xref: /llvm-project/llvm/lib/Transforms/Utils/CodeLayout.cpp (revision 3d75c7c11b5a9ccb66e16df65a37f981ae6f0083)
1 //===- CodeLayout.cpp - Implementation of code layout algorithms ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The file implements "cache-aware" layout algorithms of basic blocks and
10 // functions in a binary.
11 //
12 // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
13 // optimizing jump locality and thus processor I-cache utilization. This is
14 // achieved via increasing the number of fall-through jumps and co-locating
15 // frequently executed nodes together. The name follows the underlying
16 // optimization problem, Extended-TSP, which is a generalization of classical
17 // (maximum) Traveling Salesmen Problem.
18 //
19 // The algorithm is a greedy heuristic that works with chains (ordered lists)
20 // of basic blocks. Initially all chains are isolated basic blocks. On every
21 // iteration, we pick a pair of chains whose merging yields the biggest increase
22 // in the ExtTSP score, which models how i-cache "friendly" a specific chain is.
23 // A pair of chains giving the maximum gain is merged into a new chain. The
24 // procedure stops when there is only one chain left, or when merging does not
25 // increase ExtTSP. In the latter case, the remaining chains are sorted by
26 // density in the decreasing order.
27 //
28 // An important aspect is the way two chains are merged. Unlike earlier
29 // algorithms (e.g., based on the approach of Pettis-Hansen), two
30 // chains, X and Y, are first split into three, X1, X2, and Y. Then we
31 // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
32 // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
33 // This improves the quality of the final result (the search space is larger)
34 // while keeping the implementation sufficiently fast.
35 //
36 // Reference:
37 //   * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
38 //     IEEE Transactions on Computers, 2020
39 //     https://arxiv.org/abs/1809.04676
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "llvm/Transforms/Utils/CodeLayout.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 
47 #include <cmath>
48 #include <set>
49 
50 using namespace llvm;
51 using namespace llvm::codelayout;
52 
53 #define DEBUG_TYPE "code-layout"
54 
55 namespace llvm {
56 cl::opt<bool> EnableExtTspBlockPlacement(
57     "enable-ext-tsp-block-placement", cl::Hidden, cl::init(false),
58     cl::desc("Enable machine block placement based on the ext-tsp model, "
59              "optimizing I-cache utilization."));
60 
61 cl::opt<bool> ApplyExtTspWithoutProfile(
62     "ext-tsp-apply-without-profile",
63     cl::desc("Whether to apply ext-tsp placement for instances w/o profile"),
64     cl::init(true), cl::Hidden);
65 } // namespace llvm
66 
67 // Algorithm-specific params for Ext-TSP. The values are tuned for the best
68 // performance of large-scale front-end bound binaries.
69 static cl::opt<double> ForwardWeightCond(
70     "ext-tsp-forward-weight-cond", cl::ReallyHidden, cl::init(0.1),
71     cl::desc("The weight of conditional forward jumps for ExtTSP value"));
72 
73 static cl::opt<double> ForwardWeightUncond(
74     "ext-tsp-forward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
75     cl::desc("The weight of unconditional forward jumps for ExtTSP value"));
76 
77 static cl::opt<double> BackwardWeightCond(
78     "ext-tsp-backward-weight-cond", cl::ReallyHidden, cl::init(0.1),
79     cl::desc("The weight of conditional backward jumps for ExtTSP value"));
80 
81 static cl::opt<double> BackwardWeightUncond(
82     "ext-tsp-backward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
83     cl::desc("The weight of unconditional backward jumps for ExtTSP value"));
84 
85 static cl::opt<double> FallthroughWeightCond(
86     "ext-tsp-fallthrough-weight-cond", cl::ReallyHidden, cl::init(1.0),
87     cl::desc("The weight of conditional fallthrough jumps for ExtTSP value"));
88 
89 static cl::opt<double> FallthroughWeightUncond(
90     "ext-tsp-fallthrough-weight-uncond", cl::ReallyHidden, cl::init(1.05),
91     cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value"));
92 
93 static cl::opt<unsigned> ForwardDistance(
94     "ext-tsp-forward-distance", cl::ReallyHidden, cl::init(1024),
95     cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"));
96 
97 static cl::opt<unsigned> BackwardDistance(
98     "ext-tsp-backward-distance", cl::ReallyHidden, cl::init(640),
99     cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"));
100 
101 // The maximum size of a chain created by the algorithm. The size is bounded
102 // so that the algorithm can efficiently process extremely large instances.
103 static cl::opt<unsigned>
104     MaxChainSize("ext-tsp-max-chain-size", cl::ReallyHidden, cl::init(4096),
105                  cl::desc("The maximum size of a chain to create."));
106 
107 // The maximum size of a chain for splitting. Larger values of the threshold
108 // may yield better quality at the cost of worsen run-time.
109 static cl::opt<unsigned> ChainSplitThreshold(
110     "ext-tsp-chain-split-threshold", cl::ReallyHidden, cl::init(128),
111     cl::desc("The maximum size of a chain to apply splitting"));
112 
113 // The option enables splitting (large) chains along in-coming and out-going
114 // jumps. This typically results in a better quality.
115 static cl::opt<bool> EnableChainSplitAlongJumps(
116     "ext-tsp-enable-chain-split-along-jumps", cl::ReallyHidden, cl::init(true),
117     cl::desc("The maximum size of a chain to apply splitting"));
118 
119 // Algorithm-specific options for CDS.
120 static cl::opt<unsigned> CacheEntries("cds-cache-entries", cl::ReallyHidden,
121                                       cl::desc("The size of the cache"));
122 
123 static cl::opt<unsigned> CacheSize("cds-cache-size", cl::ReallyHidden,
124                                    cl::desc("The size of a line in the cache"));
125 
126 static cl::opt<double> DistancePower(
127     "cds-distance-power", cl::ReallyHidden,
128     cl::desc("The power exponent for the distance-based locality"));
129 
130 static cl::opt<double> FrequencyScale(
131     "cds-frequency-scale", cl::ReallyHidden,
132     cl::desc("The scale factor for the frequency-based locality"));
133 
134 namespace {
135 
136 // Epsilon for comparison of doubles.
137 constexpr double EPS = 1e-8;
138 
139 // Compute the Ext-TSP score for a given jump.
140 double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count,
141                        double Weight) {
142   if (JumpDist > JumpMaxDist)
143     return 0;
144   double Prob = 1.0 - static_cast<double>(JumpDist) / JumpMaxDist;
145   return Weight * Prob * Count;
146 }
147 
148 // Compute the Ext-TSP score for a jump between a given pair of blocks,
149 // using their sizes, (estimated) addresses and the jump execution count.
150 double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
151                    uint64_t Count, bool IsConditional) {
152   // Fallthrough
153   if (SrcAddr + SrcSize == DstAddr) {
154     return jumpExtTSPScore(0, 1, Count,
155                            IsConditional ? FallthroughWeightCond
156                                          : FallthroughWeightUncond);
157   }
158   // Forward
159   if (SrcAddr + SrcSize < DstAddr) {
160     const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
161     return jumpExtTSPScore(Dist, ForwardDistance, Count,
162                            IsConditional ? ForwardWeightCond
163                                          : ForwardWeightUncond);
164   }
165   // Backward
166   const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
167   return jumpExtTSPScore(Dist, BackwardDistance, Count,
168                          IsConditional ? BackwardWeightCond
169                                        : BackwardWeightUncond);
170 }
171 
172 /// A type of merging two chains, X and Y. The former chain is split into
173 /// X1 and X2 and then concatenated with Y in the order specified by the type.
