1 //===- CodeLayout.cpp - Implementation of code layout algorithms ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The file implements "cache-aware" layout algorithms of basic blocks and 10 // functions in a binary. 11 // 12 // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG 13 // optimizing jump locality and thus processor I-cache utilization. This is 14 // achieved via increasing the number of fall-through jumps and co-locating 15 // frequently executed nodes together. The name follows the underlying 16 // optimization problem, Extended-TSP, which is a generalization of classical 17 // (maximum) Traveling Salesmen Problem. 18 // 19 // The algorithm is a greedy heuristic that works with chains (ordered lists) 20 // of basic blocks. Initially all chains are isolated basic blocks. On every 21 // iteration, we pick a pair of chains whose merging yields the biggest increase 22 // in the ExtTSP score, which models how i-cache "friendly" a specific chain is. 23 // A pair of chains giving the maximum gain is merged into a new chain. The 24 // procedure stops when there is only one chain left, or when merging does not 25 // increase ExtTSP. In the latter case, the remaining chains are sorted by 26 // density in the decreasing order. 27 // 28 // An important aspect is the way two chains are merged. Unlike earlier 29 // algorithms (e.g., based on the approach of Pettis-Hansen), two 30 // chains, X and Y, are first split into three, X1, X2, and Y. Then we 31 // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y, 32 // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score. 33 // This improves the quality of the final result (the search space is larger) 34 // while keeping the implementation sufficiently fast. 35 // 36 // Reference: 37 // * A. Newell and S. Pupyrev, Improved Basic Block Reordering, 38 // IEEE Transactions on Computers, 2020 39 // https://arxiv.org/abs/1809.04676 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "llvm/Transforms/Utils/CodeLayout.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 47 #include <cmath> 48 #include <set> 49 50 using namespace llvm; 51 using namespace llvm::codelayout; 52 53 #define DEBUG_TYPE "code-layout" 54 55 namespace llvm { 56 cl::opt<bool> EnableExtTspBlockPlacement( 57 "enable-ext-tsp-block-placement", cl::Hidden, cl::init(false), 58 cl::desc("Enable machine block placement based on the ext-tsp model, " 59 "optimizing I-cache utilization.")); 60 61 cl::opt<bool> ApplyExtTspWithoutProfile( 62 "ext-tsp-apply-without-profile", 63 cl::desc("Whether to apply ext-tsp placement for instances w/o profile"), 64 cl::init(true), cl::Hidden); 65 } // namespace llvm 66 67 // Algorithm-specific params for Ext-TSP. The values are tuned for the best 68 // performance of large-scale front-end bound binaries. 69 static cl::opt<double> ForwardWeightCond( 70 "ext-tsp-forward-weight-cond", cl::ReallyHidden, cl::init(0.1), 71 cl::desc("The weight of conditional forward jumps for ExtTSP value")); 72 73 static cl::opt<double> ForwardWeightUncond( 74 "ext-tsp-forward-weight-uncond", cl::ReallyHidden, cl::init(0.1), 75 cl::desc("The weight of unconditional forward jumps for ExtTSP value")); 76 77 static cl::opt<double> BackwardWeightCond( 78 "ext-tsp-backward-weight-cond", cl::ReallyHidden, cl::init(0.1), 79 cl::desc("The weight of conditional backward jumps for ExtTSP value")); 80 81 static cl::opt<double> BackwardWeightUncond( 82 "ext-tsp-backward-weight-uncond", cl::ReallyHidden, cl::init(0.1), 83 cl::desc("The weight of unconditional backward jumps for ExtTSP value")); 84 85 static cl::opt<double> FallthroughWeightCond( 86 "ext-tsp-fallthrough-weight-cond", cl::ReallyHidden, cl::init(1.0), 87 cl::desc("The weight of conditional fallthrough jumps for ExtTSP value")); 88 89 static cl::opt<double> FallthroughWeightUncond( 90 "ext-tsp-fallthrough-weight-uncond", cl::ReallyHidden, cl::init(1.05), 91 cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value")); 92 93 static cl::opt<unsigned> ForwardDistance( 94 "ext-tsp-forward-distance", cl::ReallyHidden, cl::init(1024), 95 cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP")); 96 97 static cl::opt<unsigned> BackwardDistance( 98 "ext-tsp-backward-distance", cl::ReallyHidden, cl::init(640), 99 cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP")); 100 101 // The maximum size of a chain created by the algorithm. The size is bounded 102 // so that the algorithm can efficiently process extremely large instance. 103 static cl::opt<unsigned> 104 MaxChainSize("ext-tsp-max-chain-size", cl::ReallyHidden, cl::init(4096), 105 cl::desc("The maximum size of a chain to create.")); 106 107 // The maximum size of a chain for splitting. Larger values of the threshold 108 // may yield better quality at the cost of worsen run-time. 109 static cl::opt<unsigned> ChainSplitThreshold( 110 "ext-tsp-chain-split-threshold", cl::ReallyHidden, cl::init(128), 111 cl::desc("The maximum size of a chain to apply splitting")); 112 113 // The option enables splitting (large) chains along in-coming and out-going 114 // jumps. This typically results in a better quality. 115 static cl::opt<bool> EnableChainSplitAlongJumps( 116 "ext-tsp-enable-chain-split-along-jumps", cl::ReallyHidden, cl::init(true), 117 cl::desc("The maximum size of a chain to apply splitting")); 118 119 // Algorithm-specific options for CDS. 120 static cl::opt<unsigned> CacheEntries("cds-cache-entries", cl::ReallyHidden, 121 cl::desc("The size of the cache")); 122 123 static cl::opt<unsigned> CacheSize("cds-cache-size", cl::ReallyHidden, 124 cl::desc("The size of a line in the cache")); 125 126 static cl::opt<double> DistancePower( 127 "cds-distance-power", cl::ReallyHidden, 128 cl::desc("The power exponent for the distance-based locality")); 129 130 static cl::opt<double> FrequencyScale( 131 "cds-frequency-scale", cl::ReallyHidden, 132 cl::desc("The scale factor for the frequency-based locality")); 133 134 namespace { 135 136 // Epsilon for comparison of doubles. 137 constexpr double EPS = 1e-8; 138 139 // Compute the Ext-TSP score for a given jump. 140 double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count, 141 double Weight) { 142 if (JumpDist > JumpMaxDist) 143 return 0; 144 double Prob = 1.0 - static_cast<double>(JumpDist) / JumpMaxDist; 145 return Weight * Prob * Count; 146 } 147 148 // Compute the Ext-TSP score for a jump between a given pair of blocks, 149 // using their sizes, (estimated) addresses and the jump execution count. 