xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision fa658ac7913408d5ec248193d531ba63f6fbe73d)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DIBuilder.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/InstIterator.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/MDBuilder.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/PatternMatch.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/IR/Verifier.h"
54 #include "llvm/Support/BlockFrequency.h"
55 #include "llvm/Support/BranchProbability.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <map>
66 #include <utility>
67 #include <vector>
68 
69 using namespace llvm;
70 using namespace llvm::PatternMatch;
71 using ProfileCount = Function::ProfileCount;
72 
73 #define DEBUG_TYPE "code-extractor"
74 
75 // Provide a command-line option to aggregate function arguments into a struct
76 // for functions produced by the code extractor. This is useful when converting
77 // extracted functions to pthread-based code, as only one argument (void*) can
78 // be passed in to pthread_create().
79 static cl::opt<bool>
80 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
81                  cl::desc("Aggregate arguments to code-extracted functions"));
82 
83 /// Test whether a block is valid for extraction.
84 static bool isBlockValidForExtraction(const BasicBlock &BB,
85                                       const SetVector<BasicBlock *> &Result,
86                                       bool AllowVarArgs, bool AllowAlloca) {
87   // taking the address of a basic block moved to another function is illegal
88   if (BB.hasAddressTaken())
89     return false;
90 
91   // don't hoist code that uses another basicblock address, as it's likely to
92   // lead to unexpected behavior, like cross-function jumps
93   SmallPtrSet<User const *, 16> Visited;
94   SmallVector<User const *, 16> ToVisit;
95 
96   for (Instruction const &Inst : BB)
97     ToVisit.push_back(&Inst);
98 
99   while (!ToVisit.empty()) {
100     User const *Curr = ToVisit.pop_back_val();
101     if (!Visited.insert(Curr).second)
102       continue;
103     if (isa<BlockAddress const>(Curr))
104       return false; // even a reference to self is likely to be not compatible
105 
106     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
107       continue;
108 
109     for (auto const &U : Curr->operands()) {
110       if (auto *UU = dyn_cast<User>(U))
111         ToVisit.push_back(UU);
112     }
113   }
114 
115   // If explicitly requested, allow vastart and alloca. For invoke instructions
116   // verify that extraction is valid.
117   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
118     if (isa<AllocaInst>(I)) {
119        if (!AllowAlloca)
120          return false;
121        continue;
122     }
123 
124     if (const auto *II = dyn_cast<InvokeInst>(I)) {
125       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
126       // must be a part of the subgraph which is being extracted.
127       if (auto *UBB = II->getUnwindDest())
128         if (!Result.count(UBB))
129           return false;
130       continue;
131     }
132 
133     // All catch handlers of a catchswitch instruction as well as the unwind
134     // destination must be in the subgraph.
135     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
136       if (auto *UBB = CSI->getUnwindDest())
137         if (!Result.count(UBB))
138           return false;
139       for (const auto *HBB : CSI->handlers())
140         if (!Result.count(const_cast<BasicBlock*>(HBB)))
141           return false;
142       continue;
143     }
144 
145     // Make sure that entire catch handler is within subgraph. It is sufficient
146     // to check that catch return's block is in the list.
147     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
148       for (const auto *U : CPI->users())
149         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
150           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
151             return false;
152       continue;
153     }
154 
155     // And do similar checks for cleanup handler - the entire handler must be
156     // in subgraph which is going to be extracted. For cleanup return should
157     // additionally check that the unwind destination is also in the subgraph.
158     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
159       for (const auto *U : CPI->users())
160         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
161           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
162             return false;
163       continue;
164     }
165     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
166       if (auto *UBB = CRI->getUnwindDest())
167         if (!Result.count(UBB))
168           return false;
169       continue;
170     }
171 
172     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
173       if (const Function *F = CI->getCalledFunction()) {
174         auto IID = F->getIntrinsicID();
175         if (IID == Intrinsic::vastart) {
176           if (AllowVarArgs)
177             continue;
178           else
179             return false;
180         }
181 
182         // Currently, we miscompile outlined copies of eh_typid_for. There are
183         // proposals for fixing this in llvm.org/PR39545.