174 enum class MergeTypeT : int { X_Y, Y_X, X1_Y_X2, Y_X2_X1, X2_X1_Y };
175 
176 /// The gain of merging two chains, that is, the Ext-TSP score of the merge
177 /// together with the corresponding merge 'type' and 'offset'.
178 struct MergeGainT {
179   explicit MergeGainT() = default;
180   explicit MergeGainT(double Score, size_t MergeOffset, MergeTypeT MergeType)
181       : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
182 
183   double score() const { return Score; }
184 
185   size_t mergeOffset() const { return MergeOffset; }
186 
187   MergeTypeT mergeType() const { return MergeType; }
188 
189   void setMergeType(MergeTypeT Ty) { MergeType = Ty; }
190 
191   // Returns 'true' iff Other is preferred over this.
192   bool operator<(const MergeGainT &Other) const {
193     return (Other.Score > EPS && Other.Score > Score + EPS);
194   }
195 
196   // Update the current gain if Other is preferred over this.
197   void updateIfLessThan(const MergeGainT &Other) {
198     if (*this < Other)
199       *this = Other;
200   }
201 
202 private:
203   double Score{-1.0};
204   size_t MergeOffset{0};
205   MergeTypeT MergeType{MergeTypeT::X_Y};
206 };
207 
208 struct JumpT;
209 struct ChainT;
210 struct ChainEdge;
211 
212 /// A node in the graph, typically corresponding to a basic block in the CFG or
213 /// a function in the call graph.
214 struct NodeT {
215   NodeT(const NodeT &) = delete;
216   NodeT(NodeT &&) = default;
217   NodeT &operator=(const NodeT &) = delete;
218   NodeT &operator=(NodeT &&) = default;
219 
220   explicit NodeT(size_t Index, uint64_t Size, uint64_t Count)
221       : Index(Index), Size(Size), ExecutionCount(Count) {}
222 
223   bool isEntry() const { return Index == 0; }
224 
225   // The total execution count of outgoing jumps.
226   uint64_t outCount() const;
227 
228   // The total execution count of incoming jumps.
229   uint64_t inCount() const;
230 
231   // The original index of the node in graph.
232   size_t Index{0};
233   // The index of the node in the current chain.
234   size_t CurIndex{0};
235   // The size of the node in the binary.
236   uint64_t Size{0};
237   // The execution count of the node in the profile data.
238   uint64_t ExecutionCount{0};
239   // The current chain of the node.
240   ChainT *CurChain{nullptr};
241   // The offset of the node in the current chain.
242   mutable uint64_t EstimatedAddr{0};
243   // Forced successor of the node in the graph.
244   NodeT *ForcedSucc{nullptr};
245   // Forced predecessor of the node in the graph.
246   NodeT *ForcedPred{nullptr};
247   // Outgoing jumps from the node.
248   std::vector<JumpT *> OutJumps;
249   // Incoming jumps to the node.
250   std::vector<JumpT *> InJumps;
251 };
252 
253 /// An arc in the graph, typically corresponding to a jump between two nodes.
254 struct JumpT {
255   JumpT(const JumpT &) = delete;
256   JumpT(JumpT &&) = default;
257   JumpT &operator=(const JumpT &) = delete;
258   JumpT &operator=(JumpT &&) = default;
259 
260   explicit JumpT(NodeT *Source, NodeT *Target, uint64_t ExecutionCount)
261       : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {}
262 
263   // Source node of the jump.
264   NodeT *Source;
265   // Target node of the jump.
266   NodeT *Target;
267   // Execution count of the arc in the profile data.
268   uint64_t ExecutionCount{0};
269   // Whether the jump corresponds to a conditional branch.
270   bool IsConditional{false};
271   // The offset of the jump from the source node.
272   uint64_t Offset{0};
273 };
274 
275 /// A chain (ordered sequence) of nodes in the graph.
276 struct ChainT {
277   ChainT(const ChainT &) = delete;
278   ChainT(ChainT &&) = default;
279   ChainT &operator=(const ChainT &) = delete;
280   ChainT &operator=(ChainT &&) = default;
281 
282   explicit ChainT(uint64_t Id, NodeT *Node)
283       : Id(Id), ExecutionCount(Node->ExecutionCount), Size(Node->Size),
284         Nodes(1, Node) {}
285 
286   size_t numBlocks() const { return Nodes.size(); }
287 
288   double density() const { return static_cast<double>(ExecutionCount) / Size; }
289 
290   bool isEntry() const { return Nodes[0]->Index == 0; }
291 
292   bool isCold() const {
293     for (NodeT *Node : Nodes) {
294       if (Node->ExecutionCount > 0)
295         return false;
296     }
297     return true;
298   }
299 
300   ChainEdge *getEdge(ChainT *Other) const {
301     for (const auto &[Chain, ChainEdge] : Edges) {
302       if (Chain == Other)
303         return ChainEdge;
304     }
305     return nullptr;
306   }
307 
308   void removeEdge(ChainT *Other) {
309     auto It = Edges.begin();
310     while (It != Edges.end()) {
311       if (It->first == Other) {
312         Edges.erase(It);
313         return;
314       }
315       It++;
316     }
317   }
318 
319   void addEdge(ChainT *Other, ChainEdge *Edge) {
320     Edges.push_back(std::make_pair(Other, Edge));
321   }
322 
323   void merge(ChainT *Other, std::vector<NodeT *> MergedBlocks) {
324     Nodes = std::move(MergedBlocks);
325     // Update the chain's data.
326     ExecutionCount += Other->ExecutionCount;
327     Size += Other->Size;
328     Id = Nodes[0]->Index;
329     // Update the node's data.
330     for (size_t Idx = 0; Idx < Nodes.size(); Idx++) {
331       Nodes[Idx]->CurChain = this;
332       Nodes[Idx]->CurIndex = Idx;
333     }
334   }
335 
336   void mergeEdges(ChainT *Other);
337 
338   void clear() {
339     Nodes.clear();
340     Nodes.shrink_to_fit();
341     Edges.clear();
342     Edges.shrink_to_fit();
343   }
344 
345   // Unique chain identifier.
346   uint64_t Id;
347   // Cached ext-tsp score for the chain.
348   double Score{0};
349   // The total execution count of the chain.
350   uint64_t ExecutionCount{0};
351   // The total size of the chain.
352   uint64_t Size{0};
353   // Nodes of the chain.
354   std::vector<NodeT *> Nodes;
355   // Adjacent chains and corresponding edges (lists of jumps).
356   std::vector<std::pair<ChainT *, ChainEdge *>> Edges;
357 };
358 
359 /// An edge in the graph representing jumps between two chains.
360 /// When nodes are merged into chains, the edges are combined too so that
361 /// there is always at most one edge between a pair of chains.