150 double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr, 151 uint64_t Count, bool IsConditional) { 152 // Fallthrough 153 if (SrcAddr + SrcSize == DstAddr) { 154 return jumpExtTSPScore(0, 1, Count, 155 IsConditional ? FallthroughWeightCond 156 : FallthroughWeightUncond); 157 } 158 // Forward 159 if (SrcAddr + SrcSize < DstAddr) { 160 const uint64_t Dist = DstAddr - (SrcAddr + SrcSize); 161 return jumpExtTSPScore(Dist, ForwardDistance, Count, 162 IsConditional ? ForwardWeightCond 163 : ForwardWeightUncond); 164 } 165 // Backward 166 const uint64_t Dist = SrcAddr + SrcSize - DstAddr; 167 return jumpExtTSPScore(Dist, BackwardDistance, Count, 168 IsConditional ? BackwardWeightCond 169 : BackwardWeightUncond); 170 } 171 172 /// A type of merging two chains, X and Y. The former chain is split into 173 /// X1 and X2 and then concatenated with Y in the order specified by the type. 174 enum class MergeTypeT : int { X_Y, Y_X, X1_Y_X2, Y_X2_X1, X2_X1_Y }; 175 176 /// The gain of merging two chains, that is, the Ext-TSP score of the merge 177 /// together with the corresponding merge 'type' and 'offset'. 178 struct MergeGainT { 179 explicit MergeGainT() = default; 180 explicit MergeGainT(double Score, size_t MergeOffset, MergeTypeT MergeType) 181 : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {} 182 183 double score() const { return Score; } 184 185 size_t mergeOffset() const { return MergeOffset; } 186 187 MergeTypeT mergeType() const { return MergeType; } 188 189 void setMergeType(MergeTypeT Ty) { MergeType = Ty; } 190 191 // Returns 'true' iff Other is preferred over this. 192 bool operator<(const MergeGainT &Other) const { 193 return (Other.Score > EPS && Other.Score > Score + EPS); 194 } 195 196 // Update the current gain if Other is preferred over this. 197 void updateIfLessThan(const MergeGainT &Other) { 198 if (*this < Other) 199 *this = Other; 200 } 201 202 private: 203 double Score{-1.0}; 204 size_t MergeOffset{0}; 205 MergeTypeT MergeType{MergeTypeT::X_Y}; 206 }; 207 208 struct JumpT; 209 struct ChainT; 210 struct ChainEdge; 211 212 /// A node in the graph, typically corresponding to a basic block in the CFG or 213 /// a function in the call graph. 214 struct NodeT { 215 NodeT(const NodeT &) = delete; 216 NodeT(NodeT &&) = default; 217 NodeT &operator=(const NodeT &) = delete; 218 NodeT &operator=(NodeT &&) = default; 219 220 explicit NodeT(size_t Index, uint64_t Size, uint64_t EC) 221 : Index(Index), Size(Size), ExecutionCount(EC) {} 222 223 bool isEntry() const { return Index == 0; } 224 225 // The total execution count of outgoing jumps. 226 uint64_t outCount() const; 227 228 // The total execution count of incoming jumps. 229 uint64_t inCount() const; 230 231 // The original index of the node in graph. 232 size_t Index{0}; 233 // The index of the node in the current chain. 234 size_t CurIndex{0}; 235 // The size of the node in the binary. 236 uint64_t Size{0}; 237 // The execution count of the node in the profile data. 238 uint64_t ExecutionCount{0}; 239 // The current chain of the node. 240 ChainT *CurChain{nullptr}; 241 // The offset of the node in the current chain. 242 mutable uint64_t EstimatedAddr{0}; 243 // Forced successor of the node in the graph. 244 NodeT *ForcedSucc{nullptr}; 245 // Forced predecessor of the node in the graph. 246 NodeT *ForcedPred{nullptr}; 247 // Outgoing jumps from the node. 248 std::vector<JumpT *> OutJumps; 249 // Incoming jumps to the node. 250 std::vector<JumpT *> InJumps; 251 }; 252 253 /// An arc in the graph, typically corresponding to a jump between two nodes. 254 struct JumpT { 255 JumpT(const JumpT &) = delete; 256 JumpT(JumpT &&) = default; 257 JumpT &operator=(const JumpT &) = delete; 258 JumpT &operator=(JumpT &&) = default; 259 260 explicit JumpT(NodeT *Source, NodeT *Target, uint64_t ExecutionCount) 261 : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {} 262 263 // Source node of the jump. 264 NodeT *Source; 265 // Target node of the jump. 266 NodeT *Target; 267 // Execution count of the arc in the profile data. 268 uint64_t ExecutionCount{0}; 269 // Whether the jump corresponds to a conditional branch. 270 bool IsConditional{false}; 271 // The offset of the jump from the source node. 272 uint64_t Offset{0}; 273 }; 274 275 /// A chain (ordered sequence) of nodes in the graph. 276 struct ChainT { 277 ChainT(const ChainT &) = delete; 278 ChainT(ChainT &&) = default; 279 ChainT &operator=(const ChainT &) = delete; 280 ChainT &operator=(ChainT &&) = default; 281 282 explicit ChainT(uint64_t Id, NodeT *Node) 283 : Id(Id), ExecutionCount(Node->ExecutionCount), Size(Node->Size), 284 Nodes(1, Node) {} 285 286 size_t numBlocks() const { return Nodes.size(); } 287 288 double density() const { return static_cast<double>(ExecutionCount) / Size; } 289 290 bool isEntry() const { return Nodes[0]->Index == 0; } 291 292 bool isCold() const { 293 for (NodeT *Node : Nodes) { 294 if (Node->ExecutionCount > 0) 295 return false; 296 } 297 return true; 298 } 299 300 ChainEdge *getEdge(ChainT *Other) const { 301 for (const auto &[Chain, ChainEdge] : Edges) { 302 if (Chain == Other) 303 return ChainEdge; 304 } 305 return nullptr; 306 } 307 308 void removeEdge(ChainT *Other) { 309 auto It = Edges.begin(); 310 while (It != Edges.end()) { 311 if (It->first == Other) { 312 Edges.erase(It); 313 return; 314 } 315 It++; 316 } 317 } 318 319 void addEdge(ChainT *Other, ChainEdge *Edge) { 320 Edges.push_back(std::make_pair(Other, Edge)); 321 } 322 323 void merge(ChainT *Other, std::vector<NodeT *> MergedBlocks) { 324 Nodes = std::move(MergedBlocks); 325 // Update the chain's data. 326 ExecutionCount += Other->ExecutionCount; 327 Size += Other->Size; 328 Id = Nodes[0]->Index; 329 // Update the node's data. 330 for (size_t Idx = 0; Idx < Nodes.size(); Idx++) { 331 Nodes[Idx]->CurChain = this; 332 Nodes[Idx]->CurIndex = Idx; 333 } 334 } 335 336 void mergeEdges(ChainT *Other); 337 338 void clear() { 339 Nodes.clear(); 340 Nodes.shrink_to_fit(); 341 Edges.clear(); 342 Edges.shrink_to_fit(); 343 } 344 345 // Unique chain identifier. 346 uint64_t Id; 347 // Cached ext-tsp score for the chain. 348 double Score{0}; 349 // The total execution count of the chain. 350 uint64_t ExecutionCount{0}; 351 // The total size of the chain. 352 uint64_t Size{0}; 353 // Nodes of the chain. 354 std::vector<NodeT *> Nodes; 355 // Adjacent chains and corresponding edges (lists of jumps). 356 std::vector<std::pair<ChainT *, ChainEdge *>> Edges; 357 }; 358 359 /// An edge in the graph representing jumps between two chains. 