1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/Pass.h" 22 #include "llvm/Analysis/Dominators.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/Verifier.h" 25 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 26 #include "Support/CommandLine.h" 27 #include "Support/Debug.h" 28 #include "Support/StringExtras.h" 29 #include <algorithm> 30 #include <set> 31 using namespace llvm; 32 33 // Provide a command-line option to aggregate function arguments into a struct 34 // for functions produced by the code extrator. This is useful when converting 35 // extracted functions to pthread-based code, as only one argument (void*) can 36 // be passed in to pthread_create(). 37 static cl::opt<bool> 38 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 39 cl::desc("Aggregate arguments to code-extracted functions")); 40 41 namespace { 42 class CodeExtractor { 43 typedef std::vector<Value*> Values; 44 std::set<BasicBlock*> BlocksToExtract; 45 DominatorSet *DS; 46 bool AggregateArgs; 47 unsigned NumExitBlocks; 48 const Type *RetTy; 49 public: 50 CodeExtractor(DominatorSet *ds = 0, bool AggArgs = false) 51 : DS(ds), AggregateArgs(AggregateArgsOpt), NumExitBlocks(~0U) {} 52 53 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 54 55 bool isEligible(const std::vector<BasicBlock*> &code); 56 57 private: 58 void findInputsOutputs(Values &inputs, Values &outputs, 59 BasicBlock *newHeader, 60 BasicBlock *newRootNode); 61 62 Function *constructFunction(const Values &inputs, 63 const Values &outputs, 64 BasicBlock *header, 65 BasicBlock *newRootNode, BasicBlock *newHeader, 66 Function *oldFunction, Module *M); 67 68 void moveCodeToFunction(Function *newFunction); 69 70 void emitCallAndSwitchStatement(Function *newFunction, 71 BasicBlock *newHeader, 72 Values &inputs, 73 Values &outputs); 74 75 }; 76 } 77 78 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs, 79 BasicBlock *newHeader, 80 BasicBlock *newRootNode) { 81 std::set<BasicBlock*> ExitBlocks; 82 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 83 ce = BlocksToExtract.end(); ci != ce; ++ci) { 84 BasicBlock *BB = *ci; 85 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 86 // If a used value is defined outside the region, it's an input. If an 87 // instruction is used outside the region, it's an output. 88 if (PHINode *PN = dyn_cast<PHINode>(I)) { 89 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 90 Value *V = PN->getIncomingValue(i); 91 if (!BlocksToExtract.count(PN->getIncomingBlock(i)) && 92 (isa<Instruction>(V) || isa<Argument>(V))) 93 inputs.push_back(V); 94 else if (Instruction *opI = dyn_cast<Instruction>(V)) { 95 if (!BlocksToExtract.count(opI->getParent())) 96 inputs.push_back(opI); 97 } else if (isa<Argument>(V)) 98 inputs.push_back(V); 99 } 100 } else { 101 // All other instructions go through the generic input finder 102 // Loop over the operands of each instruction (inputs) 103 for (User::op_iterator op = I->op_begin(), opE = I->op_end(); 104 op != opE; ++op) 105 if (Instruction *opI = dyn_cast<Instruction>(*op)) { 106 // Check if definition of this operand is within the loop 107 if (!BlocksToExtract.count(opI->getParent())) 108 inputs.push_back(opI); 109 } else if (isa<Argument>(*op)) { 110 inputs.push_back(*op); 111 } 112 } 113 114 // Consider uses of this instruction (outputs) 115 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 116 UI != E; ++UI) 117 if (!BlocksToExtract.count(cast<Instruction>(*UI)->getParent())) { 118 outputs.push_back(I); 119 break; 120 } 121 } // for: insts 122 123 TerminatorInst *TI = BB->getTerminator(); 124 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 125 if (!BlocksToExtract.count(TI->getSuccessor(i))) 126 ExitBlocks.insert(TI->getSuccessor(i)); 127 } // for: basic blocks 128 129 NumExitBlocks = ExitBlocks.size(); 130 } 131 132 /// constructFunction - make a function based on inputs and outputs, as follows: 133 /// f(in0, ..., inN, out0, ..., outN) 134 /// 135 Function *CodeExtractor::constructFunction(const Values &inputs, 136 const Values &outputs, 137 BasicBlock *header, 138 BasicBlock *newRootNode, 139 BasicBlock *newHeader, 140 Function *oldFunction, 141 Module *M) { 142 DEBUG(std::cerr << "inputs: " << inputs.size() << "\n"); 143 DEBUG(std::cerr << "outputs: " << outputs.size() << "\n"); 144 145 // This function returns unsigned, outputs will go back by reference. 