362 struct ChainEdge {
363   ChainEdge(const ChainEdge &) = delete;
364   ChainEdge(ChainEdge &&) = default;
365   ChainEdge &operator=(const ChainEdge &) = delete;
366   ChainEdge &operator=(ChainEdge &&) = delete;
367 
368   explicit ChainEdge(JumpT *Jump)
369       : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain),
370         Jumps(1, Jump) {}
371 
372   ChainT *srcChain() const { return SrcChain; }
373 
374   ChainT *dstChain() const { return DstChain; }
375 
376   bool isSelfEdge() const { return SrcChain == DstChain; }
377 
378   const std::vector<JumpT *> &jumps() const { return Jumps; }
379 
380   void appendJump(JumpT *Jump) { Jumps.push_back(Jump); }
381 
382   void moveJumps(ChainEdge *Other) {
383     Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
384     Other->Jumps.clear();
385     Other->Jumps.shrink_to_fit();
386   }
387 
388   void changeEndpoint(ChainT *From, ChainT *To) {
389     if (From == SrcChain)
390       SrcChain = To;
391     if (From == DstChain)
392       DstChain = To;
393   }
394 
395   bool hasCachedMergeGain(ChainT *Src, ChainT *Dst) const {
396     return Src == SrcChain ? CacheValidForward : CacheValidBackward;
397   }
398 
399   MergeGainT getCachedMergeGain(ChainT *Src, ChainT *Dst) const {
400     return Src == SrcChain ? CachedGainForward : CachedGainBackward;
401   }
402 
403   void setCachedMergeGain(ChainT *Src, ChainT *Dst, MergeGainT MergeGain) {
404     if (Src == SrcChain) {
405       CachedGainForward = MergeGain;
406       CacheValidForward = true;
407     } else {
408       CachedGainBackward = MergeGain;
409       CacheValidBackward = true;
410     }
411   }
412 
413   void invalidateCache() {
414     CacheValidForward = false;
415     CacheValidBackward = false;
416   }
417 
418   void setMergeGain(MergeGainT Gain) { CachedGain = Gain; }
419 
420   MergeGainT getMergeGain() const { return CachedGain; }
421 
422   double gain() const { return CachedGain.score(); }
423 
424 private:
425   // Source chain.
426   ChainT *SrcChain{nullptr};
427   // Destination chain.
428   ChainT *DstChain{nullptr};
429   // Original jumps in the binary with corresponding execution counts.
430   std::vector<JumpT *> Jumps;
431   // Cached gain value for merging the pair of chains.
432   MergeGainT CachedGain;
433 
434   // Cached gain values for merging the pair of chains. Since the gain of
435   // merging (Src, Dst) and (Dst, Src) might be different, we store both values
436   // here and a flag indicating which of the options results in a higher gain.
437   // Cached gain values.
438   MergeGainT CachedGainForward;
439   MergeGainT CachedGainBackward;
440   // Whether the cached value must be recomputed.
441   bool CacheValidForward{false};
442   bool CacheValidBackward{false};
443 };
444 
445 uint64_t NodeT::outCount() const {
446   uint64_t Count = 0;
447   for (JumpT *Jump : OutJumps)
448     Count += Jump->ExecutionCount;
449   return Count;
450 }
451 
452 uint64_t NodeT::inCount() const {
453   uint64_t Count = 0;
454   for (JumpT *Jump : InJumps)
455     Count += Jump->ExecutionCount;
456   return Count;
457 }
458 
459 void ChainT::mergeEdges(ChainT *Other) {
460   // Update edges adjacent to chain Other.
461   for (const auto &[DstChain, DstEdge] : Other->Edges) {
462     ChainT *TargetChain = DstChain == Other ? this : DstChain;
463     ChainEdge *CurEdge = getEdge(TargetChain);
464     if (CurEdge == nullptr) {
465       DstEdge->changeEndpoint(Other, this);
466       this->addEdge(TargetChain, DstEdge);
467       if (DstChain != this && DstChain != Other)
468         DstChain->addEdge(this, DstEdge);
469     } else {
470       CurEdge->moveJumps(DstEdge);
471     }
472     // Cleanup leftover edge.
473     if (DstChain != Other)
474       DstChain->removeEdge(Other);
475   }
476 }
477 
478 using NodeIter = std::vector<NodeT *>::const_iterator;
479 static std::vector<NodeT *> EmptyList;
480 
481 /// A wrapper around three concatenated vectors (chains) of nodes; it is used
482 /// to avoid extra instantiation of the vectors.
483 struct MergedNodesT {
484   MergedNodesT(NodeIter Begin1, NodeIter End1,
485                NodeIter Begin2 = EmptyList.begin(),
486                NodeIter End2 = EmptyList.end(),
487                NodeIter Begin3 = EmptyList.begin(),
488                NodeIter End3 = EmptyList.end())
489       : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
490         End3(End3) {}
491 
492   template <typename F> void forEach(const F &Func) const {
493     for (auto It = Begin1; It != End1; It++)
494       Func(*It);
495     for (auto It = Begin2; It != End2; It++)
496       Func(*It);
497     for (auto It = Begin3; It != End3; It++)
498       Func(*It);
499   }
500 
501   std::vector<NodeT *> getNodes() const {
502     std::vector<NodeT *> Result;
503     Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
504                    std::distance(Begin3, End3));
505     Result.insert(Result.end(), Begin1, End1);
506     Result.insert(Result.end(), Begin2, End2);
507     Result.insert(Result.end(), Begin3, End3);
508     return Result;
509   }
510 
511   const NodeT *getFirstNode() const { return *Begin1; }
512 
513   bool empty() const { return Begin1 == End1; }
514 
515 private:
516   NodeIter Begin1;
517   NodeIter End1;
518   NodeIter Begin2;
519   NodeIter End2;
520   NodeIter Begin3;
521   NodeIter End3;
522 };
523 
524 /// A wrapper around two concatenated vectors (chains) of jumps.
525 struct MergedJumpsT {
526   MergedJumpsT(const std::vector<JumpT *> *Jumps1,
527                const std::vector<JumpT *> *Jumps2 = nullptr) {
528     assert(!Jumps1->empty() && "cannot merge empty jump list");
529     JumpArray[0] = Jumps1;
530     JumpArray[1] = Jumps2;
531   }
532 
533   template <typename F> void forEach(const F &Func) const {
534     for (auto Jumps : JumpArray)
535       if (Jumps != nullptr)
536         for (JumpT *Jump : *Jumps)
537           Func(Jump);
538   }
539 
540 private:
541   std::array<const std::vector<JumpT *> *, 2> JumpArray{nullptr, nullptr};
542 };
543 
544 /// Merge two chains of nodes respecting a given 'type' and 'offset'.
545 ///
546 /// If MergeType == 0, then the result is a concatenation of two chains.
547 /// Otherwise, the first chain is cut into two sub-chains at the offset,
548 /// and merged using all possible ways of concatenating three chains.
549 MergedNodesT mergeNodes(const std::vector<NodeT *> &X,
550                         const std::vector<NodeT *> &Y, size_t MergeOffset,
551                         MergeTypeT MergeType) {
552   // Split the first chain, X, into X1 and X2.
553   NodeIter BeginX1 = X.begin();
554   NodeIter EndX1 = X.begin() + MergeOffset;
555   NodeIter BeginX2 = X.begin() + MergeOffset;
556   NodeIter EndX2 = X.end();
557   NodeIter BeginY = Y.begin();
558   NodeIter EndY = Y.end();
559 
560   // Construct a new chain from the three existing ones.
561   switch (MergeType) {
562   case MergeTypeT::X_Y:
563     return MergedNodesT(BeginX1, EndX2, BeginY, EndY);
564   case MergeTypeT::Y_X:
565     return MergedNodesT(BeginY, EndY, BeginX1, EndX2);
566   case MergeTypeT::X1_Y_X2:
567     return MergedNodesT(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
568   case MergeTypeT::Y_X2_X1:
569     return MergedNodesT(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
570   case MergeTypeT::X2_X1_Y:
571     return MergedNodesT(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
572   }
573   llvm_unreachable("unexpected chain merge type");
574 }
575 
576 /// The implementation of the ExtTSP algorithm.
577 class ExtTSPImpl {
578 public:
579   ExtTSPImpl(ArrayRef<uint64_t> NodeSizes, ArrayRef<uint64_t> NodeCounts,
580              ArrayRef<EdgeCount> EdgeCounts)
581       : NumNodes(NodeSizes.size()) {
582     initialize(NodeSizes, NodeCounts, EdgeCounts);
583   }
584 
585   /// Run the algorithm and return an optimized ordering of nodes.
