xref: /llvm-project/llvm/lib/Transforms/Utils/CodeLayout.cpp (revision dee058c670593b999fec19c458dbbd882ad9de56)
1 //===- CodeLayout.cpp - Implementation of code layout algorithms ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ExtTSP - layout of basic blocks with i-cache optimization.
10 //
11 // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
12 // optimizing jump locality and thus processor I-cache utilization. This is
13 // achieved via increasing the number of fall-through jumps and co-locating
14 // frequently executed nodes together. The name follows the underlying
15 // optimization problem, Extended-TSP, which is a generalization of classical
16 // (maximum) Traveling Salesmen Problem.
17 //
18 // The algorithm is a greedy heuristic that works with chains (ordered lists)
19 // of basic blocks. Initially all chains are isolated basic blocks. On every
20 // iteration, we pick a pair of chains whose merging yields the biggest increase
21 // in the ExtTSP score, which models how i-cache "friendly" a specific chain is.
22 // A pair of chains giving the maximum gain is merged into a new chain. The
23 // procedure stops when there is only one chain left, or when merging does not
24 // increase ExtTSP. In the latter case, the remaining chains are sorted by
25 // density in the decreasing order.
26 //
27 // An important aspect is the way two chains are merged. Unlike earlier
28 // algorithms (e.g., based on the approach of Pettis-Hansen), two
29 // chains, X and Y, are first split into three, X1, X2, and Y. Then we
30 // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
31 // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
32 // This improves the quality of the final result (the search space is larger)
33 // while keeping the implementation sufficiently fast.
34 //
35 // Reference:
36 //   * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
37 //     IEEE Transactions on Computers, 2020
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/Transforms/Utils/CodeLayout.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 
45 using namespace llvm;
46 #define DEBUG_TYPE "code-layout"
47 
48 cl::opt<bool> EnableExtTspBlockPlacement(
49     "enable-ext-tsp-block-placement", cl::Hidden, cl::init(false),
50     cl::desc("Enable machine block placement based on the ext-tsp model, "
51              "optimizing I-cache utilization."));
52 
53 // Algorithm-specific constants. The values are tuned for the best performance
54 // of large-scale front-end bound binaries.
55 static cl::opt<double>
56     ForwardWeight("ext-tsp-forward-weight", cl::Hidden, cl::init(0.1),
57                   cl::desc("The weight of forward jumps for ExtTSP value"));
58 
59 static cl::opt<double>
60     BackwardWeight("ext-tsp-backward-weight", cl::Hidden, cl::init(0.1),
61                    cl::desc("The weight of backward jumps for ExtTSP value"));
62 
63 static cl::opt<unsigned> ForwardDistance(
64     "ext-tsp-forward-distance", cl::Hidden, cl::init(1024),
65     cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"));
66 
67 static cl::opt<unsigned> BackwardDistance(
68     "ext-tsp-backward-distance", cl::Hidden, cl::init(640),
69     cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"));
70 
71 // The maximum size of a chain for splitting. Larger values of the threshold
72 // may yield better quality at the cost of worsen run-time.
73 static cl::opt<unsigned> ChainSplitThreshold(
74     "ext-tsp-chain-split-threshold", cl::Hidden, cl::init(128),
75     cl::desc("The maximum size of a chain to apply splitting"));
76 
77 // The option enables splitting (large) chains along in-coming and out-going
78 // jumps. This typically results in a better quality.
79 static cl::opt<bool> EnableChainSplitAlongJumps(
80     "ext-tsp-enable-chain-split-along-jumps", cl::Hidden, cl::init(true),
81     cl::desc("The maximum size of a chain to apply splitting"));
82 
83 namespace {
84 
85 // Epsilon for comparison of doubles.
86 constexpr double EPS = 1e-8;
87 
88 // Compute the Ext-TSP score for a jump between a given pair of blocks,
89 // using their sizes, (estimated) addresses and the jump execution count.
90 double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
91                    uint64_t Count) {
92   // Fallthrough
93   if (SrcAddr + SrcSize == DstAddr) {
94     // Assume that FallthroughWeight = 1.0 after normalization
95     return static_cast<double>(Count);
96   }
97   // Forward
98   if (SrcAddr + SrcSize < DstAddr) {
99     const auto Dist = DstAddr - (SrcAddr + SrcSize);
100     if (Dist <= ForwardDistance) {
101       double Prob = 1.0 - static_cast<double>(Dist) / ForwardDistance;
102       return ForwardWeight * Prob * Count;
103     }
104     return 0;
105   }
106   // Backward
107   const auto Dist = SrcAddr + SrcSize - DstAddr;
108   if (Dist <= BackwardDistance) {
109     double Prob = 1.0 - static_cast<double>(Dist) / BackwardDistance;
110     return BackwardWeight * Prob * Count;
111   }
112   return 0;
113 }
114 
115 /// A type of merging two chains, X and Y. The former chain is split into
116 /// X1 and X2 and then concatenated with Y in the order specified by the type.
