xref: /llvm-project/llvm/lib/Transforms/Utils/CodeLayout.cpp (revision 5b39d8d3db1648076f6ea918b4b12d84ce3ad1e9)
1 //===- CodeLayout.cpp - Implementation of code layout algorithms ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The file implements "cache-aware" layout algorithms of basic blocks and
10 // functions in a binary.
11 //
12 // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
13 // optimizing jump locality and thus processor I-cache utilization. This is
14 // achieved via increasing the number of fall-through jumps and co-locating
15 // frequently executed nodes together. The name follows the underlying
16 // optimization problem, Extended-TSP, which is a generalization of classical
17 // (maximum) Traveling Salesmen Problem.
18 //
19 // The algorithm is a greedy heuristic that works with chains (ordered lists)
20 // of basic blocks. Initially all chains are isolated basic blocks. On every
21 // iteration, we pick a pair of chains whose merging yields the biggest increase
22 // in the ExtTSP score, which models how i-cache "friendly" a specific chain is.
23 // A pair of chains giving the maximum gain is merged into a new chain. The
24 // procedure stops when there is only one chain left, or when merging does not
25 // increase ExtTSP. In the latter case, the remaining chains are sorted by
26 // density in the decreasing order.
27 //
28 // An important aspect is the way two chains are merged. Unlike earlier
29 // algorithms (e.g., based on the approach of Pettis-Hansen), two
30 // chains, X and Y, are first split into three, X1, X2, and Y. Then we
31 // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
32 // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
33 // This improves the quality of the final result (the search space is larger)
34 // while keeping the implementation sufficiently fast.
35 //
36 // Reference:
37 //   * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
38 //     IEEE Transactions on Computers, 2020
39 //     https://arxiv.org/abs/1809.04676
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "llvm/Transforms/Utils/CodeLayout.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 
47 #include <cmath>
48 #include <set>
49 
50 using namespace llvm;
51 using namespace llvm::codelayout;
52 
53 #define DEBUG_TYPE "code-layout"
54 
55 namespace llvm {
56 cl::opt<bool> EnableExtTspBlockPlacement(
57     "enable-ext-tsp-block-placement", cl::Hidden, cl::init(false),
58     cl::desc("Enable machine block placement based on the ext-tsp model, "
59              "optimizing I-cache utilization."));
60 
61 cl::opt<bool> ApplyExtTspWithoutProfile(
62     "ext-tsp-apply-without-profile",
63     cl::desc("Whether to apply ext-tsp placement for instances w/o profile"),
64     cl::init(true), cl::Hidden);
65 } // namespace llvm
66 
67 // Algorithm-specific params for Ext-TSP. The values are tuned for the best
68 // performance of large-scale front-end bound binaries.
69 static cl::opt<double> ForwardWeightCond(
70     "ext-tsp-forward-weight-cond", cl::ReallyHidden, cl::init(0.1),
71     cl::desc("The weight of conditional forward jumps for ExtTSP value"));
72 
73 static cl::opt<double> ForwardWeightUncond(
74     "ext-tsp-forward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
75     cl::desc("The weight of unconditional forward jumps for ExtTSP value"));
76 
77 static cl::opt<double> BackwardWeightCond(
78     "ext-tsp-backward-weight-cond", cl::ReallyHidden, cl::init(0.1),
79     cl::desc("The weight of conditional backward jumps for ExtTSP value"));
80 
81 static cl::opt<double> BackwardWeightUncond(
82     "ext-tsp-backward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
83     cl::desc("The weight of unconditional backward jumps for ExtTSP value"));
84 
85 static cl::opt<double> FallthroughWeightCond(
86     "ext-tsp-fallthrough-weight-cond", cl::ReallyHidden, cl::init(1.0),
87     cl::desc("The weight of conditional fallthrough jumps for ExtTSP value"));
88 
89 static cl::opt<double> FallthroughWeightUncond(
90     "ext-tsp-fallthrough-weight-uncond", cl::ReallyHidden, cl::init(1.05),
91     cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value"));
92 
93 static cl::opt<unsigned> ForwardDistance(
94     "ext-tsp-forward-distance", cl::ReallyHidden, cl::init(1024),
95     cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"));
96 
97 static cl::opt<unsigned> BackwardDistance(
98     "ext-tsp-backward-distance", cl::ReallyHidden, cl::init(640),
99     cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"));
100 
101 // The maximum size of a chain created by the algorithm. The size is bounded
102 // so that the algorithm can efficiently process extremely large instance.
103 static cl::opt<unsigned>
104     MaxChainSize("ext-tsp-max-chain-size", cl::ReallyHidden, cl::init(4096),
105                  cl::desc("The maximum size of a chain to create."));
106 
107 // The maximum size of a chain for splitting. Larger values of the threshold
108 // may yield better quality at the cost of worsen run-time.
109 static cl::opt<unsigned> ChainSplitThreshold(
110     "ext-tsp-chain-split-threshold", cl::ReallyHidden, cl::init(128),
111     cl::desc("The maximum size of a chain to apply splitting"));
112 
113 // The option enables splitting (large) chains along in-coming and out-going
114 // jumps. This typically results in a better quality.
115 static cl::opt<bool> EnableChainSplitAlongJumps(
116     "ext-tsp-enable-chain-split-along-jumps", cl::ReallyHidden, cl::init(true),
117     cl::desc("The maximum size of a chain to apply splitting"));
118 
119 // Algorithm-specific options for CDS.
120 static cl::opt<unsigned> CacheEntries("cds-cache-entries", cl::ReallyHidden,
121                                       cl::desc("The size of the cache"));
122 
123 static cl::opt<unsigned> CacheSize("cds-cache-size", cl::ReallyHidden,
124                                    cl::desc("The size of a line in the cache"));
125 
126 static cl::opt<double> DistancePower(
127     "cds-distance-power", cl::ReallyHidden,
128     cl::desc("The power exponent for the distance-based locality"));
129 
130 static cl::opt<double> FrequencyScale(
131     "cds-frequency-scale", cl::ReallyHidden,
132     cl::desc("The scale factor for the frequency-based locality"));
133 
134 namespace {
135 
136 // Epsilon for comparison of doubles.
137 constexpr double EPS = 1e-8;
138 
139 // Compute the Ext-TSP score for a given jump.
140 double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count,
141                        double Weight) {
142   if (JumpDist > JumpMaxDist)
143     return 0;
144   double Prob = 1.0 - static_cast<double>(JumpDist) / JumpMaxDist;
145   return Weight * Prob * Count;
146 }
147 
148 // Compute the Ext-TSP score for a jump between a given pair of blocks,
149 // using their sizes, (estimated) addresses and the jump execution count.
150 double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
151                    uint64_t Count, bool IsConditional) {
152   // Fallthrough
153   if (SrcAddr + SrcSize == DstAddr) {
154     return jumpExtTSPScore(0, 1, Count,
155                            IsConditional ? FallthroughWeightCond
156                                          : FallthroughWeightUncond);
157   }
158   // Forward
159   if (SrcAddr + SrcSize < DstAddr) {
160     const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
161     return jumpExtTSPScore(Dist, ForwardDistance, Count,
162                            IsConditional ? ForwardWeightCond
163                                          : ForwardWeightUncond);
164   }
165   // Backward
166   const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
167   return jumpExtTSPScore(Dist, BackwardDistance, Count,
168                          IsConditional ? BackwardWeightCond
169                                        : BackwardWeightUncond);
170 }
171 
172 /// A type of merging two chains, X and Y. The former chain is split into
173 /// X1 and X2 and then concatenated with Y in the order specified by the type.