586   std::vector<uint64_t> run() {
587     // Pass 1: Merge nodes with their mutually forced successors
588     mergeForcedPairs();
589 
590     // Pass 2: Merge pairs of chains while improving the ExtTSP objective
591     mergeChainPairs();
592 
593     // Pass 3: Merge cold nodes to reduce code size
594     mergeColdChains();
595 
596     // Collect nodes from all chains
597     return concatChains();
598   }
599 
600 private:
601   /// Initialize the algorithm's data structures.
602   void initialize(const ArrayRef<uint64_t> &NodeSizes,
603                   const ArrayRef<uint64_t> &NodeCounts,
604                   const ArrayRef<EdgeCount> &EdgeCounts) {
605     // Initialize nodes
606     AllNodes.reserve(NumNodes);
607     for (uint64_t Idx = 0; Idx < NumNodes; Idx++) {
608       uint64_t Size = std::max<uint64_t>(NodeSizes[Idx], 1ULL);
609       uint64_t ExecutionCount = NodeCounts[Idx];
610       // The execution count of the entry node is set to at least one.
611       if (Idx == 0 && ExecutionCount == 0)
612         ExecutionCount = 1;
613       AllNodes.emplace_back(Idx, Size, ExecutionCount);
614     }
615 
616     // Initialize jumps between nodes
617     SuccNodes.resize(NumNodes);
618     PredNodes.resize(NumNodes);
619     std::vector<uint64_t> OutDegree(NumNodes, 0);
620     AllJumps.reserve(EdgeCounts.size());
621     for (auto Edge : EdgeCounts) {
622       ++OutDegree[Edge.src];
623       // Ignore self-edges.
624       if (Edge.src == Edge.dst)
625         continue;
626 
627       SuccNodes[Edge.src].push_back(Edge.dst);
628       PredNodes[Edge.dst].push_back(Edge.src);
629       if (Edge.count > 0) {
630         NodeT &PredNode = AllNodes[Edge.src];
631         NodeT &SuccNode = AllNodes[Edge.dst];
632         AllJumps.emplace_back(&PredNode, &SuccNode, Edge.count);
633         SuccNode.InJumps.push_back(&AllJumps.back());
634         PredNode.OutJumps.push_back(&AllJumps.back());
635       }
636     }
637     for (JumpT &Jump : AllJumps) {
638       assert(OutDegree[Jump.Source->Index] > 0);
639       Jump.IsConditional = OutDegree[Jump.Source->Index] > 1;
640     }
641 
642     // Initialize chains.
643     AllChains.reserve(NumNodes);
644     HotChains.reserve(NumNodes);
645     for (NodeT &Node : AllNodes) {
646       // Create a chain.
647       AllChains.emplace_back(Node.Index, &Node);
648       Node.CurChain = &AllChains.back();
649       if (Node.ExecutionCount > 0)
650         HotChains.push_back(&AllChains.back());
651     }
652 
653     // Initialize chain edges.
654     AllEdges.reserve(AllJumps.size());
655     for (NodeT &PredNode : AllNodes) {
656       for (JumpT *Jump : PredNode.OutJumps) {
657         NodeT *SuccNode = Jump->Target;
658         ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
659         // This edge is already present in the graph.
660         if (CurEdge != nullptr) {
661           assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
662           CurEdge->appendJump(Jump);
663           continue;
664         }
665         // This is a new edge.
666         AllEdges.emplace_back(Jump);
667         PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
668         SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
669       }
670     }
671   }
672 
673   /// For a pair of nodes, A and B, node B is the forced successor of A,
674   /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
675   /// to B are from A. Such nodes should be adjacent in the optimal ordering;
676   /// the method finds and merges such pairs of nodes.
677   void mergeForcedPairs() {
678     // Find forced pairs of blocks.
679     for (NodeT &Node : AllNodes) {
680       if (SuccNodes[Node.Index].size() == 1 &&
681           PredNodes[SuccNodes[Node.Index][0]].size() == 1 &&
682           SuccNodes[Node.Index][0] != 0) {
683         size_t SuccIndex = SuccNodes[Node.Index][0];
684         Node.ForcedSucc = &AllNodes[SuccIndex];
685         AllNodes[SuccIndex].ForcedPred = &Node;
686       }
687     }
688 
689     // There might be 'cycles' in the forced dependencies, since profile
690     // data isn't 100% accurate. Typically this is observed in loops, when the
691     // loop edges are the hottest successors for the basic blocks of the loop.
692     // Break the cycles by choosing the node with the smallest index as the
693     // head. This helps to keep the original order of the loops, which likely
694     // have already been rotated in the optimized manner.
695     for (NodeT &Node : AllNodes) {
696       if (Node.ForcedSucc == nullptr || Node.ForcedPred == nullptr)
697         continue;
698 
699       NodeT *SuccNode = Node.ForcedSucc;
700       while (SuccNode != nullptr && SuccNode != &Node) {
701         SuccNode = SuccNode->ForcedSucc;
702       }
703       if (SuccNode == nullptr)
704         continue;
705       // Break the cycle.
706       AllNodes[Node.ForcedPred->Index].ForcedSucc = nullptr;
707       Node.ForcedPred = nullptr;
708     }
709 
710     // Merge nodes with their fallthrough successors.
711     for (NodeT &Node : AllNodes) {
712       if (Node.ForcedPred == nullptr && Node.ForcedSucc != nullptr) {
713         const NodeT *CurBlock = &Node;
714         while (CurBlock->ForcedSucc != nullptr) {
715           const NodeT *NextBlock = CurBlock->ForcedSucc;
716           mergeChains(Node.CurChain, NextBlock->CurChain, 0, MergeTypeT::X_Y);
717           CurBlock = NextBlock;
718         }
719       }
720     }
721   }
722 
723   /// Merge pairs of chains while improving the ExtTSP objective.
724   void mergeChainPairs() {
725     /// Deterministically compare pairs of chains.
726     auto compareChainPairs = [](const ChainT *A1, const ChainT *B1,
727                                 const ChainT *A2, const ChainT *B2) {
728       return std::make_tuple(A1->Id, B1->Id) < std::make_tuple(A2->Id, B2->Id);
729     };
730 
731     while (HotChains.size() > 1) {
732       ChainT *BestChainPred = nullptr;
733       ChainT *BestChainSucc = nullptr;
734       MergeGainT BestGain;
735       // Iterate over all pairs of chains.
736       for (ChainT *ChainPred : HotChains) {
737         // Get candidates for merging with the current chain.
738         for (const auto &[ChainSucc, Edge] : ChainPred->Edges) {
739           // Ignore loop edges.
740           if (ChainPred == ChainSucc)
741             continue;
742 
743           // Stop early if the combined chain violates the maximum allowed size.
744           if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize)
745             continue;
746 
747           // Compute the gain of merging the two chains.
748           MergeGainT CurGain = getBestMergeGain(ChainPred, ChainSucc, Edge);
749           if (CurGain.score() <= EPS)
750             continue;
751 
752           if (BestGain < CurGain ||
753               (std::abs(CurGain.score() - BestGain.score()) < EPS &&
754                compareChainPairs(ChainPred, ChainSucc, BestChainPred,
755                                  BestChainSucc))) {
756             BestGain = CurGain;
757             BestChainPred = ChainPred;
758             BestChainSucc = ChainSucc;
759           }
760         }
761       }
762 
763       // Stop merging when there is no improvement.
764       if (BestGain.score() <= EPS)
765         break;
766 
767       // Merge the best pair of chains.
768       mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
769                   BestGain.mergeType());
770     }
771   }
772 
773   /// Merge remaining nodes into chains w/o taking jump counts into
774   /// consideration. This allows to maintain the original node order in the
775   /// absence of profile data.