360 /// When nodes are merged into chains, the edges are combined too so that 361 /// there is always at most one edge between a pair of chains. 362 struct ChainEdge { 363 ChainEdge(const ChainEdge &) = delete; 364 ChainEdge(ChainEdge &&) = default; 365 ChainEdge &operator=(const ChainEdge &) = delete; 366 ChainEdge &operator=(ChainEdge &&) = delete; 367 368 explicit ChainEdge(JumpT *Jump) 369 : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain), 370 Jumps(1, Jump) {} 371 372 ChainT *srcChain() const { return SrcChain; } 373 374 ChainT *dstChain() const { return DstChain; } 375 376 bool isSelfEdge() const { return SrcChain == DstChain; } 377 378 const std::vector<JumpT *> &jumps() const { return Jumps; } 379 380 void appendJump(JumpT *Jump) { Jumps.push_back(Jump); } 381 382 void moveJumps(ChainEdge *Other) { 383 Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end()); 384 Other->Jumps.clear(); 385 Other->Jumps.shrink_to_fit(); 386 } 387 388 void changeEndpoint(ChainT *From, ChainT *To) { 389 if (From == SrcChain) 390 SrcChain = To; 391 if (From == DstChain) 392 DstChain = To; 393 } 394 395 bool hasCachedMergeGain(ChainT *Src, ChainT *Dst) const { 396 return Src == SrcChain ? CacheValidForward : CacheValidBackward; 397 } 398 399 MergeGainT getCachedMergeGain(ChainT *Src, ChainT *Dst) const { 400 return Src == SrcChain ? CachedGainForward : CachedGainBackward; 401 } 402 403 void setCachedMergeGain(ChainT *Src, ChainT *Dst, MergeGainT MergeGain) { 404 if (Src == SrcChain) { 405 CachedGainForward = MergeGain; 406 CacheValidForward = true; 407 } else { 408 CachedGainBackward = MergeGain; 409 CacheValidBackward = true; 410 } 411 } 412 413 void invalidateCache() { 414 CacheValidForward = false; 415 CacheValidBackward = false; 416 } 417 418 void setMergeGain(MergeGainT Gain) { CachedGain = Gain; } 419 420 MergeGainT getMergeGain() const { return CachedGain; } 421 422 double gain() const { return CachedGain.score(); } 423 424 private: 425 // Source chain. 426 ChainT *SrcChain{nullptr}; 427 // Destination chain. 428 ChainT *DstChain{nullptr}; 429 // Original jumps in the binary with corresponding execution counts. 430 std::vector<JumpT *> Jumps; 431 // Cached gain value for merging the pair of chains. 432 MergeGainT CachedGain; 433 434 // Cached gain values for merging the pair of chains. Since the gain of 435 // merging (Src, Dst) and (Dst, Src) might be different, we store both values 436 // here and a flag indicating which of the options results in a higher gain. 437 // Cached gain values. 438 MergeGainT CachedGainForward; 439 MergeGainT CachedGainBackward; 440 // Whether the cached value must be recomputed. 441 bool CacheValidForward{false}; 442 bool CacheValidBackward{false}; 443 }; 444 445 uint64_t NodeT::outCount() const { 446 uint64_t Count = 0; 447 for (JumpT *Jump : OutJumps) 448 Count += Jump->ExecutionCount; 449 return Count; 450 } 451 452 uint64_t NodeT::inCount() const { 453 uint64_t Count = 0; 454 for (JumpT *Jump : InJumps) 455 Count += Jump->ExecutionCount; 456 return Count; 457 } 458 459 void ChainT::mergeEdges(ChainT *Other) { 460 // Update edges adjacent to chain Other. 461 for (const auto &[DstChain, DstEdge] : Other->Edges) { 462 ChainT *TargetChain = DstChain == Other ? this : DstChain; 463 ChainEdge *CurEdge = getEdge(TargetChain); 464 if (CurEdge == nullptr) { 465 DstEdge->changeEndpoint(Other, this); 466 this->addEdge(TargetChain, DstEdge); 467 if (DstChain != this && DstChain != Other) 468 DstChain->addEdge(this, DstEdge); 469 } else { 470 CurEdge->moveJumps(DstEdge); 471 } 472 // Cleanup leftover edge. 473 if (DstChain != Other) 474 DstChain->removeEdge(Other); 475 } 476 } 477 478 using NodeIter = std::vector<NodeT *>::const_iterator; 479 480 /// A wrapper around three chains of nodes; it is used to avoid extra 481 /// instantiation of the vectors. 482 struct MergedChain { 483 MergedChain(NodeIter Begin1, NodeIter End1, NodeIter Begin2 = NodeIter(), 484 NodeIter End2 = NodeIter(), NodeIter Begin3 = NodeIter(), 485 NodeIter End3 = NodeIter()) 486 : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3), 487 End3(End3) {} 488 489 template <typename F> void forEach(const F &Func) const { 490 for (auto It = Begin1; It != End1; It++) 491 Func(*It); 492 for (auto It = Begin2; It != End2; It++) 493 Func(*It); 494 for (auto It = Begin3; It != End3; It++) 495 Func(*It); 496 } 497 498 std::vector<NodeT *> getNodes() const { 499 std::vector<NodeT *> Result; 500 Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) + 501 std::distance(Begin3, End3)); 502 Result.insert(Result.end(), Begin1, End1); 503 Result.insert(Result.end(), Begin2, End2); 504 Result.insert(Result.end(), Begin3, End3); 505 return Result; 506 } 507 508 const NodeT *getFirstNode() const { return *Begin1; } 509 510 private: 511 NodeIter Begin1; 512 NodeIter End1; 513 NodeIter Begin2; 514 NodeIter End2; 515 NodeIter Begin3; 516 NodeIter End3; 517 }; 518 519 /// Merge two chains of nodes respecting a given 'type' and 'offset'. 520 /// 521 /// If MergeType == 0, then the result is a concatenation of two chains. 522 /// Otherwise, the first chain is cut into two sub-chains at the offset, 523 /// and merged using all possible ways of concatenating three chains. 524 MergedChain mergeNodes(const std::vector<NodeT *> &X, 525 const std::vector<NodeT *> &Y, size_t MergeOffset, 526 MergeTypeT MergeType) { 527 // Split the first chain, X, into X1 and X2. 528 NodeIter BeginX1 = X.begin(); 529 NodeIter EndX1 = X.begin() + MergeOffset; 530 NodeIter BeginX2 = X.begin() + MergeOffset; 531 NodeIter EndX2 = X.end(); 532 NodeIter BeginY = Y.begin(); 533 NodeIter EndY = Y.end(); 534 535 // Construct a new chain from the three existing ones. 536 switch (MergeType) { 537 case MergeTypeT::X_Y: 538 return MergedChain(BeginX1, EndX2, BeginY, EndY); 539 case MergeTypeT::Y_X: 540 return MergedChain(BeginY, EndY, BeginX1, EndX2); 541 case MergeTypeT::X1_Y_X2: 542 return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2); 543 case MergeTypeT::Y_X2_X1: 544 return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1); 545 case MergeTypeT::X2_X1_Y: 546 return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY); 547 } 548 llvm_unreachable("unexpected chain merge type"); 549 } 550 551 /// The implementation of the ExtTSP algorithm. 552 class ExtTSPImpl { 553 public: 554 ExtTSPImpl(ArrayRef<uint64_t> NodeSizes, ArrayRef<uint64_t> NodeCounts, 555 ArrayRef<EdgeCount> EdgeCounts) 556 : NumNodes(NodeSizes.size()) { 557 initialize(NodeSizes, NodeCounts, EdgeCounts); 558 } 559 560 /// Run the algorithm and return an optimized ordering of nodes. 