174 enum class MergeTypeT : int { X_Y, Y_X, X1_Y_X2, Y_X2_X1, X2_X1_Y };
175 
176 /// The gain of merging two chains, that is, the Ext-TSP score of the merge
177 /// together with the corresponding merge 'type' and 'offset'.
178 struct MergeGainT {
179   explicit MergeGainT() = default;
180   explicit MergeGainT(double Score, size_t MergeOffset, MergeTypeT MergeType)
181       : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
182 
183   double score() const { return Score; }
184 
185   size_t mergeOffset() const { return MergeOffset; }
186 
187   MergeTypeT mergeType() const { return MergeType; }
188 
189   void setMergeType(MergeTypeT Ty) { MergeType = Ty; }
190 
191   // Returns 'true' iff Other is preferred over this.
192   bool operator<(const MergeGainT &Other) const {
193     return (Other.Score > EPS && Other.Score > Score + EPS);
194   }
195 
196   // Update the current gain if Other is preferred over this.
197   void updateIfLessThan(const MergeGainT &Other) {
198     if (*this < Other)
199       *this = Other;
200   }
201 
202 private:
203   double Score{-1.0};
204   size_t MergeOffset{0};
205   MergeTypeT MergeType{MergeTypeT::X_Y};
206 };
207 
208 struct JumpT;
209 struct ChainT;
210 struct ChainEdge;
211 
212 /// A node in the graph, typically corresponding to a basic block in the CFG or
213 /// a function in the call graph.
214 struct NodeT {
215   NodeT(const NodeT &) = delete;
216   NodeT(NodeT &&) = default;
217   NodeT &operator=(const NodeT &) = delete;
218   NodeT &operator=(NodeT &&) = default;
219 
220   explicit NodeT(size_t Index, uint64_t Size, uint64_t EC)
221       : Index(Index), Size(Size), ExecutionCount(EC) {}
222 
223   bool isEntry() const { return Index == 0; }
224 
225   // The total execution count of outgoing jumps.
226   uint64_t outCount() const;
227 
228   // The total execution count of incoming jumps.
229   uint64_t inCount() const;
230 
231   // The original index of the node in graph.
232   size_t Index{0};
233   // The index of the node in the current chain.
234   size_t CurIndex{0};
235   // The size of the node in the binary.
236   uint64_t Size{0};
237   // The execution count of the node in the profile data.
238   uint64_t ExecutionCount{0};
239   // The current chain of the node.
240   ChainT *CurChain{nullptr};
241   // The offset of the node in the current chain.
242   mutable uint64_t EstimatedAddr{0};
243   // Forced successor of the node in the graph.
244   NodeT *ForcedSucc{nullptr};
245   // Forced predecessor of the node in the graph.
246   NodeT *ForcedPred{nullptr};
247   // Outgoing jumps from the node.
248   std::vector<JumpT *> OutJumps;
249   // Incoming jumps to the node.
250   std::vector<JumpT *> InJumps;
251 };
252 
253 /// An arc in the graph, typically corresponding to a jump between two nodes.
254 struct JumpT {
255   JumpT(const JumpT &) = delete;
256   JumpT(JumpT &&) = default;
257   JumpT &operator=(const JumpT &) = delete;
258   JumpT &operator=(JumpT &&) = default;
259 
260   explicit JumpT(NodeT *Source, NodeT *Target, uint64_t ExecutionCount)
261       : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {}
262 
263   // Source node of the jump.
264   NodeT *Source;
265   // Target node of the jump.
266   NodeT *Target;
267   // Execution count of the arc in the profile data.
268   uint64_t ExecutionCount{0};
269   // Whether the jump corresponds to a conditional branch.
270   bool IsConditional{false};
271   // The offset of the jump from the source node.
272   uint64_t Offset{0};
273 };
274 
275 /// A chain (ordered sequence) of nodes in the graph.
276 struct ChainT {
277   ChainT(const ChainT &) = delete;
278   ChainT(ChainT &&) = default;
279   ChainT &operator=(const ChainT &) = delete;
280   ChainT &operator=(ChainT &&) = default;
281 
282   explicit ChainT(uint64_t Id, NodeT *Node)
283       : Id(Id), ExecutionCount(Node->ExecutionCount), Size(Node->Size),
284         Nodes(1, Node) {}
285 
286   size_t numBlocks() const { return Nodes.size(); }
287 
288   double density() const { return static_cast<double>(ExecutionCount) / Size; }
289 
290   bool isEntry() const { return Nodes[0]->Index == 0; }
291 
292   bool isCold() const {
293     for (NodeT *Node : Nodes) {
294       if (Node->ExecutionCount > 0)
295         return false;
296     }
297     return true;
298   }
299 
300   ChainEdge *getEdge(ChainT *Other) const {
301     for (const auto &[Chain, ChainEdge] : Edges) {
302       if (Chain == Other)
303         return ChainEdge;
304     }
305     return nullptr;
306   }
307 
308   void removeEdge(ChainT *Other) {
309     auto It = Edges.begin();
310     while (It != Edges.end()) {
311       if (It->first == Other) {
312         Edges.erase(It);
313         return;
314       }
315       It++;
316     }
317   }
318 
319   void addEdge(ChainT *Other, ChainEdge *Edge) {
320     Edges.push_back(std::make_pair(Other, Edge));
321   }
322 
323   void merge(ChainT *Other, std::vector<NodeT *> MergedBlocks) {
324     Nodes = std::move(MergedBlocks);
325     // Update the chain's data.
326     ExecutionCount += Other->ExecutionCount;
327     Size += Other->Size;
328     Id = Nodes[0]->Index;
329     // Update the node's data.
330     for (size_t Idx = 0; Idx < Nodes.size(); Idx++) {
331       Nodes[Idx]->CurChain = this;
332       Nodes[Idx]->CurIndex = Idx;
333     }
334   }
335 
336   void mergeEdges(ChainT *Other);
337 
338   void clear() {
339     Nodes.clear();
340     Nodes.shrink_to_fit();
341     Edges.clear();
342     Edges.shrink_to_fit();
343   }
344 
345   // Unique chain identifier.
346   uint64_t Id;
347   // Cached ext-tsp score for the chain.
348   double Score{0};
349   // The total execution count of the chain.
350   uint64_t ExecutionCount{0};
351   // The total size of the chain.
352   uint64_t Size{0};
353   // Nodes of the chain.
354   std::vector<NodeT *> Nodes;
355   // Adjacent chains and corresponding edges (lists of jumps).
356   std::vector<std::pair<ChainT *, ChainEdge *>> Edges;
357 };
358 
359 /// An edge in the graph representing jumps between two chains.
360 /// When nodes are merged into chains, the edges are combined too so that
361 /// there is always at most one edge between a pair of chains.