776   void mergeColdChains() {
777     for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) {
778       // Iterating in reverse order to make sure original fallthrough jumps are
779       // merged first; this might be beneficial for code size.
780       size_t NumSuccs = SuccNodes[SrcBB].size();
781       for (size_t Idx = 0; Idx < NumSuccs; Idx++) {
782         size_t DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1];
783         ChainT *SrcChain = AllNodes[SrcBB].CurChain;
784         ChainT *DstChain = AllNodes[DstBB].CurChain;
785         if (SrcChain != DstChain && !DstChain->isEntry() &&
786             SrcChain->Nodes.back()->Index == SrcBB &&
787             DstChain->Nodes.front()->Index == DstBB &&
788             SrcChain->isCold() == DstChain->isCold()) {
789           mergeChains(SrcChain, DstChain, 0, MergeTypeT::X_Y);
790         }
791       }
792     }
793   }
794 
795   /// Compute the Ext-TSP score for a given node order and a list of jumps.
796   double extTSPScore(const MergedNodesT &Nodes,
797                      const MergedJumpsT &Jumps) const {
798     uint64_t CurAddr = 0;
799     Nodes.forEach([&](const NodeT *Node) {
800       Node->EstimatedAddr = CurAddr;
801       CurAddr += Node->Size;
802     });
803 
804     double Score = 0;
805     Jumps.forEach([&](const JumpT *Jump) {
806       const NodeT *SrcBlock = Jump->Source;
807       const NodeT *DstBlock = Jump->Target;
808       Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
809                              DstBlock->EstimatedAddr, Jump->ExecutionCount,
810                              Jump->IsConditional);
811     });
812     return Score;
813   }
814 
815   /// Compute the gain of merging two chains.
816   ///
817   /// The function considers all possible ways of merging two chains and
818   /// computes the one having the largest increase in ExtTSP objective. The
819   /// result is a pair with the first element being the gain and the second
820   /// element being the corresponding merging type.
821   MergeGainT getBestMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
822                               ChainEdge *Edge) const {
823     if (Edge->hasCachedMergeGain(ChainPred, ChainSucc))
824       return Edge->getCachedMergeGain(ChainPred, ChainSucc);
825 
826     assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps");
827     // Precompute jumps between ChainPred and ChainSucc.
828     ChainEdge *EdgePP = ChainPred->getEdge(ChainPred);
829     MergedJumpsT Jumps(&Edge->jumps(), EdgePP ? &EdgePP->jumps() : nullptr);
830 
831     // This object holds the best chosen gain of merging two chains.
832     MergeGainT Gain = MergeGainT();
833 
834     /// Given a merge offset and a list of merge types, try to merge two chains
835     /// and update Gain with a better alternative.
836     auto tryChainMerging = [&](size_t Offset,
837                                const std::vector<MergeTypeT> &MergeTypes) {
838       // Skip merging corresponding to concatenation w/o splitting.
839       if (Offset == 0 || Offset == ChainPred->Nodes.size())
840         return;
841       // Skip merging if it breaks Forced successors.
842       NodeT *Node = ChainPred->Nodes[Offset - 1];
843       if (Node->ForcedSucc != nullptr)
844         return;
845       // Apply the merge, compute the corresponding gain, and update the best
846       // value, if the merge is beneficial.
847       for (const MergeTypeT &MergeType : MergeTypes) {
848         Gain.updateIfLessThan(
849             computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType));
850       }
851     };
852 
853     // Try to concatenate two chains w/o splitting.
854     Gain.updateIfLessThan(
855         computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeT::X_Y));
856 
857     if (EnableChainSplitAlongJumps) {
858       // Attach (a part of) ChainPred before the first node of ChainSucc.
859       for (JumpT *Jump : ChainSucc->Nodes.front()->InJumps) {
860         const NodeT *SrcBlock = Jump->Source;
861         if (SrcBlock->CurChain != ChainPred)
862           continue;
863         size_t Offset = SrcBlock->CurIndex + 1;
864         tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::X2_X1_Y});
865       }
866 
867       // Attach (a part of) ChainPred after the last node of ChainSucc.
868       for (JumpT *Jump : ChainSucc->Nodes.back()->OutJumps) {
869         const NodeT *DstBlock = Jump->Target;
870         if (DstBlock->CurChain != ChainPred)
871           continue;
872         size_t Offset = DstBlock->CurIndex;
873         tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1});
874       }
875     }
876 
877     // Try to break ChainPred in various ways and concatenate with ChainSucc.
878     if (ChainPred->Nodes.size() <= ChainSplitThreshold) {
879       for (size_t Offset = 1; Offset < ChainPred->Nodes.size(); Offset++) {
880         // Try to split the chain in different ways. In practice, applying
881         // X2_Y_X1 merging is almost never provides benefits; thus, we exclude
882         // it from consideration to reduce the search space.
883         tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1,
884                                  MergeTypeT::X2_X1_Y});
885       }
886     }
887     Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
888     return Gain;
889   }
890 
891   /// Compute the score gain of merging two chains, respecting a given
892   /// merge 'type' and 'offset'.
893   ///
894   /// The two chains are not modified in the method.
895   MergeGainT computeMergeGain(const ChainT *ChainPred, const ChainT *ChainSucc,
896                               const MergedJumpsT &Jumps, size_t MergeOffset,
897                               MergeTypeT MergeType) const {
898     MergedNodesT MergedNodes =
899         mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
900 
901     // Do not allow a merge that does not preserve the original entry point.
902     if ((ChainPred->isEntry() || ChainSucc->isEntry()) &&
903         !MergedNodes.getFirstNode()->isEntry())
904       return MergeGainT();
905 
906     // The gain for the new chain.
907     double NewScore = extTSPScore(MergedNodes, Jumps);
908     double CurScore = ChainPred->Score;
909     return MergeGainT(NewScore - CurScore, MergeOffset, MergeType);
910   }
911 
912   /// Merge chain From into chain Into, update the list of active chains,
913   /// adjacency information, and the corresponding cached values.
914   void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
915                    MergeTypeT MergeType) {
916     assert(Into != From && "a chain cannot be merged with itself");
917 
918     // Merge the nodes.
919     MergedNodesT MergedNodes =
920         mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
921     Into->merge(From, MergedNodes.getNodes());
922 
923     // Merge the edges.
924     Into->mergeEdges(From);
925     From->clear();
926 
927     // Update cached ext-tsp score for the new chain.
928     ChainEdge *SelfEdge = Into->getEdge(Into);
929     if (SelfEdge != nullptr) {
930       MergedNodes = MergedNodesT(Into->Nodes.begin(), Into->Nodes.end());
931       MergedJumpsT MergedJumps(&SelfEdge->jumps());
932       Into->Score = extTSPScore(MergedNodes, MergedJumps);
933     }
934 
935     // Remove the chain from the list of active chains.
936     llvm::erase_value(HotChains, From);
937 
938     // Invalidate caches.
939     for (auto EdgeIt : Into->Edges)
940       EdgeIt.second->invalidateCache();
941   }
942 
943   /// Concatenate all chains into the final order.
944   std::vector<uint64_t> concatChains() {
945     // Collect chains and calculate density stats for their sorting.
946     std::vector<const ChainT *> SortedChains;
947     DenseMap<const ChainT *, double> ChainDensity;
948     for (ChainT &Chain : AllChains) {
949       if (!Chain.Nodes.empty()) {
950         SortedChains.push_back(&Chain);
951         // Using doubles to avoid overflow of ExecutionCounts.