561 std::vector<uint64_t> run() { 562 // Pass 1: Merge nodes with their mutually forced successors 563 mergeForcedPairs(); 564 565 // Pass 2: Merge pairs of chains while improving the ExtTSP objective 566 mergeChainPairs(); 567 568 // Pass 3: Merge cold nodes to reduce code size 569 mergeColdChains(); 570 571 // Collect nodes from all chains 572 return concatChains(); 573 } 574 575 private: 576 /// Initialize the algorithm's data structures. 577 void initialize(const ArrayRef<uint64_t> &NodeSizes, 578 const ArrayRef<uint64_t> &NodeCounts, 579 const ArrayRef<EdgeCount> &EdgeCounts) { 580 // Initialize nodes 581 AllNodes.reserve(NumNodes); 582 for (uint64_t Idx = 0; Idx < NumNodes; Idx++) { 583 uint64_t Size = std::max<uint64_t>(NodeSizes[Idx], 1ULL); 584 uint64_t ExecutionCount = NodeCounts[Idx]; 585 // The execution count of the entry node is set to at least one. 586 if (Idx == 0 && ExecutionCount == 0) 587 ExecutionCount = 1; 588 AllNodes.emplace_back(Idx, Size, ExecutionCount); 589 } 590 591 // Initialize jumps between nodes 592 SuccNodes.resize(NumNodes); 593 PredNodes.resize(NumNodes); 594 std::vector<uint64_t> OutDegree(NumNodes, 0); 595 AllJumps.reserve(EdgeCounts.size()); 596 for (auto Edge : EdgeCounts) { 597 ++OutDegree[Edge.src]; 598 // Ignore self-edges. 599 if (Edge.src == Edge.dst) 600 continue; 601 602 SuccNodes[Edge.src].push_back(Edge.dst); 603 PredNodes[Edge.dst].push_back(Edge.src); 604 if (Edge.count > 0) { 605 NodeT &PredNode = AllNodes[Edge.src]; 606 NodeT &SuccNode = AllNodes[Edge.dst]; 607 AllJumps.emplace_back(&PredNode, &SuccNode, Edge.count); 608 SuccNode.InJumps.push_back(&AllJumps.back()); 609 PredNode.OutJumps.push_back(&AllJumps.back()); 610 } 611 } 612 for (JumpT &Jump : AllJumps) { 613 assert(OutDegree[Jump.Source->Index] > 0); 614 Jump.IsConditional = OutDegree[Jump.Source->Index] > 1; 615 } 616 617 // Initialize chains. 618 AllChains.reserve(NumNodes); 619 HotChains.reserve(NumNodes); 620 for (NodeT &Node : AllNodes) { 621 AllChains.emplace_back(Node.Index, &Node); 622 Node.CurChain = &AllChains.back(); 623 if (Node.ExecutionCount > 0) 624 HotChains.push_back(&AllChains.back()); 625 } 626 627 // Initialize chain edges. 628 AllEdges.reserve(AllJumps.size()); 629 for (NodeT &PredNode : AllNodes) { 630 for (JumpT *Jump : PredNode.OutJumps) { 631 NodeT *SuccNode = Jump->Target; 632 ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain); 633 // this edge is already present in the graph. 634 if (CurEdge != nullptr) { 635 assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr); 636 CurEdge->appendJump(Jump); 637 continue; 638 } 639 // this is a new edge. 640 AllEdges.emplace_back(Jump); 641 PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back()); 642 SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back()); 643 } 644 } 645 } 646 647 /// For a pair of nodes, A and B, node B is the forced successor of A, 648 /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps 649 /// to B are from A. Such nodes should be adjacent in the optimal ordering; 650 /// the method finds and merges such pairs of nodes. 651 void mergeForcedPairs() { 652 // Find fallthroughs based on edge weights. 653 for (NodeT &Node : AllNodes) { 654 if (SuccNodes[Node.Index].size() == 1 && 655 PredNodes[SuccNodes[Node.Index][0]].size() == 1 && 656 SuccNodes[Node.Index][0] != 0) { 657 size_t SuccIndex = SuccNodes[Node.Index][0]; 658 Node.ForcedSucc = &AllNodes[SuccIndex]; 659 AllNodes[SuccIndex].ForcedPred = &Node; 660 } 661 } 662 663 // There might be 'cycles' in the forced dependencies, since profile 664 // data isn't 100% accurate. Typically this is observed in loops, when the 665 // loop edges are the hottest successors for the basic blocks of the loop. 666 // Break the cycles by choosing the node with the smallest index as the 667 // head. This helps to keep the original order of the loops, which likely 668 // have already been rotated in the optimized manner. 669 for (NodeT &Node : AllNodes) { 670 if (Node.ForcedSucc == nullptr || Node.ForcedPred == nullptr) 671 continue; 672 673 NodeT *SuccNode = Node.ForcedSucc; 674 while (SuccNode != nullptr && SuccNode != &Node) { 675 SuccNode = SuccNode->ForcedSucc; 676 } 677 if (SuccNode == nullptr) 678 continue; 679 // Break the cycle. 680 AllNodes[Node.ForcedPred->Index].ForcedSucc = nullptr; 681 Node.ForcedPred = nullptr; 682 } 683 684 // Merge nodes with their fallthrough successors. 685 for (NodeT &Node : AllNodes) { 686 if (Node.ForcedPred == nullptr && Node.ForcedSucc != nullptr) { 687 const NodeT *CurBlock = &Node; 688 while (CurBlock->ForcedSucc != nullptr) { 689 const NodeT *NextBlock = CurBlock->ForcedSucc; 690 mergeChains(Node.CurChain, NextBlock->CurChain, 0, MergeTypeT::X_Y); 691 CurBlock = NextBlock; 692 } 693 } 694 } 695 } 696 697 /// Merge pairs of chains while improving the ExtTSP objective. 698 void mergeChainPairs() { 699 /// Deterministically compare pairs of chains. 700 auto compareChainPairs = [](const ChainT *A1, const ChainT *B1, 701 const ChainT *A2, const ChainT *B2) { 702 if (A1 != A2) 703 return A1->Id < A2->Id; 704 return B1->Id < B2->Id; 705 }; 706 707 while (HotChains.size() > 1) { 708 ChainT *BestChainPred = nullptr; 709 ChainT *BestChainSucc = nullptr; 710 MergeGainT BestGain; 711 // Iterate over all pairs of chains. 712 for (ChainT *ChainPred : HotChains) { 713 // Get candidates for merging with the current chain. 714 for (const auto &[ChainSucc, Edge] : ChainPred->Edges) { 715 // Ignore loop edges. 716 if (ChainPred == ChainSucc) 717 continue; 718 719 // Stop early if the combined chain violates the maximum allowed size. 720 if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize) 721 continue; 722 723 // Compute the gain of merging the two chains. 724 MergeGainT CurGain = getBestMergeGain(ChainPred, ChainSucc, Edge); 725 if (CurGain.score() <= EPS) 726 continue; 727 728 if (BestGain < CurGain || 729 (std::abs(CurGain.score() - BestGain.score()) < EPS && 730 compareChainPairs(ChainPred, ChainSucc, BestChainPred, 731 BestChainSucc))) { 732 BestGain = CurGain; 733 BestChainPred = ChainPred; 734 BestChainSucc = ChainSucc; 735 } 736 } 737 } 738 739 // Stop merging when there is no improvement. 740 if (BestGain.score() <= EPS) 741 break; 742 743 // Merge the best pair of chains. 