xref: /llvm-project/llvm/lib/Transforms/Utils/CodeLayout.cpp (revision b90fcafcd68f77c86f18ecd812fb92961afbb3ba)
1 //===- CodeLayout.cpp - Implementation of code layout algorithms ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The file implements "cache-aware" layout algorithms of basic blocks and
10 // functions in a binary.
11 //
12 // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
13 // optimizing jump locality and thus processor I-cache utilization. This is
14 // achieved via increasing the number of fall-through jumps and co-locating
15 // frequently executed nodes together. The name follows the underlying
16 // optimization problem, Extended-TSP, which is a generalization of classical
17 // (maximum) Traveling Salesmen Problem.
18 //
19 // The algorithm is a greedy heuristic that works with chains (ordered lists)
20 // of basic blocks. Initially all chains are isolated basic blocks. On every
21 // iteration, we pick a pair of chains whose merging yields the biggest increase
22 // in the ExtTSP score, which models how i-cache "friendly" a specific chain is.
23 // A pair of chains giving the maximum gain is merged into a new chain. The
24 // procedure stops when there is only one chain left, or when merging does not
25 // increase ExtTSP. In the latter case, the remaining chains are sorted by
26 // density in the decreasing order.
27 //
28 // An important aspect is the way two chains are merged. Unlike earlier
29 // algorithms (e.g., based on the approach of Pettis-Hansen), two
30 // chains, X and Y, are first split into three, X1, X2, and Y. Then we
31 // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
32 // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
33 // This improves the quality of the final result (the search space is larger)
34 // while keeping the implementation sufficiently fast.
35 //
36 // Reference:
37 //   * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
38 //     IEEE Transactions on Computers, 2020
39 //     https://arxiv.org/abs/1809.04676
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "llvm/Transforms/Utils/CodeLayout.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 
47 #include <cmath>
48 #include <set>
49 
50 using namespace llvm;
51 using namespace llvm::codelayout;
52 
53 #define DEBUG_TYPE "code-layout"
54 
55 namespace llvm {
56 cl::opt<bool> EnableExtTspBlockPlacement(
57     "enable-ext-tsp-block-placement", cl::Hidden, cl::init(false),
58     cl::desc("Enable machine block placement based on the ext-tsp model, "
59              "optimizing I-cache utilization."));
60 
61 cl::opt<bool> ApplyExtTspWithoutProfile(
62     "ext-tsp-apply-without-profile",
63     cl::desc("Whether to apply ext-tsp placement for instances w/o profile"),
64     cl::init(true), cl::Hidden);
65 } // namespace llvm
66 
67 // Algorithm-specific params for Ext-TSP. The values are tuned for the best
68 // performance of large-scale front-end bound binaries.
69 static cl::opt<double> ForwardWeightCond(
70     "ext-tsp-forward-weight-cond", cl::ReallyHidden, cl::init(0.1),
71     cl::desc("The weight of conditional forward jumps for ExtTSP value"));
72 
73 static cl::opt<double> ForwardWeightUncond(
74     "ext-tsp-forward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
75     cl::desc("The weight of unconditional forward jumps for ExtTSP value"));
76 
77 static cl::opt<double> BackwardWeightCond(
78     "ext-tsp-backward-weight-cond", cl::ReallyHidden, cl::init(0.1),
79     cl::desc("The weight of conditional backward jumps for ExtTSP value"));
80 
81 static cl::opt<double> BackwardWeightUncond(
82     "ext-tsp-backward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
83     cl::desc("The weight of unconditional backward jumps for ExtTSP value"));
84 
85 static cl::opt<double> FallthroughWeightCond(
86     "ext-tsp-fallthrough-weight-cond", cl::ReallyHidden, cl::init(1.0),
87     cl::desc("The weight of conditional fallthrough jumps for ExtTSP value"));
88 
89 static cl::opt<double> FallthroughWeightUncond(
90     "ext-tsp-fallthrough-weight-uncond", cl::ReallyHidden, cl::init(1.05),
91     cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value"));
92 
93 static cl::opt<unsigned> ForwardDistance(
94     "ext-tsp-forward-distance", cl::ReallyHidden, cl::init(1024),
95     cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"));
96 
97 static cl::opt<unsigned> BackwardDistance(
98     "ext-tsp-backward-distance", cl::ReallyHidden, cl::init(640),
99     cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"));
100 
101 // The maximum size of a chain created by the algorithm. The size is bounded
102 // so that the algorithm can efficiently process extremely large instances.
103 static cl::opt<unsigned>
104     MaxChainSize("ext-tsp-max-chain-size", cl::ReallyHidden, cl::init(4096),
105                  cl::desc("The maximum size of a chain to create."));
106 
107 // The maximum size of a chain for splitting. Larger values of the threshold
108 // may yield better quality at the cost of worsen run-time.
109 static cl::opt<unsigned> ChainSplitThreshold(
110     "ext-tsp-chain-split-threshold", cl::ReallyHidden, cl::init(128),
111     cl::desc("The maximum size of a chain to apply splitting"));
112 
113 // The option enables splitting (large) chains along in-coming and out-going
114 // jumps. This typically results in a better quality.
115 static cl::opt<bool> EnableChainSplitAlongJumps(
116     "ext-tsp-enable-chain-split-along-jumps", cl::ReallyHidden, cl::init(true),
117     cl::desc("The maximum size of a chain to apply splitting"));
118 
119 // Algorithm-specific options for CDS.
120 static cl::opt<unsigned> CacheEntries("cds-cache-entries", cl::ReallyHidden,
121                                       cl::desc("The size of the cache"));
122 
123 static cl::opt<unsigned> CacheSize("cds-cache-size", cl::ReallyHidden,
124                                    cl::desc("The size of a line in the cache"));
125 
126 static cl::opt<double> DistancePower(
127     "cds-distance-power", cl::ReallyHidden,
128     cl::desc("The power exponent for the distance-based locality"));
129 
130 static cl::opt<double> FrequencyScale(
131     "cds-frequency-scale", cl::ReallyHidden,
132     cl::desc("The scale factor for the frequency-based locality"));
133 
134 namespace {
135 
136 // Epsilon for comparison of doubles.
137 constexpr double EPS = 1e-8;
138 
139 // Compute the Ext-TSP score for a given jump.
140 double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count,
141                        double Weight) {
142   if (JumpDist > JumpMaxDist)
143     return 0;
144   double Prob = 1.0 - static_cast<double>(JumpDist) / JumpMaxDist;
145   return Weight * Prob * Count;
146 }
147 
148 // Compute the Ext-TSP score for a jump between a given pair of blocks,
149 // using their sizes, (estimated) addresses and the jump execution count.
150 double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
151                    uint64_t Count, bool IsConditional) {
152   // Fallthrough
153   if (SrcAddr + SrcSize == DstAddr) {
154     return jumpExtTSPScore(0, 1, Count,
155                            IsConditional ? FallthroughWeightCond
156                                          : FallthroughWeightUncond);
157   }
158   // Forward
159   if (SrcAddr + SrcSize < DstAddr) {
160     const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
161     return jumpExtTSPScore(Dist, ForwardDistance, Count,
162                            IsConditional ? ForwardWeightCond
163                                          : ForwardWeightUncond);
164   }
165   // Backward
166   const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
167   return jumpExtTSPScore(Dist, BackwardDistance, Count,
168                          IsConditional ? BackwardWeightCond
169                                        : BackwardWeightUncond);
170 }
171 
172 /// A type of merging two chains, X and Y. The former chain is split into
173 /// X1 and X2 and then concatenated with Y in the order specified by the type.