952         double Size = 0;
953         double ExecutionCount = 0;
954         for (NodeT *Node : Chain.Nodes) {
955           Size += static_cast<double>(Node->Size);
956           ExecutionCount += static_cast<double>(Node->ExecutionCount);
957         }
958         assert(Size > 0 && "a chain of zero size");
959         ChainDensity[&Chain] = ExecutionCount / Size;
960       }
961     }
962 
963     // Sorting chains by density in the decreasing order.
964     std::sort(SortedChains.begin(), SortedChains.end(),
965               [&](const ChainT *L, const ChainT *R) {
966                 // Place the entry point at the beginning of the order.
967                 if (L->isEntry() != R->isEntry())
968                   return L->isEntry();
969 
970                 const double DL = ChainDensity[L];
971                 const double DR = ChainDensity[R];
972                 // Compare by density and break ties by chain identifiers.
973                 return std::make_tuple(-DL, L->Id) <
974                        std::make_tuple(-DR, R->Id);
975               });
976 
977     // Collect the nodes in the order specified by their chains.
978     std::vector<uint64_t> Order;
979     Order.reserve(NumNodes);
980     for (const ChainT *Chain : SortedChains)
981       for (NodeT *Node : Chain->Nodes)
982         Order.push_back(Node->Index);
983     return Order;
984   }
985 
986 private:
987   /// The number of nodes in the graph.
988   const size_t NumNodes;
989 
990   /// Successors of each node.
991   std::vector<std::vector<uint64_t>> SuccNodes;
992 
993   /// Predecessors of each node.
994   std::vector<std::vector<uint64_t>> PredNodes;
995 
996   /// All nodes (basic blocks) in the graph.
997   std::vector<NodeT> AllNodes;
998 
999   /// All jumps between the nodes.
1000   std::vector<JumpT> AllJumps;
1001 
1002   /// All chains of nodes.
1003   std::vector<ChainT> AllChains;
1004 
1005   /// All edges between the chains.
1006   std::vector<ChainEdge> AllEdges;
1007 
1008   /// Active chains. The vector gets updated at runtime when chains are merged.
1009   std::vector<ChainT *> HotChains;
1010 };
1011 
1012 /// The implementation of the Cache-Directed Sort (CDS) algorithm for ordering
1013 /// functions represented by a call graph.
1014 class CDSortImpl {
1015 public:
1016   CDSortImpl(const CDSortConfig &Config, ArrayRef<uint64_t> NodeSizes,
1017              ArrayRef<uint64_t> NodeCounts, ArrayRef<EdgeCount> EdgeCounts,
1018              ArrayRef<uint64_t> EdgeOffsets)
1019       : Config(Config), NumNodes(NodeSizes.size()) {
1020     initialize(NodeSizes, NodeCounts, EdgeCounts, EdgeOffsets);
1021   }
1022 
1023   /// Run the algorithm and return an ordered set of function clusters.
1024   std::vector<uint64_t> run() {
1025     // Merge pairs of chains while improving the objective.
1026     mergeChainPairs();
1027 
1028     LLVM_DEBUG(dbgs() << "Cache-directed function sorting reduced the number"
1029                       << " of chains from " << NumNodes << " to "
1030                       << HotChains.size() << "\n");
1031 
1032     // Collect nodes from all the chains.
1033     return concatChains();
1034   }
1035 
1036 private:
1037   /// Initialize the algorithm's data structures.
1038   void initialize(const ArrayRef<uint64_t> &NodeSizes,
1039                   const ArrayRef<uint64_t> &NodeCounts,
1040                   const ArrayRef<EdgeCount> &EdgeCounts,
1041                   const ArrayRef<uint64_t> &EdgeOffsets) {
1042     // Initialize nodes.
1043     AllNodes.reserve(NumNodes);
1044     for (uint64_t Node = 0; Node < NumNodes; Node++) {
1045       uint64_t Size = std::max<uint64_t>(NodeSizes[Node], 1ULL);
1046       uint64_t ExecutionCount = NodeCounts[Node];
1047       AllNodes.emplace_back(Node, Size, ExecutionCount);
1048       TotalSamples += ExecutionCount;
1049       if (ExecutionCount > 0)
1050         TotalSize += Size;
1051     }
1052 
1053     // Initialize jumps between the nodes.
1054     SuccNodes.resize(NumNodes);
1055     PredNodes.resize(NumNodes);
1056     AllJumps.reserve(EdgeCounts.size());
1057     for (size_t I = 0; I < EdgeCounts.size(); I++) {
1058       auto [Pred, Succ, Count] = EdgeCounts[I];
1059       // Ignore recursive calls.
1060       if (Pred == Succ)
1061         continue;
1062 
1063       SuccNodes[Pred].push_back(Succ);
1064       PredNodes[Succ].push_back(Pred);
1065       if (Count > 0) {
1066         NodeT &PredNode = AllNodes[Pred];
1067         NodeT &SuccNode = AllNodes[Succ];
1068         AllJumps.emplace_back(&PredNode, &SuccNode, Count);
1069         AllJumps.back().Offset = EdgeOffsets[I];
1070         SuccNode.InJumps.push_back(&AllJumps.back());
1071         PredNode.OutJumps.push_back(&AllJumps.back());
1072       }
1073     }
1074 
1075     // Initialize chains.
1076     AllChains.reserve(NumNodes);
1077     HotChains.reserve(NumNodes);
1078     for (NodeT &Node : AllNodes) {
1079       // Adjust execution counts.
1080       Node.ExecutionCount = std::max(Node.ExecutionCount, Node.inCount());
1081       Node.ExecutionCount = std::max(Node.ExecutionCount, Node.outCount());
1082       // Create chain.
1083       AllChains.emplace_back(Node.Index, &Node);
1084       Node.CurChain = &AllChains.back();
1085       if (Node.ExecutionCount > 0)
1086         HotChains.push_back(&AllChains.back());
1087     }
1088 
1089     // Initialize chain edges.
1090     AllEdges.reserve(AllJumps.size());
1091     for (NodeT &PredNode : AllNodes) {
1092       for (JumpT *Jump : PredNode.OutJumps) {
1093         NodeT *SuccNode = Jump->Target;
1094         ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
1095         // this edge is already present in the graph.
1096         if (CurEdge != nullptr) {
1097           assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
1098           CurEdge->appendJump(Jump);
1099           continue;
1100         }
1101         // this is a new edge.
1102         AllEdges.emplace_back(Jump);
1103         PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
1104         SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
1105       }
1106     }
1107   }
1108 
1109   /// Merge pairs of chains while there is an improvement in the objective.
1110   void mergeChainPairs() {
1111     // Create a priority queue containing all edges ordered by the merge gain.
1112     auto GainComparator = [](ChainEdge *L, ChainEdge *R) {
1113       return std::make_tuple(-L->gain(), L->srcChain()->Id, L->dstChain()->Id) <
1114              std::make_tuple(-R->gain(), R->srcChain()->Id, R->dstChain()->Id);
1115     };
1116     std::set<ChainEdge *, decltype(GainComparator)> Queue(GainComparator);
1117 
1118     // Insert the edges into the queue.
1119     for (ChainT *ChainPred : HotChains) {
1120       for (const auto &[_, Edge] : ChainPred->Edges) {
1121         // Ignore self-edges.
1122         if (Edge->isSelfEdge())
1123           continue;
1124         // Ignore already processed edges.
1125         if (Edge->gain() != -1.0)
1126           continue;
1127 
1128         // Compute the gain of merging the two chains.
1129         MergeGainT Gain = getBestMergeGain(Edge);
1130         Edge->setMergeGain(Gain);
1131 
1132         if (Edge->gain() > EPS)
1133           Queue.insert(Edge);
1134       }
1135     }
1136 
1137     // Merge the chains while the gain of merging is positive.