146 switch (NumExitBlocks) { 147 case 0: 148 case 1: RetTy = Type::VoidTy; break; 149 case 2: RetTy = Type::BoolTy; break; 150 default: RetTy = Type::UShortTy; break; 151 } 152 153 std::vector<const Type*> paramTy; 154 155 // Add the types of the input values to the function's argument list 156 for (Values::const_iterator i = inputs.begin(), 157 e = inputs.end(); i != e; ++i) { 158 const Value *value = *i; 159 DEBUG(std::cerr << "value used in func: " << value << "\n"); 160 paramTy.push_back(value->getType()); 161 } 162 163 // Add the types of the output values to the function's argument list. 164 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 165 I != E; ++I) { 166 DEBUG(std::cerr << "instr used in func: " << *I << "\n"); 167 if (AggregateArgs) 168 paramTy.push_back((*I)->getType()); 169 else 170 paramTy.push_back(PointerType::get((*I)->getType())); 171 } 172 173 DEBUG(std::cerr << "Function type: " << RetTy << " f("); 174 DEBUG(for (std::vector<const Type*>::iterator i = paramTy.begin(), 175 e = paramTy.end(); i != e; ++i) std::cerr << *i << ", "); 176 DEBUG(std::cerr << ")\n"); 177 178 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 179 PointerType *StructPtr = PointerType::get(StructType::get(paramTy)); 180 paramTy.clear(); 181 paramTy.push_back(StructPtr); 182 } 183 const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false); 184 185 // Create the new function 186 Function *newFunction = new Function(funcType, 187 GlobalValue::InternalLinkage, 188 oldFunction->getName() + "_code", M); 189 newFunction->getBasicBlockList().push_back(newRootNode); 190 191 // Create an iterator to name all of the arguments we inserted. 192 Function::aiterator AI = newFunction->abegin(); 193 194 // Rewrite all users of the inputs in the extracted region to use the 195 // arguments (or appropriate addressing into struct) instead. 196 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 197 Value *RewriteVal; 198 if (AggregateArgs) { 199 std::vector<Value*> Indices; 200 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 201 Indices.push_back(ConstantUInt::get(Type::UIntTy, i)); 202 std::string GEPname = "gep_" + inputs[i]->getName(); 203 TerminatorInst *TI = newFunction->begin()->getTerminator(); 204 GetElementPtrInst *GEP = new GetElementPtrInst(AI, Indices, GEPname, TI); 205 RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); 206 } else 207 RewriteVal = AI++; 208 209 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 210 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 211 use != useE; ++use) 212 if (Instruction* inst = dyn_cast<Instruction>(*use)) 213 if (BlocksToExtract.count(inst->getParent())) 214 inst->replaceUsesOfWith(inputs[i], RewriteVal); 215 } 216 217 // Set names for input and output arguments. 218 if (!AggregateArgs) { 219 AI = newFunction->abegin(); 220 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 221 AI->setName(inputs[i]->getName()); 222 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 223 AI->setName(outputs[i]->getName()+".out"); 224 } 225 226 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 227 // within the new function. This must be done before we lose track of which 228 // blocks were originally in the code region. 229 std::vector<User*> Users(header->use_begin(), header->use_end()); 230 for (unsigned i = 0, e = Users.size(); i != e; ++i) 231 // The BasicBlock which contains the branch is not in the region 232 // modify the branch target to a new block 233 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 234 if (!BlocksToExtract.count(TI->getParent()) && 235 TI->getParent()->getParent() == oldFunction) 236 TI->replaceUsesOfWith(header, newHeader); 237 238 return newFunction; 239 } 240 241 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 242 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 243 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 244 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 245 246 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 247 e = BlocksToExtract.end(); i != e; ++i) { 248 // Delete the basic block from the old function, and the list of blocks 249 oldBlocks.remove(*i); 250 251 // Insert this basic block into the new function 252 newBlocks.push_back(*i); 253 } 254 } 255 256 void 257 CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 258 BasicBlock *codeReplacer, 259 Values &inputs, 260 Values &outputs) { 261 262 // Emit a call to the new function, passing in: 263 // *pointer to struct (if aggregating parameters), or 264 // plan inputs and allocated memory for outputs 265 std::vector<Value*> params, StructValues, ReloadOutputs; 266 267 // Add inputs as params, or to be filled into the struct 268 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 269 if (AggregateArgs) 270 StructValues.push_back(*i); 271 else 272 params.push_back(*i); 273 274 // Create allocas for the outputs 275 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 276 if (AggregateArgs) { 277 StructValues.push_back(*i); 278 } else { 279 AllocaInst *alloca = 280 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 281 codeReplacer->getParent()->begin()->begin()); 282 ReloadOutputs.push_back(alloca); 283 params.push_back(alloca); 284 } 285 } 286 287 AllocaInst *Struct = 0; 288 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 289 std::vector<const Type*> ArgTypes; 290 for (Values::iterator v = StructValues.begin(), 291 ve = StructValues.end(); v != ve; ++v) 292 ArgTypes.push_back((*v)->getType()); 293 294 // Allocate a struct at the beginning of this function 295 Type *StructArgTy = StructType::get(ArgTypes); 296 Struct = 297 new AllocaInst(StructArgTy, 0, "structArg", 298 codeReplacer->getParent()->begin()->begin()); 299 params.push_back(Struct); 300 301 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 302 std::vector<Value*> Indices; 303 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 304 Indices.push_back(ConstantUInt::get(Type::UIntTy, i)); 305 GetElementPtrInst *GEP = 306 new GetElementPtrInst(Struct, Indices, 307 "gep_" + StructValues[i]->getName(), 0); 308 codeReplacer->getInstList().push_back(GEP); 309 StoreInst *SI = new StoreInst(StructValues[i], GEP); 310 codeReplacer->getInstList().push_back(SI); 311 } 312 } 313 314 // Emit the call to the function 315 CallInst *call = new CallInst(newFunction, params, 316 NumExitBlocks > 1 ? "targetBlock": ""); 317 codeReplacer->getInstList().push_back(call); 318 319 Function::aiterator OutputArgBegin = newFunction->abegin(); 320 unsigned FirstOut = inputs.size(); 321 if (!AggregateArgs) 322 std::advance(OutputArgBegin, inputs.size()); 323 324 // Reload the outputs passed in by reference 325 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 326 Value *Output = 0; 327 if (AggregateArgs) { 328 std::vector<Value*> Indices; 329 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 330 Indices.push_back(ConstantUInt::get(Type::UIntTy, FirstOut + i)); 331 GetElementPtrInst *GEP 332 = new GetElementPtrInst(Struct, Indices, 333 "gep_reload_" + outputs[i]->getName(), 0); 334 codeReplacer->getInstList().push_back(GEP); 335 Output = GEP; 336 } else { 337 Output = ReloadOutputs[i]; 338 } 339 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 340 codeReplacer->getInstList().push_back(load); 341 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 342 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 343 Instruction *inst = cast<Instruction>(Users[u]); 344 if (!BlocksToExtract.count(inst->getParent())) 345 inst->replaceUsesOfWith(outputs[i], load); 346 } 347 } 348 349 // Now we can emit a switch statement using the call as a value. 350 SwitchInst *TheSwitch = 351 new SwitchInst(ConstantUInt::getNullValue(Type::UShortTy), 352 codeReplacer, codeReplacer); 353 354 // Since there may be multiple exits from the original region, make the new 355 // function return an unsigned, switch on that number. This loop iterates 356 // over all of the blocks in the extracted region, updating any terminator 357 // instructions in the to-be-extracted region that branch to blocks that are 358 // not in the region to be extracted. 359 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 360 361 unsigned switchVal = 0; 362 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 363 e = BlocksToExtract.end(); i != e; ++i) { 364 TerminatorInst *TI = (*i)->getTerminator(); 365 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 366 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 367 BasicBlock *OldTarget = TI->getSuccessor(i); 368 // add a new basic block which returns the appropriate value 369 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 370 if (!NewTarget) { 371 // If we don't already have an exit stub for this non-extracted 372 // destination, create one now! 373 NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", 374 newFunction); 375 unsigned SuccNum = switchVal++; 376 377 Value *brVal = 0; 378 switch (NumExitBlocks) { 379 case 0: 380 case 1: break; // No value needed. 