174 enum class MergeTypeT : int { X_Y, Y_X, X1_Y_X2, Y_X2_X1, X2_X1_Y };
175 
176 /// The gain of merging two chains, that is, the Ext-TSP score of the merge
177 /// together with the corresponding merge 'type' and 'offset'.
178 struct MergeGainT {
179   explicit MergeGainT() = default;
180   explicit MergeGainT(double Score, size_t MergeOffset, MergeTypeT MergeType)
181       : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
182 
183   double score() const { return Score; }
184 
185   size_t mergeOffset() const { return MergeOffset; }
186 
187   MergeTypeT mergeType() const { return MergeType; }
188 
189   void setMergeType(MergeTypeT Ty) { MergeType = Ty; }
190 
191   // Returns 'true' iff Other is preferred over this.
192   bool operator<(const MergeGainT &Other) const {
193     return (Other.Score > EPS && Other.Score > Score + EPS);
194   }
195 
196   // Update the current gain if Other is preferred over this.
197   void updateIfLessThan(const MergeGainT &Other) {
198     if (*this < Other)
199       *this = Other;
200   }
201 
202 private:
203   double Score{-1.0};
204   size_t MergeOffset{0};
205   MergeTypeT MergeType{MergeTypeT::X_Y};
206 };
207 
208 struct JumpT;
209 struct ChainT;
210 struct ChainEdge;
211 
212 /// A node in the graph, typically corresponding to a basic block in the CFG or
213 /// a function in the call graph.
214 struct NodeT {
215   NodeT(const NodeT &) = delete;
216   NodeT(NodeT &&) = default;
217   NodeT &operator=(const NodeT &) = delete;
218   NodeT &operator=(NodeT &&) = default;
219 
220   explicit NodeT(size_t Index, uint64_t Size, uint64_t Count)
221       : Index(Index), Size(Size), ExecutionCount(Count) {}
222 
223   bool isEntry() const { return Index == 0; }
224 
225   // The total execution count of outgoing jumps.
226   uint64_t outCount() const;
227 
228   // The total execution count of incoming jumps.
229   uint64_t inCount() const;
230 
231   // The original index of the node in graph.
232   size_t Index{0};
233   // The index of the node in the current chain.
234   size_t CurIndex{0};
235   // The size of the node in the binary.
236   uint64_t Size{0};
237   // The execution count of the node in the profile data.
238   uint64_t ExecutionCount{0};
239   // The current chain of the node.
240   ChainT *CurChain{nullptr};
241   // The offset of the node in the current chain.
242   mutable uint64_t EstimatedAddr{0};
243   // Forced successor of the node in the graph.
244   NodeT *ForcedSucc{nullptr};
245   // Forced predecessor of the node in the graph.
246   NodeT *ForcedPred{nullptr};
247   // Outgoing jumps from the node.
248   std::vector<JumpT *> OutJumps;
249   // Incoming jumps to the node.
250   std::vector<JumpT *> InJumps;
251 };
252 
253 /// An arc in the graph, typically corresponding to a jump between two nodes.
254 struct JumpT {
255   JumpT(const JumpT &) = delete;
256   JumpT(JumpT &&) = default;
257   JumpT &operator=(const JumpT &) = delete;
258   JumpT &operator=(JumpT &&) = default;
259 
260   explicit JumpT(NodeT *Source, NodeT *Target, uint64_t ExecutionCount)
261       : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {}
262 
263   // Source node of the jump.
264   NodeT *Source;
265   // Target node of the jump.
266   NodeT *Target;
267   // Execution count of the arc in the profile data.
268   uint64_t ExecutionCount{0};
269   // Whether the jump corresponds to a conditional branch.
270   bool IsConditional{false};
271   // The offset of the jump from the source node.
272   uint64_t Offset{0};
273 };
274 
275 /// A chain (ordered sequence) of nodes in the graph.
276 struct ChainT {
277   ChainT(const ChainT &) = delete;
278   ChainT(ChainT &&) = default;
279   ChainT &operator=(const ChainT &) = delete;
280   ChainT &operator=(ChainT &&) = default;
281 
282   explicit ChainT(uint64_t Id, NodeT *Node)
283       : Id(Id), ExecutionCount(Node->ExecutionCount), Size(Node->Size),
284         Nodes(1, Node) {}
285 
286   size_t numBlocks() const { return Nodes.size(); }
287 
288   double density() const { return static_cast<double>(ExecutionCount) / Size; }
289 
290   bool isEntry() const { return Nodes[0]->Index == 0; }
291 
292   bool isCold() const {
293     for (NodeT *Node : Nodes) {
294       if (Node->ExecutionCount > 0)
295         return false;
296     }
297     return true;
298   }
299 
300   ChainEdge *getEdge(ChainT *Other) const {
301     for (const auto &[Chain, ChainEdge] : Edges) {
302       if (Chain == Other)
303         return ChainEdge;
304     }
305     return nullptr;
306   }
307 
308   void removeEdge(ChainT *Other) {
309     auto It = Edges.begin();
310     while (It != Edges.end()) {
311       if (It->first == Other) {
312         Edges.erase(It);
313         return;
314       }
315       It++;
316     }
317   }
318 
319   void addEdge(ChainT *Other, ChainEdge *Edge) {
320     Edges.push_back(std::make_pair(Other, Edge));
321   }
322 
323   void merge(ChainT *Other, std::vector<NodeT *> MergedBlocks) {
324     Nodes = std::move(MergedBlocks);
325     // Update the chain's data.
326     ExecutionCount += Other->ExecutionCount;
327     Size += Other->Size;
328     Id = Nodes[0]->Index;
329     // Update the node's data.
330     for (size_t Idx = 0; Idx < Nodes.size(); Idx++) {
331       Nodes[Idx]->CurChain = this;
332       Nodes[Idx]->CurIndex = Idx;
333     }
334   }
335 
336   void mergeEdges(ChainT *Other);
337 
338   void clear() {
339     Nodes.clear();
340     Nodes.shrink_to_fit();
341     Edges.clear();
342     Edges.shrink_to_fit();
343   }
344 
345   // Unique chain identifier.
346   uint64_t Id;
347   // Cached ext-tsp score for the chain.
348   double Score{0};
349   // The total execution count of the chain.
350   uint64_t ExecutionCount{0};
351   // The total size of the chain.
352   uint64_t Size{0};
353   // Nodes of the chain.
354   std::vector<NodeT *> Nodes;
355   // Adjacent chains and corresponding edges (lists of jumps).
356   std::vector<std::pair<ChainT *, ChainEdge *>> Edges;
357 };
358 
359 /// An edge in the graph representing jumps between two chains.
360 /// When nodes are merged into chains, the edges are combined too so that
361 /// there is always at most one edge between a pair of chains.