362 struct ChainEdge {
363   ChainEdge(const ChainEdge &) = delete;
364   ChainEdge(ChainEdge &&) = default;
365   ChainEdge &operator=(const ChainEdge &) = delete;
366   ChainEdge &operator=(ChainEdge &&) = delete;
367 
368   explicit ChainEdge(JumpT *Jump)
369       : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain),
370         Jumps(1, Jump) {}
371 
372   ChainT *srcChain() const { return SrcChain; }
373 
374   ChainT *dstChain() const { return DstChain; }
375 
376   bool isSelfEdge() const { return SrcChain == DstChain; }
377 
378   const std::vector<JumpT *> &jumps() const { return Jumps; }
379 
380   void appendJump(JumpT *Jump) { Jumps.push_back(Jump); }
381 
382   void moveJumps(ChainEdge *Other) {
383     Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
384     Other->Jumps.clear();
385     Other->Jumps.shrink_to_fit();
386   }
387 
388   void changeEndpoint(ChainT *From, ChainT *To) {
389     if (From == SrcChain)
390       SrcChain = To;
391     if (From == DstChain)
392       DstChain = To;
393   }
394 
395   bool hasCachedMergeGain(ChainT *Src, ChainT *Dst) const {
396     return Src == SrcChain ? CacheValidForward : CacheValidBackward;
397   }
398 
399   MergeGainT getCachedMergeGain(ChainT *Src, ChainT *Dst) const {
400     return Src == SrcChain ? CachedGainForward : CachedGainBackward;
401   }
402 
403   void setCachedMergeGain(ChainT *Src, ChainT *Dst, MergeGainT MergeGain) {
404     if (Src == SrcChain) {
405       CachedGainForward = MergeGain;
406       CacheValidForward = true;
407     } else {
408       CachedGainBackward = MergeGain;
409       CacheValidBackward = true;
410     }
411   }
412 
413   void invalidateCache() {
414     CacheValidForward = false;
415     CacheValidBackward = false;
416   }
417 
418   void setMergeGain(MergeGainT Gain) { CachedGain = Gain; }
419 
420   MergeGainT getMergeGain() const { return CachedGain; }
421 
422   double gain() const { return CachedGain.score(); }
423 
424 private:
425   // Source chain.
426   ChainT *SrcChain{nullptr};
427   // Destination chain.
428   ChainT *DstChain{nullptr};
429   // Original jumps in the binary with corresponding execution counts.
430   std::vector<JumpT *> Jumps;
431   // Cached gain value for merging the pair of chains.
432   MergeGainT CachedGain;
433 
434   // Cached gain values for merging the pair of chains. Since the gain of
435   // merging (Src, Dst) and (Dst, Src) might be different, we store both values
436   // here and a flag indicating which of the options results in a higher gain.
437   // Cached gain values.
438   MergeGainT CachedGainForward;
439   MergeGainT CachedGainBackward;
440   // Whether the cached value must be recomputed.
441   bool CacheValidForward{false};
442   bool CacheValidBackward{false};
443 };
444 
445 uint64_t NodeT::outCount() const {
446   uint64_t Count = 0;
447   for (JumpT *Jump : OutJumps)
448     Count += Jump->ExecutionCount;
449   return Count;
450 }
451 
452 uint64_t NodeT::inCount() const {
453   uint64_t Count = 0;
454   for (JumpT *Jump : InJumps)
455     Count += Jump->ExecutionCount;
456   return Count;
457 }
458 
459 void ChainT::mergeEdges(ChainT *Other) {
460   // Update edges adjacent to chain Other.
461   for (const auto &[DstChain, DstEdge] : Other->Edges) {
462     ChainT *TargetChain = DstChain == Other ? this : DstChain;
463     ChainEdge *CurEdge = getEdge(TargetChain);
464     if (CurEdge == nullptr) {
465       DstEdge->changeEndpoint(Other, this);
466       this->addEdge(TargetChain, DstEdge);
467       if (DstChain != this && DstChain != Other)
468         DstChain->addEdge(this, DstEdge);
469     } else {
470       CurEdge->moveJumps(DstEdge);
471     }
472     // Cleanup leftover edge.
473     if (DstChain != Other)
474       DstChain->removeEdge(Other);
475   }
476 }
477 
478 using NodeIter = std::vector<NodeT *>::const_iterator;
479 
480 /// A wrapper around three chains of nodes; it is used to avoid extra
481 /// instantiation of the vectors.
482 struct MergedChain {
483   MergedChain(NodeIter Begin1, NodeIter End1, NodeIter Begin2 = NodeIter(),
484               NodeIter End2 = NodeIter(), NodeIter Begin3 = NodeIter(),
485               NodeIter End3 = NodeIter())
486       : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
487         End3(End3) {}
488 
489   template <typename F> void forEach(const F &Func) const {
490     for (auto It = Begin1; It != End1; It++)
491       Func(*It);
492     for (auto It = Begin2; It != End2; It++)
493       Func(*It);
494     for (auto It = Begin3; It != End3; It++)
495       Func(*It);
496   }
497 
498   std::vector<NodeT *> getNodes() const {
499     std::vector<NodeT *> Result;
500     Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
501                    std::distance(Begin3, End3));
502     Result.insert(Result.end(), Begin1, End1);
503     Result.insert(Result.end(), Begin2, End2);
504     Result.insert(Result.end(), Begin3, End3);
505     return Result;
506   }
507 
508   const NodeT *getFirstNode() const { return *Begin1; }
509 
510 private:
511   NodeIter Begin1;
512   NodeIter End1;
513   NodeIter Begin2;
514   NodeIter End2;
515   NodeIter Begin3;
516   NodeIter End3;
517 };
518 
519 /// Merge two chains of nodes respecting a given 'type' and 'offset'.
520 ///
521 /// If MergeType == 0, then the result is a concatenation of two chains.
522 /// Otherwise, the first chain is cut into two sub-chains at the offset,
523 /// and merged using all possible ways of concatenating three chains.
524 MergedChain mergeNodes(const std::vector<NodeT *> &X,
525                        const std::vector<NodeT *> &Y, size_t MergeOffset,
526                        MergeTypeT MergeType) {
527   // Split the first chain, X, into X1 and X2.
528   NodeIter BeginX1 = X.begin();
529   NodeIter EndX1 = X.begin() + MergeOffset;
530   NodeIter BeginX2 = X.begin() + MergeOffset;
531   NodeIter EndX2 = X.end();
532   NodeIter BeginY = Y.begin();
533   NodeIter EndY = Y.end();
534 
535   // Construct a new chain from the three existing ones.
536   switch (MergeType) {
537   case MergeTypeT::X_Y:
538     return MergedChain(BeginX1, EndX2, BeginY, EndY);
539   case MergeTypeT::Y_X:
540     return MergedChain(BeginY, EndY, BeginX1, EndX2);
541   case MergeTypeT::X1_Y_X2:
542     return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
543   case MergeTypeT::Y_X2_X1:
544     return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
545   case MergeTypeT::X2_X1_Y:
546     return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
547   }
548   llvm_unreachable("unexpected chain merge type");
549 }
550 
551 /// The implementation of the ExtTSP algorithm.
552 class ExtTSPImpl {
553 public:
554   ExtTSPImpl(ArrayRef<uint64_t> NodeSizes, ArrayRef<uint64_t> NodeCounts,
555              ArrayRef<EdgeCount> EdgeCounts)
556       : NumNodes(NodeSizes.size()) {
557     initialize(NodeSizes, NodeCounts, EdgeCounts);
558   }
559 
560   /// Run the algorithm and return an optimized ordering of nodes.
561   std::vector<uint64_t> run() {
562     // Pass 1: Merge nodes with their mutually forced successors
563     mergeForcedPairs();
564 
565     // Pass 2: Merge pairs of chains while improving the ExtTSP objective
566     mergeChainPairs();
567 
568     // Pass 3: Merge cold nodes to reduce code size
569     mergeColdChains();
570 
571     // Collect nodes from all chains
572     return concatChains();
573   }
574 
575 private:
576   /// Initialize the algorithm's data structures.