1138     while (!Queue.empty()) {
1139       // Extract the best (top) edge for merging.
1140       ChainEdge *BestEdge = *Queue.begin();
1141       Queue.erase(Queue.begin());
1142       // Ignore self-edges.
1143       if (BestEdge->isSelfEdge())
1144         continue;
1145       // Ignore edges with non-positive gains.
1146       if (BestEdge->gain() <= EPS)
1147         continue;
1148 
1149       ChainT *BestSrcChain = BestEdge->srcChain();
1150       ChainT *BestDstChain = BestEdge->dstChain();
1151 
1152       // Remove outdated edges from the queue.
1153       for (const auto &[_, ChainEdge] : BestSrcChain->Edges)
1154         Queue.erase(ChainEdge);
1155       for (const auto &[_, ChainEdge] : BestDstChain->Edges)
1156         Queue.erase(ChainEdge);
1157 
1158       // Merge the best pair of chains.
1159       MergeGainT BestGain = BestEdge->getMergeGain();
1160       mergeChains(BestSrcChain, BestDstChain, BestGain.mergeOffset(),
1161                   BestGain.mergeType());
1162 
1163       // Insert newly created edges into the queue.
1164       for (const auto &[_, Edge] : BestSrcChain->Edges) {
1165         // Ignore loop edges.
1166         if (Edge->isSelfEdge())
1167           continue;
1168 
1169         // Compute the gain of merging the two chains.
1170         MergeGainT Gain = getBestMergeGain(Edge);
1171         Edge->setMergeGain(Gain);
1172 
1173         if (Edge->gain() > EPS)
1174           Queue.insert(Edge);
1175       }
1176     }
1177   }
1178 
1179   /// Compute the gain of merging two chains.
1180   ///
1181   /// The function considers all possible ways of merging two chains and
1182   /// computes the one having the largest increase in ExtTSP objective. The
1183   /// result is a pair with the first element being the gain and the second
1184   /// element being the corresponding merging type.
1185   MergeGainT getBestMergeGain(ChainEdge *Edge) const {
1186     assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps");
1187     // Precompute jumps between ChainPred and ChainSucc.
1188     MergedJumpsT Jumps(&Edge->jumps());
1189     ChainT *SrcChain = Edge->srcChain();
1190     ChainT *DstChain = Edge->dstChain();
1191 
1192     // This object holds the best currently chosen gain of merging two chains.
1193     MergeGainT Gain = MergeGainT();
1194 
1195     /// Given a list of merge types, try to merge two chains and update Gain
1196     /// with a better alternative.
1197     auto tryChainMerging = [&](const std::vector<MergeTypeT> &MergeTypes) {
1198       // Apply the merge, compute the corresponding gain, and update the best
1199       // value, if the merge is beneficial.
1200       for (const MergeTypeT &MergeType : MergeTypes) {
1201         MergeGainT NewGain =
1202             computeMergeGain(SrcChain, DstChain, Jumps, MergeType);
1203 
1204         // When forward and backward gains are the same, prioritize merging that
1205         // preserves the original order of the functions in the binary.
1206         if (std::abs(Gain.score() - NewGain.score()) < EPS) {
1207           if ((MergeType == MergeTypeT::X_Y && SrcChain->Id < DstChain->Id) ||
1208               (MergeType == MergeTypeT::Y_X && SrcChain->Id > DstChain->Id)) {
1209             Gain = NewGain;
1210           }
1211         } else if (NewGain.score() > Gain.score() + EPS) {
1212           Gain = NewGain;
1213         }
1214       }
1215     };
1216 
1217     // Try to concatenate two chains w/o splitting.
1218     tryChainMerging({MergeTypeT::X_Y, MergeTypeT::Y_X});
1219 
1220     return Gain;
1221   }
1222 
1223   /// Compute the score gain of merging two chains, respecting a given type.
1224   ///
1225   /// The two chains are not modified in the method.
1226   MergeGainT computeMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
1227                               const MergedJumpsT &Jumps,
1228                               MergeTypeT MergeType) const {
1229     // This doesn't depend on the ordering of the nodes
1230     double FreqGain = freqBasedLocalityGain(ChainPred, ChainSucc);
1231 
1232     // Merge offset is always 0, as the chains are not split.
1233     size_t MergeOffset = 0;
1234     auto MergedBlocks =
1235         mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
1236     double DistGain = distBasedLocalityGain(MergedBlocks, Jumps);
1237 
1238     double GainScore = DistGain + Config.FrequencyScale * FreqGain;
1239     // Scale the result to increase the importance of merging short chains.
1240     if (GainScore >= 0.0)
1241       GainScore /= std::min(ChainPred->Size, ChainSucc->Size);
1242 
1243     return MergeGainT(GainScore, MergeOffset, MergeType);
1244   }
1245 
1246   /// Compute the change of the frequency locality after merging the chains.
1247   double freqBasedLocalityGain(ChainT *ChainPred, ChainT *ChainSucc) const {
1248     auto missProbability = [&](double ChainDensity) {
1249       double PageSamples = ChainDensity * Config.CacheSize;
1250       if (PageSamples >= TotalSamples)
1251         return 0.0;
1252       double P = PageSamples / TotalSamples;
1253       return pow(1.0 - P, static_cast<double>(Config.CacheEntries));
1254     };
1255 
1256     // Cache misses on the chains before merging.
1257     double CurScore =
1258         ChainPred->ExecutionCount * missProbability(ChainPred->density()) +
1259         ChainSucc->ExecutionCount * missProbability(ChainSucc->density());
1260 
1261     // Cache misses on the merged chain
1262     double MergedCounts = ChainPred->ExecutionCount + ChainSucc->ExecutionCount;
1263     double MergedSize = ChainPred->Size + ChainSucc->Size;
1264     double MergedDensity = static_cast<double>(MergedCounts) / MergedSize;
1265     double NewScore = MergedCounts * missProbability(MergedDensity);
1266 
1267     return CurScore - NewScore;
1268   }
1269 
1270   /// Compute the distance locality for a jump / call.
1271   double distScore(uint64_t SrcAddr, uint64_t DstAddr, uint64_t Count) const {
1272     uint64_t Dist = SrcAddr <= DstAddr ? DstAddr - SrcAddr : SrcAddr - DstAddr;
1273     double D = Dist == 0 ? 0.1 : static_cast<double>(Dist);
1274     return static_cast<double>(Count) * std::pow(D, -Config.DistancePower);
1275   }
1276 
1277   /// Compute the change of the distance locality after merging the chains.
1278   double distBasedLocalityGain(const MergedNodesT &Nodes,
1279                                const MergedJumpsT &Jumps) const {
1280     uint64_t CurAddr = 0;
1281     Nodes.forEach([&](const NodeT *Node) {
1282       Node->EstimatedAddr = CurAddr;
1283       CurAddr += Node->Size;
1284     });
1285 
1286     double CurScore = 0;
1287     double NewScore = 0;
1288     Jumps.forEach([&](const JumpT *Jump) {
1289       uint64_t SrcAddr = Jump->Source->EstimatedAddr + Jump->Offset;
1290       uint64_t DstAddr = Jump->Target->EstimatedAddr;
1291       NewScore += distScore(SrcAddr, DstAddr, Jump->ExecutionCount);
1292       CurScore += distScore(0, TotalSize, Jump->ExecutionCount);
1293     });
1294     return NewScore - CurScore;
1295   }
1296 
1297   /// Merge chain From into chain Into, update the list of active chains,
1298   /// adjacency information, and the corresponding cached values.