362 struct ChainEdge {
363   ChainEdge(const ChainEdge &) = delete;
364   ChainEdge(ChainEdge &&) = default;
365   ChainEdge &operator=(const ChainEdge &) = delete;
366   ChainEdge &operator=(ChainEdge &&) = delete;
367 
368   explicit ChainEdge(JumpT *Jump)
369       : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain),
370         Jumps(1, Jump) {}
371 
372   ChainT *srcChain() const { return SrcChain; }
373 
374   ChainT *dstChain() const { return DstChain; }
375 
376   bool isSelfEdge() const { return SrcChain == DstChain; }
377 
378   const std::vector<JumpT *> &jumps() const { return Jumps; }
379 
380   void appendJump(JumpT *Jump) { Jumps.push_back(Jump); }
381 
382   void moveJumps(ChainEdge *Other) {
383     Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
384     Other->Jumps.clear();
385     Other->Jumps.shrink_to_fit();
386   }
387 
388   void changeEndpoint(ChainT *From, ChainT *To) {
389     if (From == SrcChain)
390       SrcChain = To;
391     if (From == DstChain)
392       DstChain = To;
393   }
394 
395   bool hasCachedMergeGain(ChainT *Src, ChainT *Dst) const {
396     return Src == SrcChain ? CacheValidForward : CacheValidBackward;
397   }
398 
399   MergeGainT getCachedMergeGain(ChainT *Src, ChainT *Dst) const {
400     return Src == SrcChain ? CachedGainForward : CachedGainBackward;
401   }
402 
403   void setCachedMergeGain(ChainT *Src, ChainT *Dst, MergeGainT MergeGain) {
404     if (Src == SrcChain) {
405       CachedGainForward = MergeGain;
406       CacheValidForward = true;
407     } else {
408       CachedGainBackward = MergeGain;
409       CacheValidBackward = true;
410     }
411   }
412 
413   void invalidateCache() {
414     CacheValidForward = false;
415     CacheValidBackward = false;
416   }
417 
418   void setMergeGain(MergeGainT Gain) { CachedGain = Gain; }
419 
420   MergeGainT getMergeGain() const { return CachedGain; }
421 
422   double gain() const { return CachedGain.score(); }
423 
424 private:
425   // Source chain.
426   ChainT *SrcChain{nullptr};
427   // Destination chain.
428   ChainT *DstChain{nullptr};
429   // Original jumps in the binary with corresponding execution counts.
430   std::vector<JumpT *> Jumps;
431   // Cached gain value for merging the pair of chains.
432   MergeGainT CachedGain;
433 
434   // Cached gain values for merging the pair of chains. Since the gain of
435   // merging (Src, Dst) and (Dst, Src) might be different, we store both values
436   // here and a flag indicating which of the options results in a higher gain.
437   // Cached gain values.
438   MergeGainT CachedGainForward;
439   MergeGainT CachedGainBackward;
440   // Whether the cached value must be recomputed.
441   bool CacheValidForward{false};
442   bool CacheValidBackward{false};
443 };
444 
445 uint64_t NodeT::outCount() const {
446   uint64_t Count = 0;
447   for (JumpT *Jump : OutJumps)
448     Count += Jump->ExecutionCount;
449   return Count;
450 }
451 
452 uint64_t NodeT::inCount() const {
453   uint64_t Count = 0;
454   for (JumpT *Jump : InJumps)
455     Count += Jump->ExecutionCount;
456   return Count;
457 }
458 
459 void ChainT::mergeEdges(ChainT *Other) {
460   // Update edges adjacent to chain Other.
461   for (const auto &[DstChain, DstEdge] : Other->Edges) {
462     ChainT *TargetChain = DstChain == Other ? this : DstChain;
463     ChainEdge *CurEdge = getEdge(TargetChain);
464     if (CurEdge == nullptr) {
465       DstEdge->changeEndpoint(Other, this);
466       this->addEdge(TargetChain, DstEdge);
467       if (DstChain != this && DstChain != Other)
468         DstChain->addEdge(this, DstEdge);
469     } else {
470       CurEdge->moveJumps(DstEdge);
471     }
472     // Cleanup leftover edge.
473     if (DstChain != Other)
474       DstChain->removeEdge(Other);
475   }
476 }
477 
478 using NodeIter = std::vector<NodeT *>::const_iterator;
479 
480 /// A wrapper around three concatenated vectors (chains) of nodes; it is used
481 /// to avoid extra instantiation of the vectors.
482 struct MergedNodesT {
483   MergedNodesT(NodeIter Begin1, NodeIter End1, NodeIter Begin2 = NodeIter(),
484                NodeIter End2 = NodeIter(), NodeIter Begin3 = NodeIter(),
485                NodeIter End3 = NodeIter())
486       : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
487         End3(End3) {}
488 
489   template <typename F> void forEach(const F &Func) const {
490     for (auto It = Begin1; It != End1; It++)
491       Func(*It);
492     for (auto It = Begin2; It != End2; It++)
493       Func(*It);
494     for (auto It = Begin3; It != End3; It++)
495       Func(*It);
496   }
497 
498   std::vector<NodeT *> getNodes() const {
499     std::vector<NodeT *> Result;
500     Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
501                    std::distance(Begin3, End3));
502     Result.insert(Result.end(), Begin1, End1);
503     Result.insert(Result.end(), Begin2, End2);
504     Result.insert(Result.end(), Begin3, End3);
505     return Result;
506   }
507 
508   const NodeT *getFirstNode() const { return *Begin1; }
509 
510   bool empty() const { return Begin1 == End1; }
511 
512 private:
513   NodeIter Begin1;
514   NodeIter End1;
515   NodeIter Begin2;
516   NodeIter End2;
517   NodeIter Begin3;
518   NodeIter End3;
519 };
520 
521 /// A wrapper around two concatenated vectors (chains) of jumps.
522 struct MergedJumpsT {
523   MergedJumpsT(const std::vector<JumpT *> *Jumps1,
524                const std::vector<JumpT *> *Jumps2 = nullptr) {
525     assert(!Jumps1->empty() && "cannot merge empty jump list");
526     JumpArray[0] = Jumps1;
527     JumpArray[1] = Jumps2;
528   }
529 
530   template <typename F> void forEach(const F &Func) const {
531     for (auto Jumps : JumpArray)
532       if (Jumps != nullptr)
533         for (JumpT *Jump : *Jumps)
534           Func(Jump);
535   }
536 
537 private:
538   std::array<const std::vector<JumpT *> *, 2> JumpArray{nullptr, nullptr};
539 };
540 
541 /// Merge two chains of nodes respecting a given 'type' and 'offset'.
542 ///
543 /// If MergeType == 0, then the result is a concatenation of two chains.
544 /// Otherwise, the first chain is cut into two sub-chains at the offset,
545 /// and merged using all possible ways of concatenating three chains.
546 MergedNodesT mergeNodes(const std::vector<NodeT *> &X,
547                         const std::vector<NodeT *> &Y, size_t MergeOffset,
548                         MergeTypeT MergeType) {
549   // Split the first chain, X, into X1 and X2.
550   NodeIter BeginX1 = X.begin();
551   NodeIter EndX1 = X.begin() + MergeOffset;
552   NodeIter BeginX2 = X.begin() + MergeOffset;
553   NodeIter EndX2 = X.end();
554   NodeIter BeginY = Y.begin();
555   NodeIter EndY = Y.end();
556 
557   // Construct a new chain from the three existing ones.
558   switch (MergeType) {
559   case MergeTypeT::X_Y:
560     return MergedNodesT(BeginX1, EndX2, BeginY, EndY);
561   case MergeTypeT::Y_X:
562     return MergedNodesT(BeginY, EndY, BeginX1, EndX2);
563   case MergeTypeT::X1_Y_X2:
564     return MergedNodesT(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
565   case MergeTypeT::Y_X2_X1:
566     return MergedNodesT(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
567   case MergeTypeT::X2_X1_Y:
568     return MergedNodesT(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
569   }
570   llvm_unreachable("unexpected chain merge type");
571 }
572 
573 /// The implementation of the ExtTSP algorithm.
574 class ExtTSPImpl {
575 public:
576   ExtTSPImpl(ArrayRef<uint64_t> NodeSizes, ArrayRef<uint64_t> NodeCounts,
577              ArrayRef<EdgeCount> EdgeCounts)
578       : NumNodes(NodeSizes.size()) {
579     initialize(NodeSizes, NodeCounts, EdgeCounts);
580   }
581 
582   /// Run the algorithm and return an optimized ordering of nodes.