577   void initialize(const ArrayRef<uint64_t> &NodeSizes,
578                   const ArrayRef<uint64_t> &NodeCounts,
579                   const ArrayRef<EdgeCount> &EdgeCounts) {
580     // Initialize nodes
581     AllNodes.reserve(NumNodes);
582     for (uint64_t Idx = 0; Idx < NumNodes; Idx++) {
583       uint64_t Size = std::max<uint64_t>(NodeSizes[Idx], 1ULL);
584       uint64_t ExecutionCount = NodeCounts[Idx];
585       // The execution count of the entry node is set to at least one.
586       if (Idx == 0 && ExecutionCount == 0)
587         ExecutionCount = 1;
588       AllNodes.emplace_back(Idx, Size, ExecutionCount);
589     }
590 
591     // Initialize jumps between nodes
592     SuccNodes.resize(NumNodes);
593     PredNodes.resize(NumNodes);
594     std::vector<uint64_t> OutDegree(NumNodes, 0);
595     AllJumps.reserve(EdgeCounts.size());
596     for (auto Edge : EdgeCounts) {
597       ++OutDegree[Edge.src];
598       // Ignore self-edges.
599       if (Edge.src == Edge.dst)
600         continue;
601 
602       SuccNodes[Edge.src].push_back(Edge.dst);
603       PredNodes[Edge.dst].push_back(Edge.src);
604       if (Edge.count > 0) {
605         NodeT &PredNode = AllNodes[Edge.src];
606         NodeT &SuccNode = AllNodes[Edge.dst];
607         AllJumps.emplace_back(&PredNode, &SuccNode, Edge.count);
608         SuccNode.InJumps.push_back(&AllJumps.back());
609         PredNode.OutJumps.push_back(&AllJumps.back());
610       }
611     }
612     for (JumpT &Jump : AllJumps) {
613       assert(OutDegree[Jump.Source->Index] > 0);
614       Jump.IsConditional = OutDegree[Jump.Source->Index] > 1;
615     }
616 
617     // Initialize chains.
618     AllChains.reserve(NumNodes);
619     HotChains.reserve(NumNodes);
620     for (NodeT &Node : AllNodes) {
621       AllChains.emplace_back(Node.Index, &Node);
622       Node.CurChain = &AllChains.back();
623       if (Node.ExecutionCount > 0)
624         HotChains.push_back(&AllChains.back());
625     }
626 
627     // Initialize chain edges.
628     AllEdges.reserve(AllJumps.size());
629     for (NodeT &PredNode : AllNodes) {
630       for (JumpT *Jump : PredNode.OutJumps) {
631         NodeT *SuccNode = Jump->Target;
632         ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
633         // this edge is already present in the graph.
634         if (CurEdge != nullptr) {
635           assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
636           CurEdge->appendJump(Jump);
637           continue;
638         }
639         // this is a new edge.
640         AllEdges.emplace_back(Jump);
641         PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
642         SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
643       }
644     }
645   }
646 
647   /// For a pair of nodes, A and B, node B is the forced successor of A,
648   /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
649   /// to B are from A. Such nodes should be adjacent in the optimal ordering;
650   /// the method finds and merges such pairs of nodes.
651   void mergeForcedPairs() {
652     // Find fallthroughs based on edge weights.
653     for (NodeT &Node : AllNodes) {
654       if (SuccNodes[Node.Index].size() == 1 &&
655           PredNodes[SuccNodes[Node.Index][0]].size() == 1 &&
656           SuccNodes[Node.Index][0] != 0) {
657         size_t SuccIndex = SuccNodes[Node.Index][0];
658         Node.ForcedSucc = &AllNodes[SuccIndex];
659         AllNodes[SuccIndex].ForcedPred = &Node;
660       }
661     }
662 
663     // There might be 'cycles' in the forced dependencies, since profile
664     // data isn't 100% accurate. Typically this is observed in loops, when the
665     // loop edges are the hottest successors for the basic blocks of the loop.
666     // Break the cycles by choosing the node with the smallest index as the
667     // head. This helps to keep the original order of the loops, which likely
668     // have already been rotated in the optimized manner.
669     for (NodeT &Node : AllNodes) {
670       if (Node.ForcedSucc == nullptr || Node.ForcedPred == nullptr)
671         continue;
672 
673       NodeT *SuccNode = Node.ForcedSucc;
674       while (SuccNode != nullptr && SuccNode != &Node) {
675         SuccNode = SuccNode->ForcedSucc;
676       }
677       if (SuccNode == nullptr)
678         continue;
679       // Break the cycle.
680       AllNodes[Node.ForcedPred->Index].ForcedSucc = nullptr;
681       Node.ForcedPred = nullptr;
682     }
683 
684     // Merge nodes with their fallthrough successors.
685     for (NodeT &Node : AllNodes) {
686       if (Node.ForcedPred == nullptr && Node.ForcedSucc != nullptr) {
687         const NodeT *CurBlock = &Node;
688         while (CurBlock->ForcedSucc != nullptr) {
689           const NodeT *NextBlock = CurBlock->ForcedSucc;
690           mergeChains(Node.CurChain, NextBlock->CurChain, 0, MergeTypeT::X_Y);
691           CurBlock = NextBlock;
692         }
693       }
694     }
695   }
696 
697   /// Merge pairs of chains while improving the ExtTSP objective.
698   void mergeChainPairs() {
699     /// Deterministically compare pairs of chains.
700     auto compareChainPairs = [](const ChainT *A1, const ChainT *B1,
701                                 const ChainT *A2, const ChainT *B2) {
702       if (A1 != A2)
703         return A1->Id < A2->Id;
704       return B1->Id < B2->Id;
705     };
706 
707     while (HotChains.size() > 1) {
708       ChainT *BestChainPred = nullptr;
709       ChainT *BestChainSucc = nullptr;
710       MergeGainT BestGain;
711       // Iterate over all pairs of chains.
712       for (ChainT *ChainPred : HotChains) {
713         // Get candidates for merging with the current chain.
714         for (const auto &[ChainSucc, Edge] : ChainPred->Edges) {
715           // Ignore loop edges.
716           if (ChainPred == ChainSucc)
717             continue;
718 
719           // Stop early if the combined chain violates the maximum allowed size.
720           if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize)
721             continue;
722 
723           // Compute the gain of merging the two chains.
724           MergeGainT CurGain = getBestMergeGain(ChainPred, ChainSucc, Edge);
725           if (CurGain.score() <= EPS)
726             continue;
727 
728           if (BestGain < CurGain ||
729               (std::abs(CurGain.score() - BestGain.score()) < EPS &&
730                compareChainPairs(ChainPred, ChainSucc, BestChainPred,
731                                  BestChainSucc))) {
732             BestGain = CurGain;
733             BestChainPred = ChainPred;
734             BestChainSucc = ChainSucc;
735           }
736         }
737       }
738 
739       // Stop merging when there is no improvement.
740       if (BestGain.score() <= EPS)
741         break;
742 
743       // Merge the best pair of chains.
744       mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
745                   BestGain.mergeType());
746     }
747   }
748 
749   /// Merge remaining nodes into chains w/o taking jump counts into
750   /// consideration. This allows to maintain the original node order in the
751   /// absence of profile data.
752   void mergeColdChains() {
753     for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) {
754       // Iterating in reverse order to make sure original fallthrough jumps are
755       // merged first; this might be beneficial for code size.