117 enum class MergeTypeTy : int { X_Y, X1_Y_X2, Y_X2_X1, X2_X1_Y };
118 
119 /// The gain of merging two chains, that is, the Ext-TSP score of the merge
120 /// together with the corresponfiding merge 'type' and 'offset'.
121 class MergeGainTy {
122 public:
123   explicit MergeGainTy() {}
124   explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType)
125       : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
126 
127   double score() const { return Score; }
128 
129   size_t mergeOffset() const { return MergeOffset; }
130 
131   MergeTypeTy mergeType() const { return MergeType; }
132 
133   // Returns 'true' iff Other is preferred over this.
134   bool operator<(const MergeGainTy &Other) const {
135     return (Other.Score > EPS && Other.Score > Score + EPS);
136   }
137 
138   // Update the current gain if Other is preferred over this.
139   void updateIfLessThan(const MergeGainTy &Other) {
140     if (*this < Other)
141       *this = Other;
142   }
143 
144 private:
145   double Score{-1.0};
146   size_t MergeOffset{0};
147   MergeTypeTy MergeType{MergeTypeTy::X_Y};
148 };
149 
150 class Block;
151 class Jump;
152 class Chain;
153 class ChainEdge;
154 
155 /// A node in the graph, typically corresponding to a basic block in CFG.
156 class Block {
157 public:
158   Block(const Block &) = delete;
159   Block(Block &&) = default;
160   Block &operator=(const Block &) = delete;
161   Block &operator=(Block &&) = default;
162 
163   // The original index of the block in CFG.
164   size_t Index{0};
165   // The index of the block in the current chain.
166   size_t CurIndex{0};
167   // Size of the block in the binary.
168   uint64_t Size{0};
169   // Execution count of the block in the profile data.
170   uint64_t ExecutionCount{0};
171   // Current chain of the node.
172   Chain *CurChain{nullptr};
173   // An offset of the block in the current chain.
174   mutable uint64_t EstimatedAddr{0};
175   // Forced successor of the block in CFG.
176   Block *ForcedSucc{nullptr};
177   // Forced predecessor of the block in CFG.
178   Block *ForcedPred{nullptr};
179   // Outgoing jumps from the block.
180   std::vector<Jump *> OutJumps;
181   // Incoming jumps to the block.
182   std::vector<Jump *> InJumps;
183 
184 public:
185   explicit Block(size_t Index, uint64_t Size_, uint64_t EC)
186       : Index(Index), Size(Size_), ExecutionCount(EC) {}
187   bool isEntry() const { return Index == 0; }
188 };
189 
190 /// An arc in the graph, typically corresponding to a jump between two blocks.
191 class Jump {
192 public:
193   Jump(const Jump &) = delete;
194   Jump(Jump &&) = default;
195   Jump &operator=(const Jump &) = delete;
196   Jump &operator=(Jump &&) = default;
197 
198   // Source block of the jump.
199   Block *Source;
200   // Target block of the jump.
201   Block *Target;
202   // Execution count of the arc in the profile data.
203   uint64_t ExecutionCount{0};
204 
205 public:
206   explicit Jump(Block *Source, Block *Target, uint64_t ExecutionCount)
207       : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {}
208 };
209 
210 /// A chain (ordered sequence) of blocks.