583   std::vector<uint64_t> run() {
584     // Pass 1: Merge nodes with their mutually forced successors
585     mergeForcedPairs();
586 
587     // Pass 2: Merge pairs of chains while improving the ExtTSP objective
588     mergeChainPairs();
589 
590     // Pass 3: Merge cold nodes to reduce code size
591     mergeColdChains();
592 
593     // Collect nodes from all chains
594     return concatChains();
595   }
596 
597 private:
598   /// Initialize the algorithm's data structures.
599   void initialize(const ArrayRef<uint64_t> &NodeSizes,
600                   const ArrayRef<uint64_t> &NodeCounts,
601                   const ArrayRef<EdgeCount> &EdgeCounts) {
602     // Initialize nodes
603     AllNodes.reserve(NumNodes);
604     for (uint64_t Idx = 0; Idx < NumNodes; Idx++) {
605       uint64_t Size = std::max<uint64_t>(NodeSizes[Idx], 1ULL);
606       uint64_t ExecutionCount = NodeCounts[Idx];
607       // The execution count of the entry node is set to at least one.
608       if (Idx == 0 && ExecutionCount == 0)
609         ExecutionCount = 1;
610       AllNodes.emplace_back(Idx, Size, ExecutionCount);
611     }
612 
613     // Initialize jumps between nodes
614     SuccNodes.resize(NumNodes);
615     PredNodes.resize(NumNodes);
616     std::vector<uint64_t> OutDegree(NumNodes, 0);
617     AllJumps.reserve(EdgeCounts.size());
618     for (auto Edge : EdgeCounts) {
619       ++OutDegree[Edge.src];
620       // Ignore self-edges.
621       if (Edge.src == Edge.dst)
622         continue;
623 
624       SuccNodes[Edge.src].push_back(Edge.dst);
625       PredNodes[Edge.dst].push_back(Edge.src);
626       if (Edge.count > 0) {
627         NodeT &PredNode = AllNodes[Edge.src];
628         NodeT &SuccNode = AllNodes[Edge.dst];
629         AllJumps.emplace_back(&PredNode, &SuccNode, Edge.count);
630         SuccNode.InJumps.push_back(&AllJumps.back());
631         PredNode.OutJumps.push_back(&AllJumps.back());
632       }
633     }
634     for (JumpT &Jump : AllJumps) {
635       assert(OutDegree[Jump.Source->Index] > 0);
636       Jump.IsConditional = OutDegree[Jump.Source->Index] > 1;
637     }
638 
639     // Initialize chains.
640     AllChains.reserve(NumNodes);
641     HotChains.reserve(NumNodes);
642     for (NodeT &Node : AllNodes) {
643       // Create a chain.
644       AllChains.emplace_back(Node.Index, &Node);
645       Node.CurChain = &AllChains.back();
646       if (Node.ExecutionCount > 0)
647         HotChains.push_back(&AllChains.back());
648     }
649 
650     // Initialize chain edges.
651     AllEdges.reserve(AllJumps.size());
652     for (NodeT &PredNode : AllNodes) {
653       for (JumpT *Jump : PredNode.OutJumps) {
654         NodeT *SuccNode = Jump->Target;
655         ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
656         // This edge is already present in the graph.
657         if (CurEdge != nullptr) {
658           assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
659           CurEdge->appendJump(Jump);
660           continue;
661         }
662         // This is a new edge.
663         AllEdges.emplace_back(Jump);
664         PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
665         SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
666       }
667     }
668   }
669 
670   /// For a pair of nodes, A and B, node B is the forced successor of A,
671   /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
672   /// to B are from A. Such nodes should be adjacent in the optimal ordering;
673   /// the method finds and merges such pairs of nodes.
674   void mergeForcedPairs() {
675     // Find forced pairs of blocks.
676     for (NodeT &Node : AllNodes) {
677       if (SuccNodes[Node.Index].size() == 1 &&
678           PredNodes[SuccNodes[Node.Index][0]].size() == 1 &&
679           SuccNodes[Node.Index][0] != 0) {
680         size_t SuccIndex = SuccNodes[Node.Index][0];
681         Node.ForcedSucc = &AllNodes[SuccIndex];
682         AllNodes[SuccIndex].ForcedPred = &Node;
683       }
684     }
685 
686     // There might be 'cycles' in the forced dependencies, since profile
687     // data isn't 100% accurate. Typically this is observed in loops, when the
688     // loop edges are the hottest successors for the basic blocks of the loop.
689     // Break the cycles by choosing the node with the smallest index as the
690     // head. This helps to keep the original order of the loops, which likely
691     // have already been rotated in the optimized manner.
692     for (NodeT &Node : AllNodes) {
693       if (Node.ForcedSucc == nullptr || Node.ForcedPred == nullptr)
694         continue;
695 
696       NodeT *SuccNode = Node.ForcedSucc;
697       while (SuccNode != nullptr && SuccNode != &Node) {
698         SuccNode = SuccNode->ForcedSucc;
699       }
700       if (SuccNode == nullptr)
701         continue;
702       // Break the cycle.
703       AllNodes[Node.ForcedPred->Index].ForcedSucc = nullptr;
704       Node.ForcedPred = nullptr;
705     }
706 
707     // Merge nodes with their fallthrough successors.
708     for (NodeT &Node : AllNodes) {
709       if (Node.ForcedPred == nullptr && Node.ForcedSucc != nullptr) {
710         const NodeT *CurBlock = &Node;
711         while (CurBlock->ForcedSucc != nullptr) {
712           const NodeT *NextBlock = CurBlock->ForcedSucc;
713           mergeChains(Node.CurChain, NextBlock->CurChain, 0, MergeTypeT::X_Y);
714           CurBlock = NextBlock;
715         }
716       }
717     }
718   }
719 
720   /// Merge pairs of chains while improving the ExtTSP objective.
721   void mergeChainPairs() {
722     /// Deterministically compare pairs of chains.
723     auto compareChainPairs = [](const ChainT *A1, const ChainT *B1,
724                                 const ChainT *A2, const ChainT *B2) {
725       return std::make_tuple(A1->Id, B1->Id) < std::make_tuple(A2->Id, B2->Id);
726     };
727 
728     while (HotChains.size() > 1) {
729       ChainT *BestChainPred = nullptr;
730       ChainT *BestChainSucc = nullptr;
731       MergeGainT BestGain;
732       // Iterate over all pairs of chains.
733       for (ChainT *ChainPred : HotChains) {
734         // Get candidates for merging with the current chain.
735         for (const auto &[ChainSucc, Edge] : ChainPred->Edges) {
736           // Ignore loop edges.
737           if (ChainPred == ChainSucc)
738             continue;
739 
740           // Stop early if the combined chain violates the maximum allowed size.
741           if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize)
742             continue;
743 
744           // Compute the gain of merging the two chains.
745           MergeGainT CurGain = getBestMergeGain(ChainPred, ChainSucc, Edge);
746           if (CurGain.score() <= EPS)
747             continue;
748 
749           if (BestGain < CurGain ||
750               (std::abs(CurGain.score() - BestGain.score()) < EPS &&
751                compareChainPairs(ChainPred, ChainSucc, BestChainPred,
752                                  BestChainSucc))) {
753             BestGain = CurGain;
754             BestChainPred = ChainPred;
755             BestChainSucc = ChainSucc;
756           }
757         }
758       }
759 
760       // Stop merging when there is no improvement.
761       if (BestGain.score() <= EPS)
762         break;
763 
764       // Merge the best pair of chains.
765       mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
766                   BestGain.mergeType());
767     }
768   }
769 
770   /// Merge remaining nodes into chains w/o taking jump counts into
771   /// consideration. This allows to maintain the original node order in the
772   /// absence of profile data.