1299   void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
1300                    MergeTypeT MergeType) {
1301     assert(Into != From && "a chain cannot be merged with itself");
1302 
1303     // Merge the nodes.
1304     MergedNodesT MergedNodes =
1305         mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
1306     Into->merge(From, MergedNodes.getNodes());
1307 
1308     // Merge the edges.
1309     Into->mergeEdges(From);
1310     From->clear();
1311 
1312     // Remove the chain from the list of active chains.
1313     llvm::erase_value(HotChains, From);
1314   }
1315 
1316   /// Concatenate all chains into the final order.
1317   std::vector<uint64_t> concatChains() {
1318     // Collect chains and calculate density stats for their sorting.
1319     std::vector<const ChainT *> SortedChains;
1320     DenseMap<const ChainT *, double> ChainDensity;
1321     for (ChainT &Chain : AllChains) {
1322       if (!Chain.Nodes.empty()) {
1323         SortedChains.push_back(&Chain);
1324         // Using doubles to avoid overflow of ExecutionCounts.
1325         double Size = 0;
1326         double ExecutionCount = 0;
1327         for (NodeT *Node : Chain.Nodes) {
1328           Size += static_cast<double>(Node->Size);
1329           ExecutionCount += static_cast<double>(Node->ExecutionCount);
1330         }
1331         assert(Size > 0 && "a chain of zero size");
1332         ChainDensity[&Chain] = ExecutionCount / Size;
1333       }
1334     }
1335 
1336     // Sort chains by density in the decreasing order.
1337     std::sort(SortedChains.begin(), SortedChains.end(),
1338               [&](const ChainT *L, const ChainT *R) {
1339                 const double DL = ChainDensity[L];
1340                 const double DR = ChainDensity[R];
1341                 // Compare by density and break ties by chain identifiers.
1342                 return std::make_tuple(-DL, L->Id) <
1343                        std::make_tuple(-DR, R->Id);
1344               });
1345 
1346     // Collect the nodes in the order specified by their chains.
1347     std::vector<uint64_t> Order;
1348     Order.reserve(NumNodes);
1349     for (const ChainT *Chain : SortedChains)
1350       for (NodeT *Node : Chain->Nodes)
1351         Order.push_back(Node->Index);
1352     return Order;
1353   }
1354 
1355 private:
1356   /// Config for the algorithm.
1357   const CDSortConfig Config;
1358 
1359   /// The number of nodes in the graph.
1360   const size_t NumNodes;
1361 
1362   /// Successors of each node.
1363   std::vector<std::vector<uint64_t>> SuccNodes;
1364 
1365   /// Predecessors of each node.
1366   std::vector<std::vector<uint64_t>> PredNodes;
1367 
1368   /// All nodes (functions) in the graph.
1369   std::vector<NodeT> AllNodes;
1370 
1371   /// All jumps (function calls) between the nodes.
1372   std::vector<JumpT> AllJumps;
1373 
1374   /// All chains of nodes.
1375   std::vector<ChainT> AllChains;
1376 
1377   /// All edges between the chains.
1378   std::vector<ChainEdge> AllEdges;
1379 
1380   /// Active chains. The vector gets updated at runtime when chains are merged.
1381   std::vector<ChainT *> HotChains;
1382 
1383   /// The total number of samples in the graph.
1384   uint64_t TotalSamples{0};
1385 
1386   /// The total size of the nodes in the graph.
1387   uint64_t TotalSize{0};
1388 };
1389 
1390 } // end of anonymous namespace
1391 
1392 std::vector<uint64_t>
1393 codelayout::computeExtTspLayout(ArrayRef<uint64_t> NodeSizes,
1394                                 ArrayRef<uint64_t> NodeCounts,
1395                                 ArrayRef<EdgeCount> EdgeCounts) {
1396   // Verify correctness of the input data.
1397   assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input");
1398   assert(NodeSizes.size() > 2 && "Incorrect input");
1399 
1400   // Apply the reordering algorithm.
1401   ExtTSPImpl Alg(NodeSizes, NodeCounts, EdgeCounts);
1402   std::vector<uint64_t> Result = Alg.run();
1403 
1404   // Verify correctness of the output.
1405   assert(Result.front() == 0 && "Original entry point is not preserved");
1406   assert(Result.size() == NodeSizes.size() && "Incorrect size of layout");
1407   return Result;
1408 }
1409 
1410 double codelayout::calcExtTspScore(ArrayRef<uint64_t> Order,
1411                                    ArrayRef<uint64_t> NodeSizes,
1412                                    ArrayRef<uint64_t> NodeCounts,
1413                                    ArrayRef<EdgeCount> EdgeCounts) {
1414   // Estimate addresses of the blocks in memory.
1415   std::vector<uint64_t> Addr(NodeSizes.size(), 0);
1416   for (size_t Idx = 1; Idx < Order.size(); Idx++) {
1417     Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]];
1418   }
1419   std::vector<uint64_t> OutDegree(NodeSizes.size(), 0);
1420   for (auto Edge : EdgeCounts)
1421     ++OutDegree[Edge.src];
1422 
1423   // Increase the score for each jump.
1424   double Score = 0;
1425   for (auto Edge : EdgeCounts) {
1426     bool IsConditional = OutDegree[Edge.src] > 1;
1427     Score += ::extTSPScore(Addr[Edge.src], NodeSizes[Edge.src], Addr[Edge.dst],
1428                            Edge.count, IsConditional);
1429   }
1430   return Score;
1431 }
1432 
1433 double codelayout::calcExtTspScore(ArrayRef<uint64_t> NodeSizes,
1434                                    ArrayRef<uint64_t> NodeCounts,
1435                                    ArrayRef<EdgeCount> EdgeCounts) {
1436   std::vector<uint64_t> Order(NodeSizes.size());
1437   for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) {
1438     Order[Idx] = Idx;
1439   }
1440   return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts);
1441 }
1442 
1443 std::vector<uint64_t> codelayout::computeCacheDirectedLayout(
1444     const CDSortConfig &Config, ArrayRef<uint64_t> FuncSizes,
1445     ArrayRef<uint64_t> FuncCounts, ArrayRef<EdgeCount> CallCounts,
1446     ArrayRef<uint64_t> CallOffsets) {
1447   // Verify correctness of the input data.
1448   assert(FuncCounts.size() == FuncSizes.size() && "Incorrect input");
1449 
1450   // Apply the reordering algorithm.
1451   CDSortImpl Alg(Config, FuncSizes, FuncCounts, CallCounts, CallOffsets);
1452   std::vector<uint64_t> Result = Alg.run();
1453   assert(Result.size() == FuncSizes.size() && "Incorrect size of layout");
1454   return Result;
1455 }
1456 
1457 std::vector<uint64_t> codelayout::computeCacheDirectedLayout(
1458     ArrayRef<uint64_t> FuncSizes, ArrayRef<uint64_t> FuncCounts,
1459     ArrayRef<EdgeCount> CallCounts, ArrayRef<uint64_t> CallOffsets) {
1460   CDSortConfig Config;
1461   // Populate the config from the command-line options.
1462   if (CacheEntries.getNumOccurrences() > 0)
1463     Config.CacheEntries = CacheEntries;
1464   if (CacheSize.getNumOccurrences() > 0)
1465     Config.CacheSize = CacheSize;
1466   if (DistancePower.getNumOccurrences() > 0)
1467     Config.DistancePower = DistancePower;
1468   if (FrequencyScale.getNumOccurrences() > 0)
1469     Config.FrequencyScale = FrequencyScale;
1470   return computeCacheDirectedLayout(Config, FuncSizes, FuncCounts, CallCounts,
1471                                     CallOffsets);
1472 }
1473