211 class Chain {
212 public:
213   Chain(const Chain &) = delete;
214   Chain(Chain &&) = default;
215   Chain &operator=(const Chain &) = delete;
216   Chain &operator=(Chain &&) = default;
217 
218   explicit Chain(uint64_t Id, Block *Block)
219       : Id(Id), Score(0), Blocks(1, Block) {}
220 
221   uint64_t id() const { return Id; }
222 
223   bool isEntry() const { return Blocks[0]->Index == 0; }
224 
225   double score() const { return Score; }
226 
227   void setScore(double NewScore) { Score = NewScore; }
228 
229   const std::vector<Block *> &blocks() const { return Blocks; }
230 
231   const std::vector<std::pair<Chain *, ChainEdge *>> &edges() const {
232     return Edges;
233   }
234 
235   ChainEdge *getEdge(Chain *Other) const {
236     for (auto It : Edges) {
237       if (It.first == Other)
238         return It.second;
239     }
240     return nullptr;
241   }
242 
243   void removeEdge(Chain *Other) {
244     auto It = Edges.begin();
245     while (It != Edges.end()) {
246       if (It->first == Other) {
247         Edges.erase(It);
248         return;
249       }
250       It++;
251     }
252   }
253 
254   void addEdge(Chain *Other, ChainEdge *Edge) {
255     Edges.push_back(std::make_pair(Other, Edge));
256   }
257 
258   void merge(Chain *Other, const std::vector<Block *> &MergedBlocks) {
259     Blocks = MergedBlocks;
260     // Update the block's chains
261     for (size_t Idx = 0; Idx < Blocks.size(); Idx++) {
262       Blocks[Idx]->CurChain = this;
263       Blocks[Idx]->CurIndex = Idx;
264     }
265   }
266 
267   void mergeEdges(Chain *Other);
268 
269   void clear() {
270     Blocks.clear();
271     Blocks.shrink_to_fit();
272     Edges.clear();
273     Edges.shrink_to_fit();
274   }
275 
276 private:
277   // Unique chain identifier.
278   uint64_t Id;
279   // Cached ext-tsp score for the chain.
280   double Score;
281   // Blocks of the chain.
282   std::vector<Block *> Blocks;
283   // Adjacent chains and corresponding edges (lists of jumps).
284   std::vector<std::pair<Chain *, ChainEdge *>> Edges;
285 };
286 
287 /// An edge in CFG representing jumps between two chains.
288 /// When blocks are merged into chains, the edges are combined too so that
289 /// there is always at most one edge between a pair of chains
290 class ChainEdge {
291 public:
292   ChainEdge(const ChainEdge &) = delete;
293   ChainEdge(ChainEdge &&) = default;
294   ChainEdge &operator=(const ChainEdge &) = delete;
295   ChainEdge &operator=(ChainEdge &&) = default;
296 
297   explicit ChainEdge(Jump *Jump)
298       : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain),
299         Jumps(1, Jump) {}
300 
301   const std::vector<Jump *> &jumps() const { return Jumps; }
302 
303   void changeEndpoint(Chain *From, Chain *To) {
304     if (From == SrcChain)
305       SrcChain = To;
306     if (From == DstChain)
307       DstChain = To;
308   }
309 
310   void appendJump(Jump *Jump) { Jumps.push_back(Jump); }
311 
312   void moveJumps(ChainEdge *Other) {
313     Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
314     Other->Jumps.clear();
315     Other->Jumps.shrink_to_fit();
316   }
317 
318   bool hasCachedMergeGain(Chain *Src, Chain *Dst) const {
319     return Src == SrcChain ? CacheValidForward : CacheValidBackward;
320   }
321 
322   MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const {
323     return Src == SrcChain ? CachedGainForward : CachedGainBackward;
324   }
325 
326   void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) {
327     if (Src == SrcChain) {
328       CachedGainForward = MergeGain;
329       CacheValidForward = true;
330     } else {
331       CachedGainBackward = MergeGain;
332       CacheValidBackward = true;
333     }
334   }
335 
336   void invalidateCache() {
337     CacheValidForward = false;
338     CacheValidBackward = false;
339   }
340 
341 private:
342   // Source chain.
343   Chain *SrcChain{nullptr};
344   // Destination chain.
345   Chain *DstChain{nullptr};
346   // Original jumps in the binary with correspinding execution counts.
347   std::vector<Jump *> Jumps;
348   // Cached ext-tsp value for merging the pair of chains.
349   // Since the gain of merging (Src, Dst) and (Dst, Src) might be different,
350   // we store both values here.
351   MergeGainTy CachedGainForward;
352   MergeGainTy CachedGainBackward;
353   // Whether the cached value must be recomputed.
354   bool CacheValidForward{false};
355   bool CacheValidBackward{false};
356 };
357 
358 void Chain::mergeEdges(Chain *Other) {
359   assert(this != Other && "cannot merge a chain with itself");
360 
361   // Update edges adjacent to chain Other
362   for (auto EdgeIt : Other->Edges) {
363     const auto DstChain = EdgeIt.first;
364     const auto DstEdge = EdgeIt.second;
365     const auto TargetChain = DstChain == Other ? this : DstChain;
366     auto CurEdge = getEdge(TargetChain);
367     if (CurEdge == nullptr) {
368       DstEdge->changeEndpoint(Other, this);
369       this->addEdge(TargetChain, DstEdge);
370       if (DstChain != this && DstChain != Other) {
371         DstChain->addEdge(this, DstEdge);
372       }
373     } else {
374       CurEdge->moveJumps(DstEdge);
375     }
376     // Cleanup leftover edge
377     if (DstChain != Other) {
378       DstChain->removeEdge(Other);
379     }
380   }
381 }
382 
383 using BlockIter = std::vector<Block *>::const_iterator;
384 
385 /// A wrapper around three chains of blocks; it is used to avoid extra
386 /// instantiation of the vectors.