756       size_t NumSuccs = SuccNodes[SrcBB].size();
757       for (size_t Idx = 0; Idx < NumSuccs; Idx++) {
758         size_t DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1];
759         ChainT *SrcChain = AllNodes[SrcBB].CurChain;
760         ChainT *DstChain = AllNodes[DstBB].CurChain;
761         if (SrcChain != DstChain && !DstChain->isEntry() &&
762             SrcChain->Nodes.back()->Index == SrcBB &&
763             DstChain->Nodes.front()->Index == DstBB &&
764             SrcChain->isCold() == DstChain->isCold()) {
765           mergeChains(SrcChain, DstChain, 0, MergeTypeT::X_Y);
766         }
767       }
768     }
769   }
770 
771   /// Compute the Ext-TSP score for a given node order and a list of jumps.
772   double extTSPScore(const MergedChain &MergedBlocks,
773                      const std::vector<JumpT *> &Jumps) const {
774     if (Jumps.empty())
775       return 0.0;
776     uint64_t CurAddr = 0;
777     MergedBlocks.forEach([&](const NodeT *Node) {
778       Node->EstimatedAddr = CurAddr;
779       CurAddr += Node->Size;
780     });
781 
782     double Score = 0;
783     for (JumpT *Jump : Jumps) {
784       const NodeT *SrcBlock = Jump->Source;
785       const NodeT *DstBlock = Jump->Target;
786       Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
787                              DstBlock->EstimatedAddr, Jump->ExecutionCount,
788                              Jump->IsConditional);
789     }
790     return Score;
791   }
792 
793   /// Compute the gain of merging two chains.
794   ///
795   /// The function considers all possible ways of merging two chains and
796   /// computes the one having the largest increase in ExtTSP objective. The
797   /// result is a pair with the first element being the gain and the second
798   /// element being the corresponding merging type.
799   MergeGainT getBestMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
800                               ChainEdge *Edge) const {
801     if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) {
802       return Edge->getCachedMergeGain(ChainPred, ChainSucc);
803     }
804 
805     // Precompute jumps between ChainPred and ChainSucc.
806     auto Jumps = Edge->jumps();
807     ChainEdge *EdgePP = ChainPred->getEdge(ChainPred);
808     if (EdgePP != nullptr) {
809       Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end());
810     }
811     assert(!Jumps.empty() && "trying to merge chains w/o jumps");
812 
813     // This object holds the best chosen gain of merging two chains.
814     MergeGainT Gain = MergeGainT();
815 
816     /// Given a merge offset and a list of merge types, try to merge two chains
817     /// and update Gain with a better alternative.
818     auto tryChainMerging = [&](size_t Offset,
819                                const std::vector<MergeTypeT> &MergeTypes) {
820       // Skip merging corresponding to concatenation w/o splitting.
821       if (Offset == 0 || Offset == ChainPred->Nodes.size())
822         return;
823       // Skip merging if it breaks Forced successors.
824       NodeT *Node = ChainPred->Nodes[Offset - 1];
825       if (Node->ForcedSucc != nullptr)
826         return;
827       // Apply the merge, compute the corresponding gain, and update the best
828       // value, if the merge is beneficial.
829       for (const MergeTypeT &MergeType : MergeTypes) {
830         Gain.updateIfLessThan(
831             computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType));
832       }
833     };
834 
835     // Try to concatenate two chains w/o splitting.
836     Gain.updateIfLessThan(
837         computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeT::X_Y));
838 
839     if (EnableChainSplitAlongJumps) {
840       // Attach (a part of) ChainPred before the first node of ChainSucc.
841       for (JumpT *Jump : ChainSucc->Nodes.front()->InJumps) {
842         const NodeT *SrcBlock = Jump->Source;
843         if (SrcBlock->CurChain != ChainPred)
844           continue;
845         size_t Offset = SrcBlock->CurIndex + 1;
846         tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::X2_X1_Y});
847       }
848 
849       // Attach (a part of) ChainPred after the last node of ChainSucc.
850       for (JumpT *Jump : ChainSucc->Nodes.back()->OutJumps) {
851         const NodeT *DstBlock = Jump->Target;
852         if (DstBlock->CurChain != ChainPred)
853           continue;
854         size_t Offset = DstBlock->CurIndex;
855         tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1});
856       }
857     }
858 
859     // Try to break ChainPred in various ways and concatenate with ChainSucc.
860     if (ChainPred->Nodes.size() <= ChainSplitThreshold) {
861       for (size_t Offset = 1; Offset < ChainPred->Nodes.size(); Offset++) {
862         // Try to split the chain in different ways. In practice, applying
863         // X2_Y_X1 merging is almost never provides benefits; thus, we exclude
864         // it from consideration to reduce the search space.
865         tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1,
866                                  MergeTypeT::X2_X1_Y});
867       }
868     }
869     Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
870     return Gain;
871   }
872 
873   /// Compute the score gain of merging two chains, respecting a given
874   /// merge 'type' and 'offset'.
875   ///
876   /// The two chains are not modified in the method.
877   MergeGainT computeMergeGain(const ChainT *ChainPred, const ChainT *ChainSucc,
878                               const std::vector<JumpT *> &Jumps,
879                               size_t MergeOffset, MergeTypeT MergeType) const {
880     auto MergedBlocks =
881         mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
882 
883     // Do not allow a merge that does not preserve the original entry point.
884     if ((ChainPred->isEntry() || ChainSucc->isEntry()) &&
885         !MergedBlocks.getFirstNode()->isEntry())
886       return MergeGainT();
887 
888     // The gain for the new chain.
889     auto NewGainScore = extTSPScore(MergedBlocks, Jumps) - ChainPred->Score;
890     return MergeGainT(NewGainScore, MergeOffset, MergeType);
891   }
892 
893   /// Merge chain From into chain Into, update the list of active chains,
894   /// adjacency information, and the corresponding cached values.
895   void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
896                    MergeTypeT MergeType) {
897     assert(Into != From && "a chain cannot be merged with itself");
898 
899     // Merge the nodes.
900     MergedChain MergedNodes =
901         mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
902     Into->merge(From, MergedNodes.getNodes());
903 
904     // Merge the edges.
905     Into->mergeEdges(From);
906     From->clear();
907 
908     // Update cached ext-tsp score for the new chain.
909     ChainEdge *SelfEdge = Into->getEdge(Into);
910     if (SelfEdge != nullptr) {
911       MergedNodes = MergedChain(Into->Nodes.begin(), Into->Nodes.end());
912       Into->Score = extTSPScore(MergedNodes, SelfEdge->jumps());
913     }
914 
915     // Remove the chain from the list of active chains.
916     llvm::erase_value(HotChains, From);
917 
918     // Invalidate caches.
919     for (auto EdgeIt : Into->Edges)
920       EdgeIt.second->invalidateCache();
921   }
922 
923   /// Concatenate all chains into the final order.
924   std::vector<uint64_t> concatChains() {
925     // Collect chains and calculate density stats for their sorting.
926     std::vector<const ChainT *> SortedChains;
927     DenseMap<const ChainT *, double> ChainDensity;
928     for (ChainT &Chain : AllChains) {
929       if (!Chain.Nodes.empty()) {
930         SortedChains.push_back(&Chain);
931         // Using doubles to avoid overflow of ExecutionCounts.
932         double Size = 0;
933         double ExecutionCount = 0;
934         for (NodeT *Node : Chain.Nodes) {
935           Size += static_cast<double>(Node->Size);
936           ExecutionCount += static_cast<double>(Node->ExecutionCount);
937         }
938         assert(Size > 0 && "a chain of zero size");
939         ChainDensity[&Chain] = ExecutionCount / Size;
940       }
941     }
942 
943     // Sorting chains by density in the decreasing order.
