instructions from \p
368   // StartInst to \p EndInst.
369   if (std::any_of(InstsToCheck.begin(), InstsToCheck.end(),
370                   [&DI, &I](Instruction *CurInst) {
371                     auto DepResult = DI.depends(&I, CurInst, true);
372                     if (DepResult &&
373                         (DepResult->isOutput() || DepResult->isFlow() ||
374                          DepResult->isAnti()))
375                       return true;
376                     return false;
377                   }))
378     return reportInvalidCandidate(I, HasDependences);
379 
380   return true;
381 }
382 
383 void llvm::moveInstructionsToTheBeginning(BasicBlock &FromBB, BasicBlock &ToBB,
384                                           DominatorTree &DT,
385                                           const PostDominatorTree &PDT,
386                                           DependenceInfo &DI) {
387   for (auto It = ++FromBB.rbegin(); It != FromBB.rend();) {
388     Instruction *MovePos = ToBB.getFirstNonPHIOrDbg();
389     Instruction &I = *It;
390     // Increment the iterator before modifying FromBB.
391     ++It;
392 
393     if (isSafeToMoveBefore(I, *MovePos, DT, PDT, DI))
394       I.moveBefore(MovePos);
395   }
396 }
397