387 class MergedChain {
388 public:
389   MergedChain(BlockIter Begin1, BlockIter End1, BlockIter Begin2 = BlockIter(),
390               BlockIter End2 = BlockIter(), BlockIter Begin3 = BlockIter(),
391               BlockIter End3 = BlockIter())
392       : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
393         End3(End3) {}
394 
395   template <typename F> void forEach(const F &Func) const {
396     for (auto It = Begin1; It != End1; It++)
397       Func(*It);
398     for (auto It = Begin2; It != End2; It++)
399       Func(*It);
400     for (auto It = Begin3; It != End3; It++)
401       Func(*It);
402   }
403 
404   std::vector<Block *> getBlocks() const {
405     std::vector<Block *> Result;
406     Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
407                    std::distance(Begin3, End3));
408     Result.insert(Result.end(), Begin1, End1);
409     Result.insert(Result.end(), Begin2, End2);
410     Result.insert(Result.end(), Begin3, End3);
411     return Result;
412   }
413 
414   const Block *getFirstBlock() const { return *Begin1; }
415 
416 private:
417   BlockIter Begin1;
418   BlockIter End1;
419   BlockIter Begin2;
420   BlockIter End2;
421   BlockIter Begin3;
422   BlockIter End3;
423 };
424 
425 /// The implementation of the ExtTSP algorithm.
426 class ExtTSPImpl {
427   using EdgeT = std::pair<uint64_t, uint64_t>;
428   using EdgeCountMap = DenseMap<EdgeT, uint64_t>;
429 
430 public:
431   ExtTSPImpl(size_t NumNodes, const std::vector<uint64_t> &NodeSizes,
432              const std::vector<uint64_t> &NodeCounts,
433              const EdgeCountMap &EdgeCounts)
434       : NumNodes(NumNodes) {
435     initialize(NodeSizes, NodeCounts, EdgeCounts);
436   }
437 
438   /// Run the algorithm and return an optimized ordering of blocks.
439   void run(std::vector<uint64_t> &Result) {
440     // Pass 1: Merge blocks with their mutually forced successors
441     mergeForcedPairs();
442 
443     // Pass 2: Merge pairs of chains while improving the ExtTSP objective
444     mergeChainPairs();
445 
446     // Pass 3: Merge cold blocks to reduce code size
447     mergeColdChains();
448 
449     // Collect blocks from all chains
450     concatChains(Result);
451   }
452 
453 private:
454   /// Initialize the algorithm's data structures.
455   void initialize(const std::vector<uint64_t> &NodeSizes,
456                   const std::vector<uint64_t> &NodeCounts,
457                   const EdgeCountMap &EdgeCounts) {
458     // Initialize blocks
459     AllBlocks.reserve(NumNodes);
460     for (uint64_t Node = 0; Node < NumNodes; Node++) {
461       uint64_t Size = std::max<uint64_t>(NodeSizes[Node], 1ULL);
462       uint64_t ExecutionCount = NodeCounts[Node];
463       // The execution count of the entry block is set to at least 1
464       if (Node == 0 && ExecutionCount == 0)
465         ExecutionCount = 1;
466       AllBlocks.emplace_back(Node, Size, ExecutionCount);
467     }
468 
469     // Initialize jumps between blocks
470     SuccNodes = std::vector<std::vector<uint64_t>>(NumNodes);
471     PredNodes = std::vector<std::vector<uint64_t>>(NumNodes);
472     AllJumps.reserve(EdgeCounts.size());
473     for (auto It : EdgeCounts) {
474       auto Pred = It.first.first;
475       auto Succ = It.first.second;
476       // Ignore self-edges
477       if (Pred == Succ)
478         continue;
479 
480       SuccNodes[Pred].push_back(Succ);
481       PredNodes[Succ].push_back(Pred);
482       auto ExecutionCount = It.second;
483       if (ExecutionCount > 0) {
484         auto &Block = AllBlocks[Pred];
485         auto &SuccBlock = AllBlocks[Succ];
486         AllJumps.emplace_back(&Block, &SuccBlock, ExecutionCount);
487         SuccBlock.InJumps.push_back(&AllJumps.back());
488         Block.OutJumps.push_back(&AllJumps.back());
489       }
490     }
491 
492     // Initialize chains
493     AllChains.reserve(NumNodes);
494     HotChains.reserve(NumNodes);
495     for (auto &Block : AllBlocks) {
496       AllChains.emplace_back(Block.Index, &Block);
497       Block.CurChain = &AllChains.back();
498       if (Block.ExecutionCount > 0) {
499         HotChains.push_back(&AllChains.back());
500       }
501     }
502 
503     // Initialize chain edges
504     AllEdges.reserve(AllJumps.size());
505     for (auto &Block : AllBlocks) {
506       for (auto &Jump : Block.OutJumps) {
507         const auto SuccBlock = Jump->Target;
508         auto CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain);
509         // this edge is already present in the graph
510         if (CurEdge != nullptr) {