184         if (IID == Intrinsic::eh_typeid_for)
185           return false;
186       }
187     }
188   }
189 
190   return true;
191 }
192 
193 /// Build a set of blocks to extract if the input blocks are viable.
194 static SetVector<BasicBlock *>
195 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
196                         bool AllowVarArgs, bool AllowAlloca) {
197   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
198   SetVector<BasicBlock *> Result;
199 
200   // Loop over the blocks, adding them to our set-vector, and aborting with an
201   // empty set if we encounter invalid blocks.
202   for (BasicBlock *BB : BBs) {
203     // If this block is dead, don't process it.
204     if (DT && !DT->isReachableFromEntry(BB))
205       continue;
206 
207     if (!Result.insert(BB))
208       llvm_unreachable("Repeated basic blocks in extraction input");
209   }
210 
211   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
212                     << '\n');
213 
214   for (auto *BB : Result) {
215     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
216       return {};
217 
218     // Make sure that the first block is not a landing pad.
219     if (BB == Result.front()) {
220       if (BB->isEHPad()) {
221         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
222         return {};
223       }
224       continue;
225     }
226 
227     // All blocks other than the first must not have predecessors outside of
228     // the subgraph which is being extracted.
229     for (auto *PBB : predecessors(BB))
230       if (!Result.count(PBB)) {
231         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
232                              "outside the region except for the first block!\n"
233                           << "Problematic source BB: " << BB->getName() << "\n"
234                           << "Problematic destination BB: " << PBB->getName()
235                           << "\n");
236         return {};
237       }
238   }
239 
240   return Result;
241 }
242 
243 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
244                              bool AggregateArgs, BlockFrequencyInfo *BFI,
245                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
246                              bool AllowVarArgs, bool AllowAlloca,
247                              BasicBlock *AllocationBlock, std::string Suffix,
248                              bool ArgsInZeroAddressSpace)
249     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250       BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
251       AllowVarArgs(AllowVarArgs),
252       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
253       Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {}
254 
255 /// definedInRegion - Return true if the specified value is defined in the
256 /// extracted region.
257 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
258   if (Instruction *I = dyn_cast<Instruction>(V))
259     if (Blocks.count(I->getParent()))
260       return true;
261   return false;
262 }
263 
264 /// definedInCaller - Return true if the specified value is defined in the
265 /// function being code extracted, but not in the region being extracted.
266 /// These values must be passed in as live-ins to the function.
267 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
268   if (isa<Argument>(V)) return true;
269   if (Instruction *I = dyn_cast<Instruction>(V))
270     if (!Blocks.count(I->getParent()))
271       return true;
272   return false;
273 }
274 
275 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
276   BasicBlock *CommonExitBlock = nullptr;
277   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
278     for (auto *Succ : successors(Block)) {
279       // Internal edges, ok.
280       if (Blocks.count(Succ))
281         continue;
282       if (!CommonExitBlock) {
283         CommonExitBlock = Succ;
284         continue;
285       }
286       if (CommonExitBlock != Succ)
287         return true;
288     }
289     return false;
290   };
291 
292   if (any_of(Blocks, hasNonCommonExitSucc))
293     return nullptr;
294 
295   return CommonExitBlock;
296 }
297 
298 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
299   for (BasicBlock &BB : F) {
300     for (Instruction &II : BB.instructionsWithoutDebug())
301       if (auto *AI = dyn_cast<AllocaInst>(&II))
302         Allocas.push_back(AI);
303 
304     findSideEffectInfoForBlock(BB);
305   }
306 }
307 
308 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
309   for (Instruction &II : BB.instructionsWithoutDebug()) {
310     unsigned Opcode = II.getOpcode();
311     Value *MemAddr = nullptr;
312     switch (Opcode) {
313     case Instruction::Store:
314     case Instruction::Load: {
315       if (Opcode == Instruction::Store) {
316         StoreInst *SI = cast<StoreInst>(&II);
317         MemAddr = SI->getPointerOperand();
318       } else {
319         LoadInst *LI = cast<LoadInst>(&II);
320         MemAddr = LI->getPointerOperand();
321       }
322       // Global variable can not be aliased with locals.