773   void mergeColdChains() {
774     for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) {
775       // Iterating in reverse order to make sure original fallthrough jumps are
776       // merged first; this might be beneficial for code size.
777       size_t NumSuccs = SuccNodes[SrcBB].size();
778       for (size_t Idx = 0; Idx < NumSuccs; Idx++) {
779         size_t DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1];
780         ChainT *SrcChain = AllNodes[SrcBB].CurChain;
781         ChainT *DstChain = AllNodes[DstBB].CurChain;
782         if (SrcChain != DstChain && !DstChain->isEntry() &&
783             SrcChain->Nodes.back()->Index == SrcBB &&
784             DstChain->Nodes.front()->Index == DstBB &&
785             SrcChain->isCold() == DstChain->isCold()) {
786           mergeChains(SrcChain, DstChain, 0, MergeTypeT::X_Y);
787         }
788       }
789     }
790   }
791 
792   /// Compute the Ext-TSP score for a given node order and a list of jumps.
793   double extTSPScore(const MergedNodesT &Nodes,
794                      const MergedJumpsT &Jumps) const {
795     uint64_t CurAddr = 0;
796     Nodes.forEach([&](const NodeT *Node) {
797       Node->EstimatedAddr = CurAddr;
798       CurAddr += Node->Size;
799     });
800 
801     double Score = 0;
802     Jumps.forEach([&](const JumpT *Jump) {
803       const NodeT *SrcBlock = Jump->Source;
804       const NodeT *DstBlock = Jump->Target;
805       Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
806                              DstBlock->EstimatedAddr, Jump->ExecutionCount,
807                              Jump->IsConditional);
808     });
809     return Score;
810   }
811 
812   /// Compute the gain of merging two chains.
813   ///
814   /// The function considers all possible ways of merging two chains and
815   /// computes the one having the largest increase in ExtTSP objective. The
816   /// result is a pair with the first element being the gain and the second
817   /// element being the corresponding merging type.
818   MergeGainT getBestMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
819                               ChainEdge *Edge) const {
820     if (Edge->hasCachedMergeGain(ChainPred, ChainSucc))
821       return Edge->getCachedMergeGain(ChainPred, ChainSucc);
822 
823     assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps");
824     // Precompute jumps between ChainPred and ChainSucc.
825     ChainEdge *EdgePP = ChainPred->getEdge(ChainPred);
826     MergedJumpsT Jumps(&Edge->jumps(), EdgePP ? &EdgePP->jumps() : nullptr);
827 
828     // This object holds the best chosen gain of merging two chains.
829     MergeGainT Gain = MergeGainT();
830 
831     /// Given a merge offset and a list of merge types, try to merge two chains
832     /// and update Gain with a better alternative.
833     auto tryChainMerging = [&](size_t Offset,
834                                const std::vector<MergeTypeT> &MergeTypes) {
835       // Skip merging corresponding to concatenation w/o splitting.
836       if (Offset == 0 || Offset == ChainPred->Nodes.size())
837         return;
838       // Skip merging if it breaks Forced successors.
839       NodeT *Node = ChainPred->Nodes[Offset - 1];
840       if (Node->ForcedSucc != nullptr)
841         return;
842       // Apply the merge, compute the corresponding gain, and update the best
843       // value, if the merge is beneficial.
844       for (const MergeTypeT &MergeType : MergeTypes) {
845         Gain.updateIfLessThan(
846             computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType));
847       }
848     };
849 
850     // Try to concatenate two chains w/o splitting.
851     Gain.updateIfLessThan(
852         computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeT::X_Y));
853 
854     if (EnableChainSplitAlongJumps) {
855       // Attach (a part of) ChainPred before the first node of ChainSucc.
856       for (JumpT *Jump : ChainSucc->Nodes.front()->InJumps) {
857         const NodeT *SrcBlock = Jump->Source;
858         if (SrcBlock->CurChain != ChainPred)
859           continue;
860         size_t Offset = SrcBlock->CurIndex + 1;
861         tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::X2_X1_Y});
862       }
863 
864       // Attach (a part of) ChainPred after the last node of ChainSucc.
865       for (JumpT *Jump : ChainSucc->Nodes.back()->OutJumps) {
866         const NodeT *DstBlock = Jump->Target;
867         if (DstBlock->CurChain != ChainPred)
868           continue;
869         size_t Offset = DstBlock->CurIndex;
870         tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1});
871       }
872     }
873 
874     // Try to break ChainPred in various ways and concatenate with ChainSucc.
875     if (ChainPred->Nodes.size() <= ChainSplitThreshold) {
876       for (size_t Offset = 1; Offset < ChainPred->Nodes.size(); Offset++) {
877         // Try to split the chain in different ways. In practice, applying
878         // X2_Y_X1 merging is almost never provides benefits; thus, we exclude
879         // it from consideration to reduce the search space.
880         tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1,
881                                  MergeTypeT::X2_X1_Y});
882       }
883     }
884     Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
885     return Gain;
886   }
887 
888   /// Compute the score gain of merging two chains, respecting a given
889   /// merge 'type' and 'offset'.
890   ///
891   /// The two chains are not modified in the method.
892   MergeGainT computeMergeGain(const ChainT *ChainPred, const ChainT *ChainSucc,
893                               const MergedJumpsT &Jumps, size_t MergeOffset,
894                               MergeTypeT MergeType) const {
895     MergedNodesT MergedNodes =
896         mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
897 
898     // Do not allow a merge that does not preserve the original entry point.
899     if ((ChainPred->isEntry() || ChainSucc->isEntry()) &&
900         !MergedNodes.getFirstNode()->isEntry())
901       return MergeGainT();
902 
903     // The gain for the new chain.
904     double NewScore = extTSPScore(MergedNodes, Jumps);
905     double CurScore = ChainPred->Score;
906     return MergeGainT(NewScore - CurScore, MergeOffset, MergeType);
907   }
908 
909   /// Merge chain From into chain Into, update the list of active chains,
910   /// adjacency information, and the corresponding cached values.
911   void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
912                    MergeTypeT MergeType) {
913     assert(Into != From && "a chain cannot be merged with itself");
914 
915     // Merge the nodes.
916     MergedNodesT MergedNodes =
917         mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
918     Into->merge(From, MergedNodes.getNodes());
919 
920     // Merge the edges.
921     Into->mergeEdges(From);
922     From->clear();
923 
924     // Update cached ext-tsp score for the new chain.
925     ChainEdge *SelfEdge = Into->getEdge(Into);
926     if (SelfEdge != nullptr) {
927       MergedNodes = MergedNodesT(Into->Nodes.begin(), Into->Nodes.end());
928       MergedJumpsT MergedJumps(&SelfEdge->jumps());
929       Into->Score = extTSPScore(MergedNodes, MergedJumps);
930     }
931 
932     // Remove the chain from the list of active chains.
933     llvm::erase_value(HotChains, From);
934 
935     // Invalidate caches.
936     for (auto EdgeIt : Into->Edges)
937       EdgeIt.second->invalidateCache();
938   }
939 
940   /// Concatenate all chains into the final order.
941   std::vector<uint64_t> concatChains() {
942     // Collect chains and calculate density stats for their sorting.
943     std::vector<const ChainT *> SortedChains;
944     DenseMap<const ChainT *, double> ChainDensity;
945     for (ChainT &Chain : AllChains) {
946       if (!Chain.Nodes.empty()) {
947         SortedChains.push_back(&Chain);
948         // Using doubles to avoid overflow of ExecutionCounts.