511           assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr);
512           CurEdge->appendJump(Jump);
513           continue;
514         }
515         // this is a new edge
516         AllEdges.emplace_back(Jump);
517         Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back());
518         SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back());
519       }
520     }
521   }
522 
523   /// For a pair of blocks, A and B, block B is the forced successor of A,
524   /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
525   /// to B are from A. Such blocks should be adjacent in the optimal ordering;
526   /// the method finds and merges such pairs of blocks.
527   void mergeForcedPairs() {
528     // Find fallthroughs based on edge weights
529     for (auto &Block : AllBlocks) {
530       if (SuccNodes[Block.Index].size() == 1 &&
531           PredNodes[SuccNodes[Block.Index][0]].size() == 1 &&
532           SuccNodes[Block.Index][0] != 0) {
533         size_t SuccIndex = SuccNodes[Block.Index][0];
534         Block.ForcedSucc = &AllBlocks[SuccIndex];
535         AllBlocks[SuccIndex].ForcedPred = &Block;
536       }
537     }
538 
539     // There might be 'cycles' in the forced dependencies, since profile
540     // data isn't 100% accurate. Typically this is observed in loops, when the
541     // loop edges are the hottest successors for the basic blocks of the loop.
542     // Break the cycles by choosing the block with the smallest index as the
543     // head. This helps to keep the original order of the loops, which likely
544     // have already been rotated in the optimized manner.
545     for (auto &Block : AllBlocks) {
546       if (Block.ForcedSucc == nullptr || Block.ForcedPred == nullptr)
547         continue;
548 
549       auto SuccBlock = Block.ForcedSucc;
550       while (SuccBlock != nullptr && SuccBlock != &Block) {
551         SuccBlock = SuccBlock->ForcedSucc;
552       }
553       if (SuccBlock == nullptr)
554         continue;
555       // Break the cycle
556       AllBlocks[Block.ForcedPred->Index].ForcedSucc = nullptr;
557       Block.ForcedPred = nullptr;
558     }
559 
560     // Merge blocks with their fallthrough successors
561     for (auto &Block : AllBlocks) {
562       if (Block.ForcedPred == nullptr && Block.ForcedSucc != nullptr) {
563         auto CurBlock = &Block;
564         while (CurBlock->ForcedSucc != nullptr) {
565           const auto NextBlock = CurBlock->ForcedSucc;
566           mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y);
567           CurBlock = NextBlock;
568         }
569       }
570     }
571   }
572 
573   /// Merge pairs of chains while improving the ExtTSP objective.
574   void mergeChainPairs() {
575     /// Deterministically compare pairs of chains
576     auto compareChainPairs = [](const Chain *A1, const Chain *B1,
577                                 const Chain *A2, const Chain *B2) {
578       if (A1 != A2)
579         return A1->id() < A2->id();
580       return B1->id() < B2->id();
581     };
582 
583     while (HotChains.size() > 1) {
584       Chain *BestChainPred = nullptr;
585       Chain *BestChainSucc = nullptr;
586       auto BestGain = MergeGainTy();
587       // Iterate over all pairs of chains
588       for (auto ChainPred : HotChains) {
589         // Get candidates for merging with the current chain
590         for (auto EdgeIter : ChainPred->edges()) {
591           auto ChainSucc = EdgeIter.first;
592           auto ChainEdge = EdgeIter.second;
593           // Ignore loop edges
594           if (ChainPred == ChainSucc)
595             continue;
596 
597           // Compute the gain of merging the two chains
598           auto CurGain = getBestMergeGain(ChainPred, ChainSucc, ChainEdge);
599           if (CurGain.score() <= EPS)
600             continue;
601 
602           if (BestGain < CurGain ||
603               (std::abs(CurGain.score() - BestGain.score()) < EPS &&
604                compareChainPairs(ChainPred, ChainSucc, BestChainPred,
605                                  BestChainSucc))) {
606             BestGain = CurGain;
607             BestChainPred = ChainPred;
608             BestChainSucc = ChainSucc;
609           }
610         }
611       }
612 
613       // Stop merging when there is no improvement
614       if (BestGain.score() <= EPS)
615         break;
616 
617       // Merge the best pair of chains
618       mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
619                   BestGain.mergeType());
620     }
621   }
622 
623   /// Merge cold blocks to reduce code size.