744 mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(), 745 BestGain.mergeType()); 746 } 747 } 748 749 /// Merge remaining nodes into chains w/o taking jump counts into 750 /// consideration. This allows to maintain the original node order in the 751 /// absence of profile data. 752 void mergeColdChains() { 753 for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) { 754 // Iterating in reverse order to make sure original fallthrough jumps are 755 // merged first; this might be beneficial for code size. 756 size_t NumSuccs = SuccNodes[SrcBB].size(); 757 for (size_t Idx = 0; Idx < NumSuccs; Idx++) { 758 size_t DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1]; 759 ChainT *SrcChain = AllNodes[SrcBB].CurChain; 760 ChainT *DstChain = AllNodes[DstBB].CurChain; 761 if (SrcChain != DstChain && !DstChain->isEntry() && 762 SrcChain->Nodes.back()->Index == SrcBB && 763 DstChain->Nodes.front()->Index == DstBB && 764 SrcChain->isCold() == DstChain->isCold()) { 765 mergeChains(SrcChain, DstChain, 0, MergeTypeT::X_Y); 766 } 767 } 768 } 769 } 770 771 /// Compute the Ext-TSP score for a given node order and a list of jumps. 772 double extTSPScore(const MergedChain &MergedBlocks, 773 const std::vector<JumpT *> &Jumps) const { 774 if (Jumps.empty()) 775 return 0.0; 776 uint64_t CurAddr = 0; 777 MergedBlocks.forEach([&](const NodeT *Node) { 778 Node->EstimatedAddr = CurAddr; 779 CurAddr += Node->Size; 780 }); 781 782 double Score = 0; 783 for (JumpT *Jump : Jumps) { 784 const NodeT *SrcBlock = Jump->Source; 785 const NodeT *DstBlock = Jump->Target; 786 Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size, 787 DstBlock->EstimatedAddr, Jump->ExecutionCount, 788 Jump->IsConditional); 789 } 790 return Score; 791 } 792 793 /// Compute the gain of merging two chains. 794 /// 795 /// The function considers all possible ways of merging two chains and 796 /// computes the one having the largest increase in ExtTSP objective. The 797 /// result is a pair with the first element being the gain and the second 798 /// element being the corresponding merging type. 799 MergeGainT getBestMergeGain(ChainT *ChainPred, ChainT *ChainSucc, 800 ChainEdge *Edge) const { 801 if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) { 802 return Edge->getCachedMergeGain(ChainPred, ChainSucc); 803 } 804 805 // Precompute jumps between ChainPred and ChainSucc. 806 auto Jumps = Edge->jumps(); 807 ChainEdge *EdgePP = ChainPred->getEdge(ChainPred); 808 if (EdgePP != nullptr) { 809 Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end()); 810 } 811 assert(!Jumps.empty() && "trying to merge chains w/o jumps"); 812 813 // This object holds the best chosen gain of merging two chains. 814 MergeGainT Gain = MergeGainT(); 815 816 /// Given a merge offset and a list of merge types, try to merge two chains 817 /// and update Gain with a better alternative. 818 auto tryChainMerging = [&](size_t Offset, 819 const std::vector<MergeTypeT> &MergeTypes) { 820 // Skip merging corresponding to concatenation w/o splitting. 821 if (Offset == 0 || Offset == ChainPred->Nodes.size()) 822 return; 823 // Skip merging if it breaks Forced successors. 824 NodeT *Node = ChainPred->Nodes[Offset - 1]; 825 if (Node->ForcedSucc != nullptr) 826 return; 827 // Apply the merge, compute the corresponding gain, and update the best 828 // value, if the merge is beneficial. 829 for (const MergeTypeT &MergeType : MergeTypes) { 830 Gain.updateIfLessThan( 831 computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType)); 832 } 833 }; 834 835 // Try to concatenate two chains w/o splitting. 836 Gain.updateIfLessThan( 837 computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeT::X_Y)); 838 839 if (EnableChainSplitAlongJumps) { 840 // Attach (a part of) ChainPred before the first node of ChainSucc. 841 for (JumpT *Jump : ChainSucc->Nodes.front()->InJumps) { 842 const NodeT *SrcBlock = Jump->Source; 843 if (SrcBlock->CurChain != ChainPred) 844 continue; 845 size_t Offset = SrcBlock->CurIndex + 1; 846 tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::X2_X1_Y}); 847 } 848 849 // Attach (a part of) ChainPred after the last node of ChainSucc. 850 for (JumpT *Jump : ChainSucc->Nodes.back()->OutJumps) { 851 const NodeT *DstBlock = Jump->Target; 852 if (DstBlock->CurChain != ChainPred) 853 continue; 854 size_t Offset = DstBlock->CurIndex; 855 tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1}); 856 } 857 } 858 859 // Try to break ChainPred in various ways and concatenate with ChainSucc. 860 if (ChainPred->Nodes.size() <= ChainSplitThreshold) { 861 for (size_t Offset = 1; Offset < ChainPred->Nodes.size(); Offset++) { 862 // Try to split the chain in different ways. In practice, applying 863 // X2_Y_X1 merging is almost never provides benefits; thus, we exclude 864 // it from consideration to reduce the search space. 865 tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1, 866 MergeTypeT::X2_X1_Y}); 867 } 868 } 869 Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain); 870 return Gain; 871 } 872 873 /// Compute the score gain of merging two chains, respecting a given 874 /// merge 'type' and 'offset'. 875 /// 876 /// The two chains are not modified in the method. 877 MergeGainT computeMergeGain(const ChainT *ChainPred, const ChainT *ChainSucc, 878 const std::vector<JumpT *> &Jumps, 879 size_t MergeOffset, MergeTypeT MergeType) const { 880 auto MergedBlocks = 881 mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType); 882 883 // Do not allow a merge that does not preserve the original entry point. 884 if ((ChainPred->isEntry() || ChainSucc->isEntry()) && 885 !MergedBlocks.getFirstNode()->isEntry()) 886 return MergeGainT(); 887 888 // The gain for the new chain. 889 auto NewGainScore = extTSPScore(MergedBlocks, Jumps) - ChainPred->Score; 890 return MergeGainT(NewGainScore, MergeOffset, MergeType); 891 } 892 893 /// Merge chain From into chain Into, update the list of active chains, 894 /// adjacency information, and the corresponding cached values. 895 void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset, 896 MergeTypeT MergeType) { 897 assert(Into != From && "a chain cannot be merged with itself"); 898 899 // Merge the nodes. 900 MergedChain MergedNodes = 901 mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType); 902 Into->merge(From, MergedNodes.getNodes()); 903 904 // Merge the edges. 905 Into->mergeEdges(From); 906 From->clear(); 907 908 // Update cached ext-tsp score for the new chain. 909 ChainEdge *SelfEdge = Into->getEdge(Into); 910 if (SelfEdge != nullptr) { 911 MergedNodes = MergedChain(Into->Nodes.begin(), Into->Nodes.end()); 912 Into->Score = extTSPScore(MergedNodes, SelfEdge->jumps()); 913 } 914 915 // Remove the chain from the list of active chains. 916 llvm::erase_value(HotChains, From); 917 918 // Invalidate caches. 