949         double Size = 0;
950         double ExecutionCount = 0;
951         for (NodeT *Node : Chain.Nodes) {
952           Size += static_cast<double>(Node->Size);
953           ExecutionCount += static_cast<double>(Node->ExecutionCount);
954         }
955         assert(Size > 0 && "a chain of zero size");
956         ChainDensity[&Chain] = ExecutionCount / Size;
957       }
958     }
959 
960     // Sorting chains by density in the decreasing order.
961     std::sort(SortedChains.begin(), SortedChains.end(),
962               [&](const ChainT *L, const ChainT *R) {
963                 // Place the entry point at the beginning of the order.
964                 if (L->isEntry() != R->isEntry())
965                   return L->isEntry();
966 
967                 const double DL = ChainDensity[L];
968                 const double DR = ChainDensity[R];
969                 // Compare by density and break ties by chain identifiers.
970                 return std::make_tuple(-DL, L->Id) <
971                        std::make_tuple(-DR, R->Id);
972               });
973 
974     // Collect the nodes in the order specified by their chains.
975     std::vector<uint64_t> Order;
976     Order.reserve(NumNodes);
977     for (const ChainT *Chain : SortedChains)
978       for (NodeT *Node : Chain->Nodes)
979         Order.push_back(Node->Index);
980     return Order;
981   }
982 
983 private:
984   /// The number of nodes in the graph.
985   const size_t NumNodes;
986 
987   /// Successors of each node.
988   std::vector<std::vector<uint64_t>> SuccNodes;
989 
990   /// Predecessors of each node.
991   std::vector<std::vector<uint64_t>> PredNodes;
992 
993   /// All nodes (basic blocks) in the graph.
994   std::vector<NodeT> AllNodes;
995 
996   /// All jumps between the nodes.
997   std::vector<JumpT> AllJumps;
998 
999   /// All chains of nodes.
1000   std::vector<ChainT> AllChains;
1001 
1002   /// All edges between the chains.
1003   std::vector<ChainEdge> AllEdges;
1004 
1005   /// Active chains. The vector gets updated at runtime when chains are merged.
1006   std::vector<ChainT *> HotChains;
1007 };
1008 
1009 /// The implementation of the Cache-Directed Sort (CDS) algorithm for ordering
1010 /// functions represented by a call graph.
1011 class CDSortImpl {
1012 public:
1013   CDSortImpl(const CDSortConfig &Config, ArrayRef<uint64_t> NodeSizes,
1014              ArrayRef<uint64_t> NodeCounts, ArrayRef<EdgeCount> EdgeCounts,
1015              ArrayRef<uint64_t> EdgeOffsets)
1016       : Config(Config), NumNodes(NodeSizes.size()) {
1017     initialize(NodeSizes, NodeCounts, EdgeCounts, EdgeOffsets);
1018   }
1019 
1020   /// Run the algorithm and return an ordered set of function clusters.
1021   std::vector<uint64_t> run() {
1022     // Merge pairs of chains while improving the objective.
1023     mergeChainPairs();
1024 
1025     LLVM_DEBUG(dbgs() << "Cache-directed function sorting reduced the number"
1026                       << " of chains from " << NumNodes << " to "
1027                       << HotChains.size() << "\n");
1028 
1029     // Collect nodes from all the chains.
1030     return concatChains();
1031   }
1032 
1033 private:
1034   /// Initialize the algorithm's data structures.
1035   void initialize(const ArrayRef<uint64_t> &NodeSizes,
1036                   const ArrayRef<uint64_t> &NodeCounts,
1037                   const ArrayRef<EdgeCount> &EdgeCounts,
1038                   const ArrayRef<uint64_t> &EdgeOffsets) {
1039     // Initialize nodes.
1040     AllNodes.reserve(NumNodes);
1041     for (uint64_t Node = 0; Node < NumNodes; Node++) {
1042       uint64_t Size = std::max<uint64_t>(NodeSizes[Node], 1ULL);
1043       uint64_t ExecutionCount = NodeCounts[Node];
1044       AllNodes.emplace_back(Node, Size, ExecutionCount);
1045       TotalSamples += ExecutionCount;
1046       if (ExecutionCount > 0)
1047         TotalSize += Size;
1048     }
1049 
1050     // Initialize jumps between the nodes.
1051     SuccNodes.resize(NumNodes);
1052     PredNodes.resize(NumNodes);
1053     AllJumps.reserve(EdgeCounts.size());
1054     for (size_t I = 0; I < EdgeCounts.size(); I++) {
1055       auto [Pred, Succ, Count] = EdgeCounts[I];
1056       // Ignore recursive calls.
1057       if (Pred == Succ)
1058         continue;
1059 
1060       SuccNodes[Pred].push_back(Succ);
1061       PredNodes[Succ].push_back(Pred);
1062       if (Count > 0) {
1063         NodeT &PredNode = AllNodes[Pred];
1064         NodeT &SuccNode = AllNodes[Succ];
1065         AllJumps.emplace_back(&PredNode, &SuccNode, Count);
1066         AllJumps.back().Offset = EdgeOffsets[I];
1067         SuccNode.InJumps.push_back(&AllJumps.back());
1068         PredNode.OutJumps.push_back(&AllJumps.back());
1069       }
1070     }
1071 
1072     // Initialize chains.
1073     AllChains.reserve(NumNodes);
1074     HotChains.reserve(NumNodes);
1075     for (NodeT &Node : AllNodes) {
1076       // Adjust execution counts.
1077       Node.ExecutionCount = std::max(Node.ExecutionCount, Node.inCount());
1078       Node.ExecutionCount = std::max(Node.ExecutionCount, Node.outCount());
1079       // Create chain.
1080       AllChains.emplace_back(Node.Index, &Node);
1081       Node.CurChain = &AllChains.back();
1082       if (Node.ExecutionCount > 0)
1083         HotChains.push_back(&AllChains.back());
1084     }
1085 
1086     // Initialize chain edges.
1087     AllEdges.reserve(AllJumps.size());
1088     for (NodeT &PredNode : AllNodes) {
1089       for (JumpT *Jump : PredNode.OutJumps) {
1090         NodeT *SuccNode = Jump->Target;
1091         ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
1092         // this edge is already present in the graph.
1093         if (CurEdge != nullptr) {
1094           assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
1095           CurEdge->appendJump(Jump);
1096           continue;
1097         }
1098         // this is a new edge.
1099         AllEdges.emplace_back(Jump);
1100         PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
1101         SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
1102       }
1103     }
1104   }
1105 
1106   /// Merge pairs of chains while there is an improvement in the objective.
1107   void mergeChainPairs() {
1108     // Create a priority queue containing all edges ordered by the merge gain.
1109     auto GainComparator = [](ChainEdge *L, ChainEdge *R) {
1110       return std::make_tuple(-L->gain(), L->srcChain()->Id, L->dstChain()->Id) <
1111              std::make_tuple(-R->gain(), R->srcChain()->Id, R->dstChain()->Id);
1112     };
1113     std::set<ChainEdge *, decltype(GainComparator)> Queue(GainComparator);
1114 
1115     // Insert the edges into the queue.
1116     for (ChainT *ChainPred : HotChains) {
1117       for (const auto &[_, Edge] : ChainPred->Edges) {
1118         // Ignore self-edges.
1119         if (Edge->isSelfEdge())
1120           continue;
1121         // Ignore already processed edges.
1122         if (Edge->gain() != -1.0)
1123           continue;
1124 
1125         // Compute the gain of merging the two chains.
1126         MergeGainT Gain = getBestMergeGain(Edge);
1127         Edge->setMergeGain(Gain);
1128 
1129         if (Edge->gain() > EPS)
1130           Queue.insert(Edge);
1131       }
1132     }
1133 
1134     // Merge the chains while the gain of merging is positive.