624   void mergeColdChains() {
625     for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) {
626       // Iterating over neighbors in the reverse order to make sure original
627       // fallthrough jumps are merged first
628       size_t NumSuccs = SuccNodes[SrcBB].size();
629       for (size_t Idx = 0; Idx < NumSuccs; Idx++) {
630         auto DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1];
631         auto SrcChain = AllBlocks[SrcBB].CurChain;
632         auto DstChain = AllBlocks[DstBB].CurChain;
633         if (SrcChain != DstChain && !DstChain->isEntry() &&
634             SrcChain->blocks().back()->Index == SrcBB &&
635             DstChain->blocks().front()->Index == DstBB) {
636           mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y);
637         }
638       }
639     }
640   }
641 
642   /// Compute the Ext-TSP score for a given block order and a list of jumps.
643   double extTSPScore(const MergedChain &MergedBlocks,
644                      const std::vector<Jump *> &Jumps) const {
645     if (Jumps.empty())
646       return 0.0;
647     uint64_t CurAddr = 0;
648     MergedBlocks.forEach([&](const Block *BB) {
649       BB->EstimatedAddr = CurAddr;
650       CurAddr += BB->Size;
651     });
652 
653     double Score = 0;
654     for (auto &Jump : Jumps) {
655       const auto SrcBlock = Jump->Source;
656       const auto DstBlock = Jump->Target;
657       Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
658                              DstBlock->EstimatedAddr, Jump->ExecutionCount);
659     }
660     return Score;
661   }
662 
663   /// Compute the gain of merging two chains.
664   ///
665   /// The function considers all possible ways of merging two chains and
666   /// computes the one having the largest increase in ExtTSP objective. The
667   /// result is a pair with the first element being the gain and the second
668   /// element being the corresponding merging type.
669   MergeGainTy getBestMergeGain(Chain *ChainPred, Chain *ChainSucc,
670                                ChainEdge *Edge) const {
671     if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) {
672       return Edge->getCachedMergeGain(ChainPred, ChainSucc);
673     }
674 
675     // Precompute jumps between ChainPred and ChainSucc
676     auto Jumps = Edge->jumps();
677     auto EdgePP = ChainPred->getEdge(ChainPred);
678     if (EdgePP != nullptr) {
679       Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end());
680     }
681     assert(!Jumps.empty() && "trying to merge chains w/o jumps");
682 
683     // The object holds the best currently chosen gain of merging the two chains
684     MergeGainTy Gain = MergeGainTy();
685 
686     /// Given a merge offset and a list of merge types, try to merge two chains
687     /// and update Gain with a better alternative
688     auto tryChainMerging = [&](size_t Offset,
689                                const std::vector<MergeTypeTy> &MergeTypes) {
690       // Skip merging corresponding to concatenation w/o splitting
691       if (Offset == 0 || Offset == ChainPred->blocks().size())
692         return;
693       // Skip merging if it breaks Forced successors
694       auto BB = ChainPred->blocks()[Offset - 1];
695       if (BB->ForcedSucc != nullptr)
696         return;
697       // Apply the merge, compute the corresponding gain, and update the best
698       // value, if the merge is beneficial
699       for (auto &MergeType : MergeTypes) {
700         Gain.updateIfLessThan(
701             computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType));
702       }
703     };
704 
705     // Try to concatenate two chains w/o splitting
706     Gain.updateIfLessThan(
707         computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeTy::X_Y));
708 
709     if (EnableChainSplitAlongJumps) {
710       // Attach (a part of) ChainPred before the first block of ChainSucc
711       for (auto &Jump : ChainSucc->blocks().front()->InJumps) {
712         const auto SrcBlock = Jump->Source;
713         if (SrcBlock->CurChain != ChainPred)
714           continue;
715         size_t Offset = SrcBlock->CurIndex + 1;
716         tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::X2_X1_Y});
717       }
718 
719       // Attach (a part of) ChainPred after the last block of ChainSucc
720       for (auto &Jump : ChainSucc->blocks().back()->OutJumps) {
721         const auto DstBlock = Jump->Source;
722         if (DstBlock->CurChain != ChainPred)
723           continue;
724         size_t Offset = DstBlock->CurIndex;
725         tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1});
726       }
727     }
728 
729     // Try to break ChainPred in various ways and concatenate with ChainSucc
730     if (ChainPred->blocks().size() <= ChainSplitThreshold) {
731       for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) {
732         // Try to split the chain in different ways. In practice, applying
733         // X2_Y_X1 merging is almost never provides benefits; thus, we exclude
734         // it from consideration to reduce the search space
735         tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1,
736                                  MergeTypeTy::X2_X1_Y});
737       }
738     }
739     Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
740     return Gain;
741   }
742 
743   /// Compute the score gain of merging two chains, respecting a given
744   /// merge 'type' and 'offset'.