919 for (auto EdgeIt : Into->Edges) 920 EdgeIt.second->invalidateCache(); 921 } 922 923 /// Concatenate all chains into the final order. 924 std::vector<uint64_t> concatChains() { 925 // Collect chains and calculate density stats for their sorting. 926 std::vector<const ChainT *> SortedChains; 927 DenseMap<const ChainT *, double> ChainDensity; 928 for (ChainT &Chain : AllChains) { 929 if (!Chain.Nodes.empty()) { 930 SortedChains.push_back(&Chain); 931 // Using doubles to avoid overflow of ExecutionCounts. 932 double Size = 0; 933 double ExecutionCount = 0; 934 for (NodeT *Node : Chain.Nodes) { 935 Size += static_cast<double>(Node->Size); 936 ExecutionCount += static_cast<double>(Node->ExecutionCount); 937 } 938 assert(Size > 0 && "a chain of zero size"); 939 ChainDensity[&Chain] = ExecutionCount / Size; 940 } 941 } 942 943 // Sorting chains by density in the decreasing order. 944 std::sort(SortedChains.begin(), SortedChains.end(), 945 [&](const ChainT *L, const ChainT *R) { 946 // Place the entry point is at the beginning of the order. 947 if (L->isEntry() != R->isEntry()) 948 return L->isEntry(); 949 950 const double DL = ChainDensity[L]; 951 const double DR = ChainDensity[R]; 952 // Compare by density and break ties by chain identifiers. 953 return std::make_tuple(-DL, L->Id) < 954 std::make_tuple(-DR, R->Id); 955 }); 956 957 // Collect the nodes in the order specified by their chains. 958 std::vector<uint64_t> Order; 959 Order.reserve(NumNodes); 960 for (const ChainT *Chain : SortedChains) 961 for (NodeT *Node : Chain->Nodes) 962 Order.push_back(Node->Index); 963 return Order; 964 } 965 966 private: 967 /// The number of nodes in the graph. 968 const size_t NumNodes; 969 970 /// Successors of each node. 971 std::vector<std::vector<uint64_t>> SuccNodes; 972 973 /// Predecessors of each node. 974 std::vector<std::vector<uint64_t>> PredNodes; 975 976 /// All nodes (basic blocks) in the graph. 977 std::vector<NodeT> AllNodes; 978 979 /// All jumps between the nodes. 980 std::vector<JumpT> AllJumps; 981 982 /// All chains of nodes. 983 std::vector<ChainT> AllChains; 984 985 /// All edges between the chains. 986 std::vector<ChainEdge> AllEdges; 987 988 /// Active chains. The vector gets updated at runtime when chains are merged. 989 std::vector<ChainT *> HotChains; 990 }; 991 992 /// The implementation of the Cache-Directed Sort (CDS) algorithm for ordering 993 /// functions represented by a call graph. 994 class CDSortImpl { 995 public: 996 CDSortImpl(const CDSortConfig &Config, ArrayRef<uint64_t> NodeSizes, 997 ArrayRef<uint64_t> NodeCounts, ArrayRef<EdgeCount> EdgeCounts, 998 ArrayRef<uint64_t> EdgeOffsets) 999 : Config(Config), NumNodes(NodeSizes.size()) { 1000 initialize(NodeSizes, NodeCounts, EdgeCounts, EdgeOffsets); 1001 } 1002 1003 /// Run the algorithm and return an ordered set of function clusters. 1004 std::vector<uint64_t> run() { 1005 // Merge pairs of chains while improving the objective. 1006 mergeChainPairs(); 1007 1008 LLVM_DEBUG(dbgs() << "Cache-directed function sorting reduced the number" 1009 << " of chains from " << NumNodes << " to " 1010 << HotChains.size() << "\n"); 1011 1012 // Collect nodes from all the chains. 1013 return concatChains(); 1014 } 1015 1016 private: 1017 /// Initialize the algorithm's data structures. 1018 void initialize(const ArrayRef<uint64_t> &NodeSizes, 1019 const ArrayRef<uint64_t> &NodeCounts, 1020 const ArrayRef<EdgeCount> &EdgeCounts, 1021 const ArrayRef<uint64_t> &EdgeOffsets) { 1022 // Initialize nodes. 1023 AllNodes.reserve(NumNodes); 1024 for (uint64_t Node = 0; Node < NumNodes; Node++) { 1025 uint64_t Size = std::max<uint64_t>(NodeSizes[Node], 1ULL); 1026 uint64_t ExecutionCount = NodeCounts[Node]; 1027 AllNodes.emplace_back(Node, Size, ExecutionCount); 1028 TotalSamples += ExecutionCount; 1029 if (ExecutionCount > 0) 1030 TotalSize += Size; 1031 } 1032 1033 // Initialize jumps between the nodes. 1034 SuccNodes.resize(NumNodes); 1035 PredNodes.resize(NumNodes); 1036 AllJumps.reserve(EdgeCounts.size()); 1037 for (size_t I = 0; I < EdgeCounts.size(); I++) { 1038 auto [Pred, Succ, Count] = EdgeCounts[I]; 1039 // Ignore recursive calls. 1040 if (Pred == Succ) 1041 continue; 1042 1043 SuccNodes[Pred].push_back(Succ); 1044 PredNodes[Succ].push_back(Pred); 1045 if (Count > 0) { 1046 NodeT &PredNode = AllNodes[Pred]; 1047 NodeT &SuccNode = AllNodes[Succ]; 1048 AllJumps.emplace_back(&PredNode, &SuccNode, Count); 1049 AllJumps.back().Offset = EdgeOffsets[I]; 1050 SuccNode.InJumps.push_back(&AllJumps.back()); 1051 PredNode.OutJumps.push_back(&AllJumps.back()); 1052 } 1053 } 1054 1055 // Initialize chains. 1056 AllChains.reserve(NumNodes); 1057 HotChains.reserve(NumNodes); 1058 for (NodeT &Node : AllNodes) { 1059 // Adjust execution counts. 1060 Node.ExecutionCount = std::max(Node.ExecutionCount, Node.inCount()); 1061 Node.ExecutionCount = std::max(Node.ExecutionCount, Node.outCount()); 1062 // Create chain. 1063 AllChains.emplace_back(Node.Index, &Node); 1064 Node.CurChain = &AllChains.back(); 1065 if (Node.ExecutionCount > 0) 1066 HotChains.push_back(&AllChains.back()); 1067 } 1068 1069 // Initialize chain edges. 1070 AllEdges.reserve(AllJumps.size()); 1071 for (NodeT &PredNode : AllNodes) { 1072 for (JumpT *Jump : PredNode.OutJumps) { 1073 NodeT *SuccNode = Jump->Target; 1074 ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain); 1075 // this edge is already present in the graph. 1076 if (CurEdge != nullptr) { 1077 assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr); 1078 CurEdge->appendJump(Jump); 1079 continue; 1080 } 1081 // this is a new edge. 1082 AllEdges.emplace_back(Jump); 1083 PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back()); 1084 SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back()); 1085 } 1086 } 1087 } 1088 1089 /// Merge pairs of chains while there is an improvement in the objective. 1090 void mergeChainPairs() { 1091 // Create a priority queue containing all edges ordered by the merge gain. 1092 auto GainComparator = [](ChainEdge *L, ChainEdge *R) { 1093 return std::make_tuple(-L->gain(), L->srcChain()->Id, L->dstChain()->Id) < 1094 std::make_tuple(-R->gain(), R->srcChain()->Id, R->dstChain()->Id); 1095 }; 1096 std::set<ChainEdge *, decltype(GainComparator)> Queue(GainComparator); 1097 1098 // Insert the edges into the queue. 1099 for (ChainT *ChainPred : HotChains) { 1100 for (const auto &[_, Edge] : ChainPred->Edges) { 1101 // Ignore self-edges. 1102 if (Edge->isSelfEdge()) 1103 continue; 1104 // Ignore already processed edges. 