944     std::sort(SortedChains.begin(), SortedChains.end(),
945               [&](const ChainT *L, const ChainT *R) {
946                 // Place the entry point is at the beginning of the order.
947                 if (L->isEntry() != R->isEntry())
948                   return L->isEntry();
949 
950                 const double DL = ChainDensity[L];
951                 const double DR = ChainDensity[R];
952                 // Compare by density and break ties by chain identifiers.
953                 return std::make_tuple(-DL, L->Id) <
954                        std::make_tuple(-DR, R->Id);
955               });
956 
957     // Collect the nodes in the order specified by their chains.
958     std::vector<uint64_t> Order;
959     Order.reserve(NumNodes);
960     for (const ChainT *Chain : SortedChains)
961       for (NodeT *Node : Chain->Nodes)
962         Order.push_back(Node->Index);
963     return Order;
964   }
965 
966 private:
967   /// The number of nodes in the graph.
968   const size_t NumNodes;
969 
970   /// Successors of each node.
971   std::vector<std::vector<uint64_t>> SuccNodes;
972 
973   /// Predecessors of each node.
974   std::vector<std::vector<uint64_t>> PredNodes;
975 
976   /// All nodes (basic blocks) in the graph.
977   std::vector<NodeT> AllNodes;
978 
979   /// All jumps between the nodes.
980   std::vector<JumpT> AllJumps;
981 
982   /// All chains of nodes.
983   std::vector<ChainT> AllChains;
984 
985   /// All edges between the chains.
986   std::vector<ChainEdge> AllEdges;
987 
988   /// Active chains. The vector gets updated at runtime when chains are merged.
989   std::vector<ChainT *> HotChains;
990 };
991 
992 /// The implementation of the Cache-Directed Sort (CDS) algorithm for ordering
993 /// functions represented by a call graph.
994 class CDSortImpl {
995 public:
996   CDSortImpl(const CDSortConfig &Config, ArrayRef<uint64_t> NodeSizes,
997              ArrayRef<uint64_t> NodeCounts, ArrayRef<EdgeCount> EdgeCounts,
998              ArrayRef<uint64_t> EdgeOffsets)
999       : Config(Config), NumNodes(NodeSizes.size()) {
1000     initialize(NodeSizes, NodeCounts, EdgeCounts, EdgeOffsets);
1001   }
1002 
1003   /// Run the algorithm and return an ordered set of function clusters.
1004   std::vector<uint64_t> run() {
1005     // Merge pairs of chains while improving the objective.
1006     mergeChainPairs();
1007 
1008     LLVM_DEBUG(dbgs() << "Cache-directed function sorting reduced the number"
1009                       << " of chains from " << NumNodes << " to "
1010                       << HotChains.size() << "\n");
1011 
1012     // Collect nodes from all the chains.
1013     return concatChains();
1014   }
1015 
1016 private:
1017   /// Initialize the algorithm's data structures.
1018   void initialize(const ArrayRef<uint64_t> &NodeSizes,
1019                   const ArrayRef<uint64_t> &NodeCounts,
1020                   const ArrayRef<EdgeCount> &EdgeCounts,
1021                   const ArrayRef<uint64_t> &EdgeOffsets) {
1022     // Initialize nodes.
1023     AllNodes.reserve(NumNodes);
1024     for (uint64_t Node = 0; Node < NumNodes; Node++) {
1025       uint64_t Size = std::max<uint64_t>(NodeSizes[Node], 1ULL);
1026       uint64_t ExecutionCount = NodeCounts[Node];
1027       AllNodes.emplace_back(Node, Size, ExecutionCount);
1028       TotalSamples += ExecutionCount;
1029       if (ExecutionCount > 0)
1030         TotalSize += Size;
1031     }
1032 
1033     // Initialize jumps between the nodes.
1034     SuccNodes.resize(NumNodes);
1035     PredNodes.resize(NumNodes);
1036     AllJumps.reserve(EdgeCounts.size());
1037     for (size_t I = 0; I < EdgeCounts.size(); I++) {
1038       auto [Pred, Succ, Count] = EdgeCounts[I];
1039       // Ignore recursive calls.
1040       if (Pred == Succ)
1041         continue;
1042 
1043       SuccNodes[Pred].push_back(Succ);
1044       PredNodes[Succ].push_back(Pred);
1045       if (Count > 0) {
1046         NodeT &PredNode = AllNodes[Pred];
1047         NodeT &SuccNode = AllNodes[Succ];
1048         AllJumps.emplace_back(&PredNode, &SuccNode, Count);
1049         AllJumps.back().Offset = EdgeOffsets[I];
1050         SuccNode.InJumps.push_back(&AllJumps.back());
1051         PredNode.OutJumps.push_back(&AllJumps.back());
1052       }
1053     }
1054 
1055     // Initialize chains.
1056     AllChains.reserve(NumNodes);
1057     HotChains.reserve(NumNodes);
1058     for (NodeT &Node : AllNodes) {
1059       // Adjust execution counts.
1060       Node.ExecutionCount = std::max(Node.ExecutionCount, Node.inCount());
1061       Node.ExecutionCount = std::max(Node.ExecutionCount, Node.outCount());
1062       // Create chain.
1063       AllChains.emplace_back(Node.Index, &Node);
1064       Node.CurChain = &AllChains.back();
1065       if (Node.ExecutionCount > 0)
1066         HotChains.push_back(&AllChains.back());
1067     }
1068 
1069     // Initialize chain edges.
1070     AllEdges.reserve(AllJumps.size());
1071     for (NodeT &PredNode : AllNodes) {
1072       for (JumpT *Jump : PredNode.OutJumps) {
1073         NodeT *SuccNode = Jump->Target;
1074         ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
1075         // this edge is already present in the graph.
1076         if (CurEdge != nullptr) {
1077           assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
1078           CurEdge->appendJump(Jump);
1079           continue;
1080         }
1081         // this is a new edge.
1082         AllEdges.emplace_back(Jump);
1083         PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
1084         SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
1085       }
1086     }
1087   }
1088 
1089   /// Merge pairs of chains while there is an improvement in the objective.
1090   void mergeChainPairs() {
1091     // Create a priority queue containing all edges ordered by the merge gain.
1092     auto GainComparator = [](ChainEdge *L, ChainEdge *R) {
1093       return std::make_tuple(-L->gain(), L->srcChain()->Id, L->dstChain()->Id) <
1094              std::make_tuple(-R->gain(), R->srcChain()->Id, R->dstChain()->Id);
1095     };
1096     std::set<ChainEdge *, decltype(GainComparator)> Queue(GainComparator);
1097 
1098     // Insert the edges into the queue.
1099     for (ChainT *ChainPred : HotChains) {
1100       for (const auto &[_, Edge] : ChainPred->Edges) {
1101         // Ignore self-edges.
1102         if (Edge->isSelfEdge())
1103           continue;
1104         // Ignore already processed edges.
1105         if (Edge->gain() != -1.0)
1106           continue;
1107 
1108         // Compute the gain of merging the two chains.
1109         MergeGainT Gain = getBestMergeGain(Edge);
1110         Edge->setMergeGain(Gain);
1111 
1112         if (Edge->gain() > EPS)
1113           Queue.insert(Edge);
1114       }
1115     }
1116 
1117     // Merge the chains while the gain of merging is positive.
1118     while (!Queue.empty()) {
1119       // Extract the best (top) edge for merging.
1120       ChainEdge *BestEdge = *Queue.begin();
1121       Queue.erase(Queue.begin());
1122       // Ignore self-edges.