381 case 2: // Conditional branch, return a bool 382 brVal = SuccNum ? ConstantBool::False : ConstantBool::True; 383 break; 384 default: 385 brVal = ConstantUInt::get(Type::UShortTy, SuccNum); 386 break; 387 } 388 389 ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); 390 391 // Update the switch instruction. 392 TheSwitch->addCase(ConstantUInt::get(Type::UShortTy, SuccNum), 393 OldTarget); 394 395 // Restore values just before we exit 396 Function::aiterator OAI = OutputArgBegin; 397 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 398 // For an invoke, the normal destination is the only one that is 399 // dominated by the result of the invocation 400 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 401 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) 402 DefBlock = Invoke->getNormalDest(); 403 if (!DS || DS->dominates(DefBlock, TI->getParent())) 404 if (AggregateArgs) { 405 std::vector<Value*> Indices; 406 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 407 Indices.push_back(ConstantUInt::get(Type::UIntTy,FirstOut+out)); 408 GetElementPtrInst *GEP = 409 new GetElementPtrInst(OAI, Indices, 410 "gep_" + outputs[out]->getName(), 411 NTRet); 412 new StoreInst(outputs[out], GEP, NTRet); 413 } else 414 new StoreInst(outputs[out], OAI, NTRet); 415 // Advance output iterator even if we don't emit a store 416 if (!AggregateArgs) ++OAI; 417 } 418 } 419 420 // rewrite the original branch instruction with this new target 421 TI->setSuccessor(i, NewTarget); 422 } 423 } 424 425 // Now that we've done the deed, simplify the switch instruction. 426 switch (NumExitBlocks) { 427 case 0: 428 // There is only 1 successor (the block containing the switch itself), which 429 // means that previously this was the last part of the function, and hence 430 // this should be rewritten as a `ret' 431 432 // Check if the function should return a value 433 if (TheSwitch->getParent()->getParent()->getReturnType() != Type::VoidTy && 434 TheSwitch->getParent()->getParent()->getReturnType() == 435 TheSwitch->getCondition()->getType()) 436 // return what we have 437 new ReturnInst(TheSwitch->getCondition(), TheSwitch); 438 else 439 // just return 440 new ReturnInst(0, TheSwitch); 441 442 TheSwitch->getParent()->getInstList().erase(TheSwitch); 443 break; 444 case 1: 445 // Only a single destination, change the switch into an unconditional 446 // branch. 447 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch); 448 TheSwitch->getParent()->getInstList().erase(TheSwitch); 449 break; 450 case 2: 451 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 452 call, TheSwitch); 453 TheSwitch->getParent()->getInstList().erase(TheSwitch); 454 break; 455 default: 456 // Otherwise, make the default destination of the switch instruction be one 457 // of the other successors. 458 TheSwitch->setOperand(0, call); 459 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 460 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 461 break; 462 } 463 } 464 465 466 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 467 /// new function. Returns pointer to the new function. 468 /// 469 /// algorithm: 470 /// 471 /// find inputs and outputs for the region 472 /// 473 /// for inputs: add to function as args, map input instr* to arg# 474 /// for outputs: add allocas for scalars, 475 /// add to func as args, map output instr* to arg# 476 /// 477 /// rewrite func to use argument #s instead of instr* 478 /// 479 /// for each scalar output in the function: at every exit, store intermediate 480 /// computed result back into memory. 481 /// 482 Function *CodeExtractor::ExtractCodeRegion(const std::vector<BasicBlock*> &code) 483 { 484 if (!isEligible(code)) 485 return 0; 486 487 // 1) Find inputs, outputs 488 // 2) Construct new function 489 // * Add allocas for defs, pass as args by reference 490 // * Pass in uses as args 491 // 3) Move code region, add call instr to func 492 // 493 BlocksToExtract.insert(code.begin(), code.end()); 494 495 Values inputs, outputs; 496 497 // Assumption: this is a single-entry code region, and the header is the first 498 // block in the region. 