1105 if (Edge->gain() != -1.0) 1106 continue; 1107 1108 // Compute the gain of merging the two chains. 1109 MergeGainT Gain = getBestMergeGain(Edge); 1110 Edge->setMergeGain(Gain); 1111 1112 if (Edge->gain() > EPS) 1113 Queue.insert(Edge); 1114 } 1115 } 1116 1117 // Merge the chains while the gain of merging is positive. 1118 while (!Queue.empty()) { 1119 // Extract the best (top) edge for merging. 1120 ChainEdge *BestEdge = *Queue.begin(); 1121 Queue.erase(Queue.begin()); 1122 // Ignore self-edges. 1123 if (BestEdge->isSelfEdge()) 1124 continue; 1125 // Ignore edges with non-positive gains. 1126 if (BestEdge->gain() <= EPS) 1127 continue; 1128 1129 ChainT *BestSrcChain = BestEdge->srcChain(); 1130 ChainT *BestDstChain = BestEdge->dstChain(); 1131 1132 // Remove outdated edges from the queue. 1133 for (const auto &[_, ChainEdge] : BestSrcChain->Edges) 1134 Queue.erase(ChainEdge); 1135 for (const auto &[_, ChainEdge] : BestDstChain->Edges) 1136 Queue.erase(ChainEdge); 1137 1138 // Merge the best pair of chains. 1139 MergeGainT BestGain = BestEdge->getMergeGain(); 1140 mergeChains(BestSrcChain, BestDstChain, BestGain.mergeOffset(), 1141 BestGain.mergeType()); 1142 1143 // Insert newly created edges into the queue. 1144 for (const auto &[_, Edge] : BestSrcChain->Edges) { 1145 // Ignore loop edges. 1146 if (Edge->isSelfEdge()) 1147 continue; 1148 1149 // Compute the gain of merging the two chains. 1150 MergeGainT Gain = getBestMergeGain(Edge); 1151 Edge->setMergeGain(Gain); 1152 1153 if (Edge->gain() > EPS) 1154 Queue.insert(Edge); 1155 } 1156 } 1157 } 1158 1159 /// Compute the gain of merging two chains. 1160 /// 1161 /// The function considers all possible ways of merging two chains and 1162 /// computes the one having the largest increase in ExtTSP objective. The 1163 /// result is a pair with the first element being the gain and the second 1164 /// element being the corresponding merging type. 1165 MergeGainT getBestMergeGain(ChainEdge *Edge) const { 1166 // Precompute jumps between ChainPred and ChainSucc. 1167 auto Jumps = Edge->jumps(); 1168 assert(!Jumps.empty() && "trying to merge chains w/o jumps"); 1169 ChainT *SrcChain = Edge->srcChain(); 1170 ChainT *DstChain = Edge->dstChain(); 1171 1172 // This object holds the best currently chosen gain of merging two chains. 1173 MergeGainT Gain = MergeGainT(); 1174 1175 /// Given a list of merge types, try to merge two chains and update Gain 1176 /// with a better alternative. 1177 auto tryChainMerging = [&](const std::vector<MergeTypeT> &MergeTypes) { 1178 // Apply the merge, compute the corresponding gain, and update the best 1179 // value, if the merge is beneficial. 1180 for (const MergeTypeT &MergeType : MergeTypes) { 1181 MergeGainT NewGain = 1182 computeMergeGain(SrcChain, DstChain, Jumps, MergeType); 1183 1184 // When forward and backward gains are the same, prioritize merging that 1185 // preserves the original order of the functions in the binary. 1186 if (std::abs(Gain.score() - NewGain.score()) < EPS) { 1187 if ((MergeType == MergeTypeT::X_Y && SrcChain->Id < DstChain->Id) || 1188 (MergeType == MergeTypeT::Y_X && SrcChain->Id > DstChain->Id)) { 1189 Gain = NewGain; 1190 } 1191 } else if (NewGain.score() > Gain.score() + EPS) { 1192 Gain = NewGain; 1193 } 1194 } 1195 }; 1196 1197 // Try to concatenate two chains w/o splitting. 1198 tryChainMerging({MergeTypeT::X_Y, MergeTypeT::Y_X}); 1199 1200 return Gain; 1201 } 1202 1203 /// Compute the score gain of merging two chains, respecting a given type. 1204 /// 1205 /// The two chains are not modified in the method. 1206 MergeGainT computeMergeGain(ChainT *ChainPred, ChainT *ChainSucc, 1207 const std::vector<JumpT *> &Jumps, 1208 MergeTypeT MergeType) const { 1209 // This doesn't depend on the ordering of the nodes 1210 double FreqGain = freqBasedLocalityGain(ChainPred, ChainSucc); 1211 1212 // Merge offset is always 0, as the chains are not split. 1213 size_t MergeOffset = 0; 1214 auto MergedBlocks = 1215 mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType); 1216 double DistGain = distBasedLocalityGain(MergedBlocks, Jumps); 1217 1218 double GainScore = DistGain + Config.FrequencyScale * FreqGain; 1219 // Scale the result to increase the importance of merging short chains. 1220 if (GainScore >= 0.0) 1221 GainScore /= std::min(ChainPred->Size, ChainSucc->Size); 1222 1223 return MergeGainT(GainScore, MergeOffset, MergeType); 1224 } 1225 1226 /// Compute the change of the frequency locality after merging the chains. 1227 double freqBasedLocalityGain(ChainT *ChainPred, ChainT *ChainSucc) const { 1228 auto missProbability = [&](double ChainDensity) { 1229 double PageSamples = ChainDensity * Config.CacheSize; 1230 if (PageSamples >= TotalSamples) 1231 return 0.0; 1232 double P = PageSamples / TotalSamples; 1233 return pow(1.0 - P, static_cast<double>(Config.CacheEntries)); 1234 }; 1235 1236 // Cache misses on the chains before merging. 1237 double CurScore = 1238 ChainPred->ExecutionCount * missProbability(ChainPred->density()) + 1239 ChainSucc->ExecutionCount * missProbability(ChainSucc->density()); 1240 1241 // Cache misses on the merged chain 1242 double MergedCounts = ChainPred->ExecutionCount + ChainSucc->ExecutionCount; 1243 double MergedSize = ChainPred->Size + ChainSucc->Size; 1244 double MergedDensity = static_cast<double>(MergedCounts) / MergedSize; 1245 double NewScore = MergedCounts * missProbability(MergedDensity); 1246 1247 return CurScore - NewScore; 1248 } 1249 1250 /// Compute the distance locality for a jump / call. 1251 double distScore(uint64_t SrcAddr, uint64_t DstAddr, uint64_t Count) const { 1252 uint64_t Dist = SrcAddr <= DstAddr ? DstAddr - SrcAddr : SrcAddr - DstAddr; 1253 double D = Dist == 0 ? 0.1 : static_cast<double>(Dist); 1254 return static_cast<double>(Count) * std::pow(D, -Config.DistancePower); 1255 } 1256 1257 /// Compute the change of the distance locality after merging the chains. 1258 double distBasedLocalityGain(const MergedChain &MergedBlocks, 1259 const std::vector<JumpT *> &Jumps) const { 1260 if (Jumps.empty()) 1261 return 0.0; 1262 uint64_t CurAddr = 0; 1263 MergedBlocks.forEach([&](const NodeT *Node) { 1264 Node->EstimatedAddr = CurAddr; 1265 CurAddr += Node->Size; 1266 }); 1267 1268 double CurScore = 0; 1269 double NewScore = 0; 1270 for (const JumpT *Arc : Jumps) { 1271 uint64_t SrcAddr = Arc->Source->EstimatedAddr + Arc->Offset; 1272 uint64_t DstAddr = Arc->Target->EstimatedAddr; 1273 NewScore += distScore(SrcAddr, DstAddr, Arc->ExecutionCount); 1274 CurScore += distScore(0, TotalSize, Arc->ExecutionCount); 1275 } 1276 return NewScore - CurScore; 1277 } 1278 1279 /// Merge chain From into chain Into, update the list of active chains, 1280 /// adjacency information, and the corresponding cached values. 