1135     while (!Queue.empty()) {
1136       // Extract the best (top) edge for merging.
1137       ChainEdge *BestEdge = *Queue.begin();
1138       Queue.erase(Queue.begin());
1139       // Ignore self-edges.
1140       if (BestEdge->isSelfEdge())
1141         continue;
1142       // Ignore edges with non-positive gains.
1143       if (BestEdge->gain() <= EPS)
1144         continue;
1145 
1146       ChainT *BestSrcChain = BestEdge->srcChain();
1147       ChainT *BestDstChain = BestEdge->dstChain();
1148 
1149       // Remove outdated edges from the queue.
1150       for (const auto &[_, ChainEdge] : BestSrcChain->Edges)
1151         Queue.erase(ChainEdge);
1152       for (const auto &[_, ChainEdge] : BestDstChain->Edges)
1153         Queue.erase(ChainEdge);
1154 
1155       // Merge the best pair of chains.
1156       MergeGainT BestGain = BestEdge->getMergeGain();
1157       mergeChains(BestSrcChain, BestDstChain, BestGain.mergeOffset(),
1158                   BestGain.mergeType());
1159 
1160       // Insert newly created edges into the queue.
1161       for (const auto &[_, Edge] : BestSrcChain->Edges) {
1162         // Ignore loop edges.
1163         if (Edge->isSelfEdge())
1164           continue;
1165 
1166         // Compute the gain of merging the two chains.
1167         MergeGainT Gain = getBestMergeGain(Edge);
1168         Edge->setMergeGain(Gain);
1169 
1170         if (Edge->gain() > EPS)
1171           Queue.insert(Edge);
1172       }
1173     }
1174   }
1175 
1176   /// Compute the gain of merging two chains.
1177   ///
1178   /// The function considers all possible ways of merging two chains and
1179   /// computes the one having the largest increase in ExtTSP objective. The
1180   /// result is a pair with the first element being the gain and the second
1181   /// element being the corresponding merging type.
1182   MergeGainT getBestMergeGain(ChainEdge *Edge) const {
1183     assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps");
1184     // Precompute jumps between ChainPred and ChainSucc.
1185     MergedJumpsT Jumps(&Edge->jumps());
1186     ChainT *SrcChain = Edge->srcChain();
1187     ChainT *DstChain = Edge->dstChain();
1188 
1189     // This object holds the best currently chosen gain of merging two chains.
1190     MergeGainT Gain = MergeGainT();
1191 
1192     /// Given a list of merge types, try to merge two chains and update Gain
1193     /// with a better alternative.
1194     auto tryChainMerging = [&](const std::vector<MergeTypeT> &MergeTypes) {
1195       // Apply the merge, compute the corresponding gain, and update the best
1196       // value, if the merge is beneficial.
1197       for (const MergeTypeT &MergeType : MergeTypes) {
1198         MergeGainT NewGain =
1199             computeMergeGain(SrcChain, DstChain, Jumps, MergeType);
1200 
1201         // When forward and backward gains are the same, prioritize merging that
1202         // preserves the original order of the functions in the binary.
1203         if (std::abs(Gain.score() - NewGain.score()) < EPS) {
1204           if ((MergeType == MergeTypeT::X_Y && SrcChain->Id < DstChain->Id) ||
1205               (MergeType == MergeTypeT::Y_X && SrcChain->Id > DstChain->Id)) {
1206             Gain = NewGain;
1207           }
1208         } else if (NewGain.score() > Gain.score() + EPS) {
1209           Gain = NewGain;
1210         }
1211       }
1212     };
1213 
1214     // Try to concatenate two chains w/o splitting.
1215     tryChainMerging({MergeTypeT::X_Y, MergeTypeT::Y_X});
1216 
1217     return Gain;
1218   }
1219 
1220   /// Compute the score gain of merging two chains, respecting a given type.
1221   ///
1222   /// The two chains are not modified in the method.
1223   MergeGainT computeMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
1224                               const MergedJumpsT &Jumps,
1225                               MergeTypeT MergeType) const {
1226     // This doesn't depend on the ordering of the nodes
1227     double FreqGain = freqBasedLocalityGain(ChainPred, ChainSucc);
1228 
1229     // Merge offset is always 0, as the chains are not split.
1230     size_t MergeOffset = 0;
1231     auto MergedBlocks =
1232         mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
1233     double DistGain = distBasedLocalityGain(MergedBlocks, Jumps);
1234 
1235     double GainScore = DistGain + Config.FrequencyScale * FreqGain;
1236     // Scale the result to increase the importance of merging short chains.
1237     if (GainScore >= 0.0)
1238       GainScore /= std::min(ChainPred->Size, ChainSucc->Size);
1239 
1240     return MergeGainT(GainScore, MergeOffset, MergeType);
1241   }
1242 
1243   /// Compute the change of the frequency locality after merging the chains.
1244   double freqBasedLocalityGain(ChainT *ChainPred, ChainT *ChainSucc) const {
1245     auto missProbability = [&](double ChainDensity) {
1246       double PageSamples = ChainDensity * Config.CacheSize;
1247       if (PageSamples >= TotalSamples)
1248         return 0.0;
1249       double P = PageSamples / TotalSamples;
1250       return pow(1.0 - P, static_cast<double>(Config.CacheEntries));
1251     };
1252 
1253     // Cache misses on the chains before merging.
1254     double CurScore =
1255         ChainPred->ExecutionCount * missProbability(ChainPred->density()) +
1256         ChainSucc->ExecutionCount * missProbability(ChainSucc->density());
1257 
1258     // Cache misses on the merged chain
1259     double MergedCounts = ChainPred->ExecutionCount + ChainSucc->ExecutionCount;
1260     double MergedSize = ChainPred->Size + ChainSucc->Size;
1261     double MergedDensity = static_cast<double>(MergedCounts) / MergedSize;
1262     double NewScore = MergedCounts * missProbability(MergedDensity);
1263 
1264     return CurScore - NewScore;
1265   }
1266 
1267   /// Compute the distance locality for a jump / call.
1268   double distScore(uint64_t SrcAddr, uint64_t DstAddr, uint64_t Count) const {
1269     uint64_t Dist = SrcAddr <= DstAddr ? DstAddr - SrcAddr : SrcAddr - DstAddr;
1270     double D = Dist == 0 ? 0.1 : static_cast<double>(Dist);
1271     return static_cast<double>(Count) * std::pow(D, -Config.DistancePower);
1272   }
1273 
1274   /// Compute the change of the distance locality after merging the chains.
1275   double distBasedLocalityGain(const MergedNodesT &Nodes,
1276                                const MergedJumpsT &Jumps) const {
1277     uint64_t CurAddr = 0;
1278     Nodes.forEach([&](const NodeT *Node) {
1279       Node->EstimatedAddr = CurAddr;
1280       CurAddr += Node->Size;
1281     });
1282 
1283     double CurScore = 0;
1284     double NewScore = 0;
1285     Jumps.forEach([&](const JumpT *Jump) {
1286       uint64_t SrcAddr = Jump->Source->EstimatedAddr + Jump->Offset;
1287       uint64_t DstAddr = Jump->Target->EstimatedAddr;
1288       NewScore += distScore(SrcAddr, DstAddr, Jump->ExecutionCount);
1289       CurScore += distScore(0, TotalSize, Jump->ExecutionCount);
1290     });
1291     return NewScore - CurScore;
1292   }
1293 
1294   /// Merge chain From into chain Into, update the list of active chains,
1295   /// adjacency information, and the corresponding cached values.