1123       if (BestEdge->isSelfEdge())
1124         continue;
1125       // Ignore edges with non-positive gains.
1126       if (BestEdge->gain() <= EPS)
1127         continue;
1128 
1129       ChainT *BestSrcChain = BestEdge->srcChain();
1130       ChainT *BestDstChain = BestEdge->dstChain();
1131 
1132       // Remove outdated edges from the queue.
1133       for (const auto &[_, ChainEdge] : BestSrcChain->Edges)
1134         Queue.erase(ChainEdge);
1135       for (const auto &[_, ChainEdge] : BestDstChain->Edges)
1136         Queue.erase(ChainEdge);
1137 
1138       // Merge the best pair of chains.
1139       MergeGainT BestGain = BestEdge->getMergeGain();
1140       mergeChains(BestSrcChain, BestDstChain, BestGain.mergeOffset(),
1141                   BestGain.mergeType());
1142 
1143       // Insert newly created edges into the queue.
1144       for (const auto &[_, Edge] : BestSrcChain->Edges) {
1145         // Ignore loop edges.
1146         if (Edge->isSelfEdge())
1147           continue;
1148 
1149         // Compute the gain of merging the two chains.
1150         MergeGainT Gain = getBestMergeGain(Edge);
1151         Edge->setMergeGain(Gain);
1152 
1153         if (Edge->gain() > EPS)
1154           Queue.insert(Edge);
1155       }
1156     }
1157   }
1158 
1159   /// Compute the gain of merging two chains.
1160   ///
1161   /// The function considers all possible ways of merging two chains and
1162   /// computes the one having the largest increase in ExtTSP objective. The
1163   /// result is a pair with the first element being the gain and the second
1164   /// element being the corresponding merging type.
1165   MergeGainT getBestMergeGain(ChainEdge *Edge) const {
1166     // Precompute jumps between ChainPred and ChainSucc.
1167     auto Jumps = Edge->jumps();
1168     assert(!Jumps.empty() && "trying to merge chains w/o jumps");
1169     ChainT *SrcChain = Edge->srcChain();
1170     ChainT *DstChain = Edge->dstChain();
1171 
1172     // This object holds the best currently chosen gain of merging two chains.
1173     MergeGainT Gain = MergeGainT();
1174 
1175     /// Given a list of merge types, try to merge two chains and update Gain
1176     /// with a better alternative.
1177     auto tryChainMerging = [&](const std::vector<MergeTypeT> &MergeTypes) {
1178       // Apply the merge, compute the corresponding gain, and update the best
1179       // value, if the merge is beneficial.
1180       for (const MergeTypeT &MergeType : MergeTypes) {
1181         MergeGainT NewGain =
1182             computeMergeGain(SrcChain, DstChain, Jumps, MergeType);
1183 
1184         // When forward and backward gains are the same, prioritize merging that
1185         // preserves the original order of the functions in the binary.
1186         if (std::abs(Gain.score() - NewGain.score()) < EPS) {
1187           if ((MergeType == MergeTypeT::X_Y && SrcChain->Id < DstChain->Id) ||
1188               (MergeType == MergeTypeT::Y_X && SrcChain->Id > DstChain->Id)) {
1189             Gain = NewGain;
1190           }
1191         } else if (NewGain.score() > Gain.score() + EPS) {
1192           Gain = NewGain;
1193         }
1194       }
1195     };
1196 
1197     // Try to concatenate two chains w/o splitting.
1198     tryChainMerging({MergeTypeT::X_Y, MergeTypeT::Y_X});
1199 
1200     return Gain;
1201   }
1202 
1203   /// Compute the score gain of merging two chains, respecting a given type.
1204   ///
1205   /// The two chains are not modified in the method.
1206   MergeGainT computeMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
1207                               const std::vector<JumpT *> &Jumps,
1208                               MergeTypeT MergeType) const {
1209     // This doesn't depend on the ordering of the nodes
1210     double FreqGain = freqBasedLocalityGain(ChainPred, ChainSucc);
1211 
1212     // Merge offset is always 0, as the chains are not split.
1213     size_t MergeOffset = 0;
1214     auto MergedBlocks =
1215         mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
1216     double DistGain = distBasedLocalityGain(MergedBlocks, Jumps);
1217 
1218     double GainScore = DistGain + Config.FrequencyScale * FreqGain;
1219     // Scale the result to increase the importance of merging short chains.
1220     if (GainScore >= 0.0)
1221       GainScore /= std::min(ChainPred->Size, ChainSucc->Size);
1222 
1223     return MergeGainT(GainScore, MergeOffset, MergeType);
1224   }
1225 
1226   /// Compute the change of the frequency locality after merging the chains.
1227   double freqBasedLocalityGain(ChainT *ChainPred, ChainT *ChainSucc) const {
1228     auto missProbability = [&](double ChainDensity) {
1229       double PageSamples = ChainDensity * Config.CacheSize;
1230       if (PageSamples >= TotalSamples)
1231         return 0.0;
1232       double P = PageSamples / TotalSamples;
1233       return pow(1.0 - P, static_cast<double>(Config.CacheEntries));
1234     };
1235 
1236     // Cache misses on the chains before merging.
1237     double CurScore =
1238         ChainPred->ExecutionCount * missProbability(ChainPred->density()) +
1239         ChainSucc->ExecutionCount * missProbability(ChainSucc->density());
1240 
1241     // Cache misses on the merged chain
1242     double MergedCounts = ChainPred->ExecutionCount + ChainSucc->ExecutionCount;
1243     double MergedSize = ChainPred->Size + ChainSucc->Size;
1244     double MergedDensity = static_cast<double>(MergedCounts) / MergedSize;
1245     double NewScore = MergedCounts * missProbability(MergedDensity);
1246 
1247     return CurScore - NewScore;
1248   }
1249 
1250   /// Compute the distance locality for a jump / call.
1251   double distScore(uint64_t SrcAddr, uint64_t DstAddr, uint64_t Count) const {
1252     uint64_t Dist = SrcAddr <= DstAddr ? DstAddr - SrcAddr : SrcAddr - DstAddr;
1253     double D = Dist == 0 ? 0.1 : static_cast<double>(Dist);
1254     return static_cast<double>(Count) * std::pow(D, -Config.DistancePower);
1255   }
1256 
1257   /// Compute the change of the distance locality after merging the chains.
1258   double distBasedLocalityGain(const MergedChain &MergedBlocks,
1259                                const std::vector<JumpT *> &Jumps) const {
1260     if (Jumps.empty())
1261       return 0.0;
1262     uint64_t CurAddr = 0;
1263     MergedBlocks.forEach([&](const NodeT *Node) {
1264       Node->EstimatedAddr = CurAddr;
1265       CurAddr += Node->Size;
1266     });
1267 
1268     double CurScore = 0;
1269     double NewScore = 0;
1270     for (const JumpT *Arc : Jumps) {
1271       uint64_t SrcAddr = Arc->Source->EstimatedAddr + Arc->Offset;
1272       uint64_t DstAddr = Arc->Target->EstimatedAddr;
1273       NewScore += distScore(SrcAddr, DstAddr, Arc->ExecutionCount);
1274       CurScore += distScore(0, TotalSize, Arc->ExecutionCount);
1275     }
1276     return NewScore - CurScore;
1277   }
1278 
1279   /// Merge chain From into chain Into, update the list of active chains,
1280   /// adjacency information, and the corresponding cached values.
1281   void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
1282                    MergeTypeT MergeType) {
1283     assert(Into != From && "a chain cannot be merged with itself");
1284 
1285     // Merge the nodes.