745   ///
746   /// The two chains are not modified in the method.
747   MergeGainTy computeMergeGain(const Chain *ChainPred, const Chain *ChainSucc,
748                                const std::vector<Jump *> &Jumps,
749                                size_t MergeOffset,
750                                MergeTypeTy MergeType) const {
751     auto MergedBlocks = mergeBlocks(ChainPred->blocks(), ChainSucc->blocks(),
752                                     MergeOffset, MergeType);
753 
754     // Do not allow a merge that does not preserve the original entry block
755     if ((ChainPred->isEntry() || ChainSucc->isEntry()) &&
756         !MergedBlocks.getFirstBlock()->isEntry())
757       return MergeGainTy();
758 
759     // The gain for the new chain
760     auto NewGainScore = extTSPScore(MergedBlocks, Jumps) - ChainPred->score();
761     return MergeGainTy(NewGainScore, MergeOffset, MergeType);
762   }
763 
764   /// Merge two chains of blocks respecting a given merge 'type' and 'offset'.
765   ///
766   /// If MergeType == 0, then the result is a concatentation of two chains.
767   /// Otherwise, the first chain is cut into two sub-chains at the offset,
768   /// and merged using all possible ways of concatenating three chains.
769   MergedChain mergeBlocks(const std::vector<Block *> &X,
770                           const std::vector<Block *> &Y, size_t MergeOffset,
771                           MergeTypeTy MergeType) const {
772     // Split the first chain, X, into X1 and X2
773     BlockIter BeginX1 = X.begin();
774     BlockIter EndX1 = X.begin() + MergeOffset;
775     BlockIter BeginX2 = X.begin() + MergeOffset;
776     BlockIter EndX2 = X.end();
777     BlockIter BeginY = Y.begin();
778     BlockIter EndY = Y.end();
779 
780     // Construct a new chain from the three existing ones
781     switch (MergeType) {
782     case MergeTypeTy::X_Y:
783       return MergedChain(BeginX1, EndX2, BeginY, EndY);
784     case MergeTypeTy::X1_Y_X2:
785       return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
786     case MergeTypeTy::Y_X2_X1:
787       return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
788     case MergeTypeTy::X2_X1_Y:
789       return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
790     }
791     llvm_unreachable("unexpected chain merge type");
792   }
793 
794   /// Merge chain From into chain Into, update the list of active chains,
795   /// adjacency information, and the corresponding cached values.
796   void mergeChains(Chain *Into, Chain *From, size_t MergeOffset,
797                    MergeTypeTy MergeType) {
798     assert(Into != From && "a chain cannot be merged with itself");
799 
800     // Merge the blocks
801     auto MergedBlocks =
802         mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType);
803     Into->merge(From, MergedBlocks.getBlocks());
804     Into->mergeEdges(From);
805     From->clear();
806 
807     // Update cached ext-tsp score for the new chain
808     auto SelfEdge = Into->getEdge(Into);
809     if (SelfEdge != nullptr) {
810       MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end());
811       Into->setScore(extTSPScore(MergedBlocks, SelfEdge->jumps()));
812     }
813 
814     // Remove chain From from the list of active chains
815     auto Iter = std::remove(HotChains.begin(), HotChains.end(), From);
816     HotChains.erase(Iter, HotChains.end());
817 
818     // Invalidate caches
819     for (auto EdgeIter : Into->edges()) {
820       EdgeIter.second->invalidateCache();
821     }
822   }
823 
824   /// Concatenate all chains into a final order of blocks.