1296   void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
1297                    MergeTypeT MergeType) {
1298     assert(Into != From && "a chain cannot be merged with itself");
1299 
1300     // Merge the nodes.
1301     MergedNodesT MergedNodes =
1302         mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
1303     Into->merge(From, MergedNodes.getNodes());
1304 
1305     // Merge the edges.
1306     Into->mergeEdges(From);
1307     From->clear();
1308 
1309     // Remove the chain from the list of active chains.
1310     llvm::erase_value(HotChains, From);
1311   }
1312 
1313   /// Concatenate all chains into the final order.
1314   std::vector<uint64_t> concatChains() {
1315     // Collect chains and calculate density stats for their sorting.
1316     std::vector<const ChainT *> SortedChains;
1317     DenseMap<const ChainT *, double> ChainDensity;
1318     for (ChainT &Chain : AllChains) {
1319       if (!Chain.Nodes.empty()) {
1320         SortedChains.push_back(&Chain);
1321         // Using doubles to avoid overflow of ExecutionCounts.
1322         double Size = 0;
1323         double ExecutionCount = 0;
1324         for (NodeT *Node : Chain.Nodes) {
1325           Size += static_cast<double>(Node->Size);
1326           ExecutionCount += static_cast<double>(Node->ExecutionCount);
1327         }
1328         assert(Size > 0 && "a chain of zero size");
1329         ChainDensity[&Chain] = ExecutionCount / Size;
1330       }
1331     }
1332 
1333     // Sort chains by density in the decreasing order.
1334     std::sort(SortedChains.begin(), SortedChains.end(),
1335               [&](const ChainT *L, const ChainT *R) {
1336                 const double DL = ChainDensity[L];
1337                 const double DR = ChainDensity[R];
1338                 // Compare by density and break ties by chain identifiers.
1339                 return std::make_tuple(-DL, L->Id) <
1340                        std::make_tuple(-DR, R->Id);
1341               });
1342 
1343     // Collect the nodes in the order specified by their chains.
1344     std::vector<uint64_t> Order;
1345     Order.reserve(NumNodes);
1346     for (const ChainT *Chain : SortedChains)
1347       for (NodeT *Node : Chain->Nodes)
1348         Order.push_back(Node->Index);
1349     return Order;
1350   }
1351 
1352 private:
1353   /// Config for the algorithm.
1354   const CDSortConfig Config;
1355 
1356   /// The number of nodes in the graph.
1357   const size_t NumNodes;
1358 
1359   /// Successors of each node.
1360   std::vector<std::vector<uint64_t>> SuccNodes;
1361 
1362   /// Predecessors of each node.
1363   std::vector<std::vector<uint64_t>> PredNodes;
1364 
1365   /// All nodes (functions) in the graph.
1366   std::vector<NodeT> AllNodes;
1367 
1368   /// All jumps (function calls) between the nodes.
1369   std::vector<JumpT> AllJumps;
1370 
1371   /// All chains of nodes.
1372   std::vector<ChainT> AllChains;
1373 
1374   /// All edges between the chains.
1375   std::vector<ChainEdge> AllEdges;
1376 
1377   /// Active chains. The vector gets updated at runtime when chains are merged.
1378   std::vector<ChainT *> HotChains;
1379 
1380   /// The total number of samples in the graph.
1381   uint64_t TotalSamples{0};
1382 
1383   /// The total size of the nodes in the graph.
1384   uint64_t TotalSize{0};
1385 };
1386 
1387 } // end of anonymous namespace
1388 
1389 std::vector<uint64_t>
1390 codelayout::computeExtTspLayout(ArrayRef<uint64_t> NodeSizes,
1391                                 ArrayRef<uint64_t> NodeCounts,
1392                                 ArrayRef<EdgeCount> EdgeCounts) {
1393   // Verify correctness of the input data.
1394   assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input");
1395   assert(NodeSizes.size() > 2 && "Incorrect input");
1396 
1397   // Apply the reordering algorithm.
1398   ExtTSPImpl Alg(NodeSizes, NodeCounts, EdgeCounts);
1399   std::vector<uint64_t> Result = Alg.run();
1400 
1401   // Verify correctness of the output.
1402   assert(Result.front() == 0 && "Original entry point is not preserved");
1403   assert(Result.size() == NodeSizes.size() && "Incorrect size of layout");
1404   return Result;
1405 }
1406 
1407 double codelayout::calcExtTspScore(ArrayRef<uint64_t> Order,
1408                                    ArrayRef<uint64_t> NodeSizes,
1409                                    ArrayRef<uint64_t> NodeCounts,
1410                                    ArrayRef<EdgeCount> EdgeCounts) {
1411   // Estimate addresses of the blocks in memory.
1412   std::vector<uint64_t> Addr(NodeSizes.size(), 0);
1413   for (size_t Idx = 1; Idx < Order.size(); Idx++) {
1414     Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]];
1415   }
1416   std::vector<uint64_t> OutDegree(NodeSizes.size(), 0);
1417   for (auto Edge : EdgeCounts)
1418     ++OutDegree[Edge.src];
1419 
1420   // Increase the score for each jump.
1421   double Score = 0;
1422   for (auto Edge : EdgeCounts) {
1423     bool IsConditional = OutDegree[Edge.src] > 1;
1424     Score += ::extTSPScore(Addr[Edge.src], NodeSizes[Edge.src], Addr[Edge.dst],
1425                            Edge.count, IsConditional);
1426   }
1427   return Score;
1428 }
1429 
1430 double codelayout::calcExtTspScore(ArrayRef<uint64_t> NodeSizes,
1431                                    ArrayRef<uint64_t> NodeCounts,
1432                                    ArrayRef<EdgeCount> EdgeCounts) {
1433   std::vector<uint64_t> Order(NodeSizes.size());
1434   for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) {
1435     Order[Idx] = Idx;
1436   }
1437   return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts);
1438 }
1439 
1440 std::vector<uint64_t> codelayout::computeCacheDirectedLayout(
1441     const CDSortConfig &Config, ArrayRef<uint64_t> FuncSizes,
1442     ArrayRef<uint64_t> FuncCounts, ArrayRef<EdgeCount> CallCounts,
1443     ArrayRef<uint64_t> CallOffsets) {
1444   // Verify correctness of the input data.
1445   assert(FuncCounts.size() == FuncSizes.size() && "Incorrect input");
1446 
1447   // Apply the reordering algorithm.
1448   CDSortImpl Alg(Config, FuncSizes, FuncCounts, CallCounts, CallOffsets);
1449   std::vector<uint64_t> Result = Alg.run();
1450   assert(Result.size() == FuncSizes.size() && "Incorrect size of layout");
1451   return Result;
1452 }
1453 
1454 std::vector<uint64_t> codelayout::computeCacheDirectedLayout(
1455     ArrayRef<uint64_t> FuncSizes, ArrayRef<uint64_t> FuncCounts,
1456     ArrayRef<EdgeCount> CallCounts, ArrayRef<uint64_t> CallOffsets) {
1457   CDSortConfig Config;
1458   // Populate the config from the command-line options.
1459   if (CacheEntries.getNumOccurrences() > 0)
1460     Config.CacheEntries = CacheEntries;
1461   if (CacheSize.getNumOccurrences() > 0)
1462     Config.CacheSize = CacheSize;
1463   if (DistancePower.getNumOccurrences() > 0)
1464     Config.DistancePower = DistancePower;
1465   if (FrequencyScale.getNumOccurrences() > 0)
1466     Config.FrequencyScale = FrequencyScale;
1467   return computeCacheDirectedLayout(Config, FuncSizes, FuncCounts, CallCounts,
1468                                     CallOffsets);
1469 }
1470