499 BasicBlock *header = code[0]; 500 for (unsigned i = 1, e = code.size(); i != e; ++i) 501 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 502 PI != E; ++PI) 503 assert(BlocksToExtract.count(*PI) && 504 "No blocks in this region may have entries from outside the region" 505 " except for the first block!"); 506 507 Function *oldFunction = header->getParent(); 508 509 // This takes place of the original loop 510 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction); 511 512 // The new function needs a root node because other nodes can branch to the 513 // head of the loop, and the root cannot have predecessors 514 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 515 newFuncRoot->getInstList().push_back(new BranchInst(header)); 516 517 // Find inputs to, outputs from the code region 518 // 519 // If one of the inputs is coming from a different basic block and it's in a 520 // phi node, we need to rewrite the phi node: 521 // 522 // * All the inputs which involve basic blocks OUTSIDE of this region go into 523 // a NEW phi node that takes care of finding which value really came in. 524 // The result of this phi is passed to the function as an argument. 525 // 526 // * All the other phi values stay. 527 // 528 // FIXME: PHI nodes' incoming blocks aren't being rewritten to accomodate for 529 // blocks moving to a new function. 530 // SOLUTION: move Phi nodes out of the loop header into the codeReplacer, pass 531 // the values as parameters to the function 532 findInputsOutputs(inputs, outputs, codeReplacer, newFuncRoot); 533 534 // Step 2: Construct new function based on inputs/outputs, 535 // Add allocas for all defs 536 Function *newFunction = constructFunction(inputs, outputs, code[0], 537 newFuncRoot, 538 codeReplacer, oldFunction, 539 oldFunction->getParent()); 540 541 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 542 543 moveCodeToFunction(newFunction); 544 545 // Loop over all of the PHI nodes in the entry block (code[0]), and change any 546 // references to the old incoming edge to be the new incoming edge. 547 for (BasicBlock::iterator I = code[0]->begin(); 548 PHINode *PN = dyn_cast<PHINode>(I); ++I) 549 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 550 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 551 PN->setIncomingBlock(i, newFuncRoot); 552 553 // Look at all successors of the codeReplacer block. If any of these blocks 554 // had PHI nodes in them, we need to update the "from" block to be the code 555 // replacer, not the original block in the extracted region. 556 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 557 succ_end(codeReplacer)); 558 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 559 for (BasicBlock::iterator I = Succs[i]->begin(); 560 PHINode *PN = dyn_cast<PHINode>(I); ++I) 561 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 562 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 563 PN->setIncomingBlock(i, codeReplacer); 564 565 566 DEBUG(if (verifyFunction(*newFunction)) abort()); 567 return newFunction; 568 } 569 570 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 571 // Deny code region if it contains allocas 572 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 573 BB != e; ++BB) 574 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 575 I != Ie; ++I) 576 if (isa<AllocaInst>(*I)) 577 return false; 578 return true; 579 } 580 581 582 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 583 /// function 584 /// 585 Function* llvm::ExtractCodeRegion(DominatorSet &DS, 586 const std::vector<BasicBlock*> &code, 587 bool AggregateArgs) { 588 return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(code); 589 } 590 591 /// ExtractBasicBlock - slurp a natural loop into a brand new function 592 /// 593 Function* llvm::ExtractLoop(DominatorSet &DS, Loop *L, bool AggregateArgs) { 594 return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 595 } 596 597 /// ExtractBasicBlock - slurp a basic block into a brand new function 598 /// 599 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 600 std::vector<BasicBlock*> Blocks; 601 Blocks.push_back(BB); 602 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 603 } 604