825   void concatChains(std::vector<uint64_t> &Order) {
826     // Collect chains and calculate some stats for their sorting
827     std::vector<Chain *> SortedChains;
828     DenseMap<const Chain *, double> ChainDensity;
829     for (auto &Chain : AllChains) {
830       if (!Chain.blocks().empty()) {
831         SortedChains.push_back(&Chain);
832         // Using doubles to avoid overflow of ExecutionCount
833         double Size = 0;
834         double ExecutionCount = 0;
835         for (auto Block : Chain.blocks()) {
836           Size += static_cast<double>(Block->Size);
837           ExecutionCount += static_cast<double>(Block->ExecutionCount);
838         }
839         assert(Size > 0 && "a chain of zero size");
840         ChainDensity[&Chain] = ExecutionCount / Size;
841       }
842     }
843 
844     // Sorting chains by density in the decreasing order
845     std::stable_sort(SortedChains.begin(), SortedChains.end(),
846                      [&](const Chain *C1, const Chain *C2) {
847                        // Makre sure the original entry block is at the
848                        // beginning of the order
849                        if (C1->isEntry() != C2->isEntry()) {
850                          return C1->isEntry();
851                        }
852 
853                        const double D1 = ChainDensity[C1];
854                        const double D2 = ChainDensity[C2];
855                        // Compare by density and break ties by chain identifiers
856                        return (D1 != D2) ? (D1 > D2) : (C1->id() < C2->id());
857                      });
858 
859     // Collect the blocks in the order specified by their chains
860     Order.reserve(NumNodes);
861     for (auto Chain : SortedChains) {
862       for (auto Block : Chain->blocks()) {
863         Order.push_back(Block->Index);
864       }
865     }
866   }
867 
868 private:
869   /// The number of nodes in the graph.
870   const size_t NumNodes;
871 
872   /// Successors of each node.
873   std::vector<std::vector<uint64_t>> SuccNodes;
874 
875   /// Predecessors of each node.
876   std::vector<std::vector<uint64_t>> PredNodes;
877 
878   /// All basic blocks.
879   std::vector<Block> AllBlocks;
880 
881   /// All jumps between blocks.
882   std::vector<Jump> AllJumps;
883 
884   /// All chains of basic blocks.
885   std::vector<Chain> AllChains;
886 
887   /// All edges between chains.
888   std::vector<ChainEdge> AllEdges;
889 
890   /// Active chains. The vector gets updated at runtime when chains are merged.
891   std::vector<Chain *> HotChains;
892 };
893 
894 } // end of anonymous namespace
895 
896 std::vector<uint64_t> llvm::applyExtTspLayout(
897     const std::vector<uint64_t> &NodeSizes,
898     const std::vector<uint64_t> &NodeCounts,
899     const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) {
900   size_t NumNodes = NodeSizes.size();
901 
902   // Verify correctness of the input data.
903   assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input");
904   assert(NumNodes > 2 && "Incorrect input");
905 
906   // Apply the reordering algorithm.
907   auto Alg = ExtTSPImpl(NumNodes, NodeSizes, NodeCounts, EdgeCounts);
908   std::vector<uint64_t> Result;
909   Alg.run(Result);
910 
911   // Verify correctness of the output.
912   assert(Result.front() == 0 && "Original entry point is not preserved");
913   assert(Result.size() == NumNodes && "Incorrect size of reordered layout");
914   return Result;
915 }
916 
917 double llvm::calcExtTspScore(
918     const std::vector<uint64_t> &Order, const std::vector<uint64_t> &NodeSizes,
919     const std::vector<uint64_t> &NodeCounts,
920     const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) {
921   // Estimate addresses of the blocks in memory
922   auto Addr = std::vector<uint64_t>(NodeSizes.size(), 0);
923   for (size_t Idx = 1; Idx < Order.size(); Idx++) {
924     Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]];
925   }
926 
927   // Increase the score for each jump
928   double Score = 0;
929   for (auto It : EdgeCounts) {
930     auto Pred = It.first.first;
931     auto Succ = It.first.second;
932     uint64_t Count = It.second;
933     Score += extTSPScore(Addr[Pred], NodeSizes[Pred], Addr[Succ], Count);
934   }
935   return Score;
936 }
937 
938 double llvm::calcExtTspScore(
939     const std::vector<uint64_t> &NodeSizes,
940     const std::vector<uint64_t> &NodeCounts,
941     const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) {
942   auto Order = std::vector<uint64_t>(NodeSizes.size());
943   for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) {
944     Order[Idx] = Idx;
945   }
946   return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts);
947 }
948