1281 void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset, 1282 MergeTypeT MergeType) { 1283 assert(Into != From && "a chain cannot be merged with itself"); 1284 1285 // Merge the nodes. 1286 MergedChain MergedNodes = 1287 mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType); 1288 Into->merge(From, MergedNodes.getNodes()); 1289 1290 // Merge the edges. 1291 Into->mergeEdges(From); 1292 From->clear(); 1293 1294 // Remove the chain from the list of active chains. 1295 llvm::erase_value(HotChains, From); 1296 } 1297 1298 /// Concatenate all chains into the final order. 1299 std::vector<uint64_t> concatChains() { 1300 // Collect chains and calculate density stats for their sorting. 1301 std::vector<const ChainT *> SortedChains; 1302 DenseMap<const ChainT *, double> ChainDensity; 1303 for (ChainT &Chain : AllChains) { 1304 if (!Chain.Nodes.empty()) { 1305 SortedChains.push_back(&Chain); 1306 // Using doubles to avoid overflow of ExecutionCounts. 1307 double Size = 0; 1308 double ExecutionCount = 0; 1309 for (NodeT *Node : Chain.Nodes) { 1310 Size += static_cast<double>(Node->Size); 1311 ExecutionCount += static_cast<double>(Node->ExecutionCount); 1312 } 1313 assert(Size > 0 && "a chain of zero size"); 1314 ChainDensity[&Chain] = ExecutionCount / Size; 1315 } 1316 } 1317 1318 // Sort chains by density in the decreasing order. 1319 std::sort(SortedChains.begin(), SortedChains.end(), 1320 [&](const ChainT *L, const ChainT *R) { 1321 const double DL = ChainDensity[L]; 1322 const double DR = ChainDensity[R]; 1323 // Compare by density and break ties by chain identifiers. 1324 return std::make_tuple(-DL, L->Id) < 1325 std::make_tuple(-DR, R->Id); 1326 }); 1327 1328 // Collect the nodes in the order specified by their chains. 1329 std::vector<uint64_t> Order; 1330 Order.reserve(NumNodes); 1331 for (const ChainT *Chain : SortedChains) 1332 for (NodeT *Node : Chain->Nodes) 1333 Order.push_back(Node->Index); 1334 return Order; 1335 } 1336 1337 private: 1338 /// Config for the algorithm. 1339 const CDSortConfig Config; 1340 1341 /// The number of nodes in the graph. 1342 const size_t NumNodes; 1343 1344 /// Successors of each node. 1345 std::vector<std::vector<uint64_t>> SuccNodes; 1346 1347 /// Predecessors of each node. 1348 std::vector<std::vector<uint64_t>> PredNodes; 1349 1350 /// All nodes (functions) in the graph. 1351 std::vector<NodeT> AllNodes; 1352 1353 /// All jumps (function calls) between the nodes. 1354 std::vector<JumpT> AllJumps; 1355 1356 /// All chains of nodes. 1357 std::vector<ChainT> AllChains; 1358 1359 /// All edges between the chains. 1360 std::vector<ChainEdge> AllEdges; 1361 1362 /// Active chains. The vector gets updated at runtime when chains are merged. 1363 std::vector<ChainT *> HotChains; 1364 1365 /// The total number of samples in the graph. 1366 uint64_t TotalSamples{0}; 1367 1368 /// The total size of the nodes in the graph. 1369 uint64_t TotalSize{0}; 1370 }; 1371 1372 } // end of anonymous namespace 1373 1374 std::vector<uint64_t> 1375 codelayout::computeExtTspLayout(ArrayRef<uint64_t> NodeSizes, 1376 ArrayRef<uint64_t> NodeCounts, 1377 ArrayRef<EdgeCount> EdgeCounts) { 1378 // Verify correctness of the input data. 1379 assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input"); 1380 assert(NodeSizes.size() > 2 && "Incorrect input"); 1381 1382 // Apply the reordering algorithm. 1383 ExtTSPImpl Alg(NodeSizes, NodeCounts, EdgeCounts); 1384 std::vector<uint64_t> Result = Alg.run(); 1385 1386 // Verify correctness of the output. 1387 assert(Result.front() == 0 && "Original entry point is not preserved"); 1388 assert(Result.size() == NodeSizes.size() && "Incorrect size of layout"); 1389 return Result; 1390 } 1391 1392 double codelayout::calcExtTspScore(ArrayRef<uint64_t> Order, 1393 ArrayRef<uint64_t> NodeSizes, 1394 ArrayRef<uint64_t> NodeCounts, 1395 ArrayRef<EdgeCount> EdgeCounts) { 1396 // Estimate addresses of the blocks in memory. 1397 std::vector<uint64_t> Addr(NodeSizes.size(), 0); 1398 for (size_t Idx = 1; Idx < Order.size(); Idx++) { 1399 Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]]; 1400 } 1401 std::vector<uint64_t> OutDegree(NodeSizes.size(), 0); 1402 for (auto Edge : EdgeCounts) 1403 ++OutDegree[Edge.src]; 1404 1405 // Increase the score for each jump. 1406 double Score = 0; 1407 for (auto Edge : EdgeCounts) { 1408 bool IsConditional = OutDegree[Edge.src] > 1; 1409 Score += ::extTSPScore(Addr[Edge.src], NodeSizes[Edge.src], Addr[Edge.dst], 1410 Edge.count, IsConditional); 1411 } 1412 return Score; 1413 } 1414 1415 double codelayout::calcExtTspScore(ArrayRef<uint64_t> NodeSizes, 1416 ArrayRef<uint64_t> NodeCounts, 1417 ArrayRef<EdgeCount> EdgeCounts) { 1418 std::vector<uint64_t> Order(NodeSizes.size()); 1419 for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) { 1420 Order[Idx] = Idx; 1421 } 1422 return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts); 1423 } 1424 1425 std::vector<uint64_t> codelayout::computeCacheDirectedLayout( 1426 const CDSortConfig &Config, ArrayRef<uint64_t> FuncSizes, 1427 ArrayRef<uint64_t> FuncCounts, ArrayRef<EdgeCount> CallCounts, 1428 ArrayRef<uint64_t> CallOffsets) { 1429 // Verify correctness of the input data. 1430 assert(FuncCounts.size() == FuncSizes.size() && "Incorrect input"); 1431 1432 // Apply the reordering algorithm. 1433 CDSortImpl Alg(Config, FuncSizes, FuncCounts, CallCounts, CallOffsets); 1434 std::vector<uint64_t> Result = Alg.run(); 1435 assert(Result.size() == FuncSizes.size() && "Incorrect size of layout"); 1436 return Result; 1437 } 1438 1439 std::vector<uint64_t> codelayout::computeCacheDirectedLayout( 1440 ArrayRef<uint64_t> FuncSizes, ArrayRef<uint64_t> FuncCounts, 1441 ArrayRef<EdgeCount> CallCounts, ArrayRef<uint64_t> CallOffsets) { 1442 CDSortConfig Config; 1443 // Populate the config from the command-line options. 1444 if (CacheEntries.getNumOccurrences() > 0) 1445 Config.CacheEntries = CacheEntries; 1446 if (CacheSize.getNumOccurrences() > 0) 1447 Config.CacheSize = CacheSize; 1448 if (DistancePower.getNumOccurrences() > 0) 1449 Config.DistancePower = DistancePower; 1450 if (FrequencyScale.getNumOccurrences() > 0) 1451 Config.FrequencyScale = FrequencyScale; 1452 return computeCacheDirectedLayout(Config, FuncSizes, FuncCounts, CallCounts, 1453 CallOffsets); 1454 } 1455