1286     MergedChain MergedNodes =
1287         mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
1288     Into->merge(From, MergedNodes.getNodes());
1289 
1290     // Merge the edges.
1291     Into->mergeEdges(From);
1292     From->clear();
1293 
1294     // Remove the chain from the list of active chains.
1295     llvm::erase_value(HotChains, From);
1296   }
1297 
1298   /// Concatenate all chains into the final order.
1299   std::vector<uint64_t> concatChains() {
1300     // Collect chains and calculate density stats for their sorting.
1301     std::vector<const ChainT *> SortedChains;
1302     DenseMap<const ChainT *, double> ChainDensity;
1303     for (ChainT &Chain : AllChains) {
1304       if (!Chain.Nodes.empty()) {
1305         SortedChains.push_back(&Chain);
1306         // Using doubles to avoid overflow of ExecutionCounts.
1307         double Size = 0;
1308         double ExecutionCount = 0;
1309         for (NodeT *Node : Chain.Nodes) {
1310           Size += static_cast<double>(Node->Size);
1311           ExecutionCount += static_cast<double>(Node->ExecutionCount);
1312         }
1313         assert(Size > 0 && "a chain of zero size");
1314         ChainDensity[&Chain] = ExecutionCount / Size;
1315       }
1316     }
1317 
1318     // Sort chains by density in the decreasing order.
1319     std::sort(SortedChains.begin(), SortedChains.end(),
1320               [&](const ChainT *L, const ChainT *R) {
1321                 const double DL = ChainDensity[L];
1322                 const double DR = ChainDensity[R];
1323                 // Compare by density and break ties by chain identifiers.
1324                 return std::make_tuple(-DL, L->Id) <
1325                        std::make_tuple(-DR, R->Id);
1326               });
1327 
1328     // Collect the nodes in the order specified by their chains.
1329     std::vector<uint64_t> Order;
1330     Order.reserve(NumNodes);
1331     for (const ChainT *Chain : SortedChains)
1332       for (NodeT *Node : Chain->Nodes)
1333         Order.push_back(Node->Index);
1334     return Order;
1335   }
1336 
1337 private:
1338   /// Config for the algorithm.
1339   const CDSortConfig Config;
1340 
1341   /// The number of nodes in the graph.
1342   const size_t NumNodes;
1343 
1344   /// Successors of each node.
1345   std::vector<std::vector<uint64_t>> SuccNodes;
1346 
1347   /// Predecessors of each node.
1348   std::vector<std::vector<uint64_t>> PredNodes;
1349 
1350   /// All nodes (functions) in the graph.
1351   std::vector<NodeT> AllNodes;
1352 
1353   /// All jumps (function calls) between the nodes.
1354   std::vector<JumpT> AllJumps;
1355 
1356   /// All chains of nodes.
1357   std::vector<ChainT> AllChains;
1358 
1359   /// All edges between the chains.
1360   std::vector<ChainEdge> AllEdges;
1361 
1362   /// Active chains. The vector gets updated at runtime when chains are merged.
1363   std::vector<ChainT *> HotChains;
1364 
1365   /// The total number of samples in the graph.
1366   uint64_t TotalSamples{0};
1367 
1368   /// The total size of the nodes in the graph.
1369   uint64_t TotalSize{0};
1370 };
1371 
1372 } // end of anonymous namespace
1373 
1374 std::vector<uint64_t>
1375 codelayout::computeExtTspLayout(ArrayRef<uint64_t> NodeSizes,
1376                                 ArrayRef<uint64_t> NodeCounts,
1377                                 ArrayRef<EdgeCount> EdgeCounts) {
1378   // Verify correctness of the input data.
1379   assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input");
1380   assert(NodeSizes.size() > 2 && "Incorrect input");
1381 
1382   // Apply the reordering algorithm.
1383   ExtTSPImpl Alg(NodeSizes, NodeCounts, EdgeCounts);
1384   std::vector<uint64_t> Result = Alg.run();
1385 
1386   // Verify correctness of the output.
1387   assert(Result.front() == 0 && "Original entry point is not preserved");
1388   assert(Result.size() == NodeSizes.size() && "Incorrect size of layout");
1389   return Result;
1390 }
1391 
1392 double codelayout::calcExtTspScore(ArrayRef<uint64_t> Order,
1393                                    ArrayRef<uint64_t> NodeSizes,
1394                                    ArrayRef<uint64_t> NodeCounts,
1395                                    ArrayRef<EdgeCount> EdgeCounts) {
1396   // Estimate addresses of the blocks in memory.
1397   std::vector<uint64_t> Addr(NodeSizes.size(), 0);
1398   for (size_t Idx = 1; Idx < Order.size(); Idx++) {
1399     Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]];
1400   }
1401   std::vector<uint64_t> OutDegree(NodeSizes.size(), 0);
1402   for (auto Edge : EdgeCounts)
1403     ++OutDegree[Edge.src];
1404 
1405   // Increase the score for each jump.
1406   double Score = 0;
1407   for (auto Edge : EdgeCounts) {
1408     bool IsConditional = OutDegree[Edge.src] > 1;
1409     Score += ::extTSPScore(Addr[Edge.src], NodeSizes[Edge.src], Addr[Edge.dst],
1410                            Edge.count, IsConditional);
1411   }
1412   return Score;
1413 }
1414 
1415 double codelayout::calcExtTspScore(ArrayRef<uint64_t> NodeSizes,
1416                                    ArrayRef<uint64_t> NodeCounts,
1417                                    ArrayRef<EdgeCount> EdgeCounts) {
1418   std::vector<uint64_t> Order(NodeSizes.size());
1419   for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) {
1420     Order[Idx] = Idx;
1421   }
1422   return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts);
1423 }
1424 
1425 std::vector<uint64_t> codelayout::computeCacheDirectedLayout(
1426     const CDSortConfig &Config, ArrayRef<uint64_t> FuncSizes,
1427     ArrayRef<uint64_t> FuncCounts, ArrayRef<EdgeCount> CallCounts,
1428     ArrayRef<uint64_t> CallOffsets) {
1429   // Verify correctness of the input data.
1430   assert(FuncCounts.size() == FuncSizes.size() && "Incorrect input");
1431 
1432   // Apply the reordering algorithm.
1433   CDSortImpl Alg(Config, FuncSizes, FuncCounts, CallCounts, CallOffsets);
1434   std::vector<uint64_t> Result = Alg.run();
1435   assert(Result.size() == FuncSizes.size() && "Incorrect size of layout");
1436   return Result;
1437 }
1438 
1439 std::vector<uint64_t> codelayout::computeCacheDirectedLayout(
1440     ArrayRef<uint64_t> FuncSizes, ArrayRef<uint64_t> FuncCounts,
1441     ArrayRef<EdgeCount> CallCounts, ArrayRef<uint64_t> CallOffsets) {
1442   CDSortConfig Config;
1443   // Populate the config from the command-line options.
1444   if (CacheEntries.getNumOccurrences() > 0)
1445     Config.CacheEntries = CacheEntries;
1446   if (CacheSize.getNumOccurrences() > 0)
1447     Config.CacheSize = CacheSize;
1448   if (DistancePower.getNumOccurrences() > 0)
1449     Config.DistancePower = DistancePower;
1450   if (FrequencyScale.getNumOccurrences() > 0)
1451     Config.FrequencyScale = FrequencyScale;
1452   return computeCacheDirectedLayout(Config, FuncSizes, FuncCounts, CallCounts,
1453                                     CallOffsets);
1454 }
1455