323       if (isa<Constant>(MemAddr))
324         break;
325       Value *Base = MemAddr->stripInBoundsConstantOffsets();
326       if (!isa<AllocaInst>(Base)) {
327         SideEffectingBlocks.insert(&BB);
328         return;
329       }
330       BaseMemAddrs[&BB].insert(Base);
331       break;
332     }
333     default: {
334       IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
335       if (IntrInst) {
336         if (IntrInst->isLifetimeStartOrEnd())
337           break;
338         SideEffectingBlocks.insert(&BB);
339         return;
340       }
341       // Treat all the other cases conservatively if it has side effects.
342       if (II.mayHaveSideEffects()) {
343         SideEffectingBlocks.insert(&BB);
344         return;
345       }
346     }
347     }
348   }
349 }
350 
351 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
352     BasicBlock &BB, AllocaInst *Addr) const {
353   if (SideEffectingBlocks.count(&BB))
354     return true;
355   auto It = BaseMemAddrs.find(&BB);
356   if (It != BaseMemAddrs.end())
357     return It->second.count(Addr);
358   return false;
359 }
360 
361 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
362     const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
363   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
364   Function *Func = (*Blocks.begin())->getParent();
365   for (BasicBlock &BB : *Func) {
366     if (Blocks.count(&BB))
367       continue;
368     if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
369       return false;
370   }
371   return true;
372 }
373 
374 BasicBlock *
375 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
376   BasicBlock *SinglePredFromOutlineRegion = nullptr;
377   assert(!Blocks.count(CommonExitBlock) &&
378          "Expect a block outside the region!");
379   for (auto *Pred : predecessors(CommonExitBlock)) {
380     if (!Blocks.count(Pred))
381       continue;
382     if (!SinglePredFromOutlineRegion) {
383       SinglePredFromOutlineRegion = Pred;
384     } else if (SinglePredFromOutlineRegion != Pred) {
385       SinglePredFromOutlineRegion = nullptr;
386       break;
387     }
388   }
389 
390   if (SinglePredFromOutlineRegion)
391     return SinglePredFromOutlineRegion;
392 
393 #ifndef NDEBUG
394   auto getFirstPHI = [](BasicBlock *BB) {
395     BasicBlock::iterator I = BB->begin();
396     PHINode *FirstPhi = nullptr;
397     while (I != BB->end()) {
398       PHINode *Phi = dyn_cast<PHINode>(I);
399       if (!Phi)
400         break;
401       if (!FirstPhi) {
402         FirstPhi = Phi;
403         break;
404       }
405     }
406     return FirstPhi;
407   };
408   // If there are any phi nodes, the single pred either exists or has already
409   // be created before code extraction.
410   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
411 #endif
412 
413   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
414       CommonExitBlock->getFirstNonPHI()->getIterator());
415 
416   for (BasicBlock *Pred :
417        llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
418     if (Blocks.count(Pred))
419       continue;
420     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
421   }
422   // Now add the old exit block to the outline region.
423   Blocks.insert(CommonExitBlock);
424   OldTargets.push_back(NewExitBlock);
425   return CommonExitBlock;
426 }
427 
428 // Find the pair of life time markers for address 'Addr' that are either
429 // defined inside the outline region or can legally be shrinkwrapped into the
430 // outline region. If there are not other untracked uses of the address, return
431 // the pair of markers if found; otherwise return a pair of nullptr.
432 CodeExtractor::LifetimeMarkerInfo
433 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
434                                   Instruction *Addr,
435                                   BasicBlock *ExitBlock) const {
436   LifetimeMarkerInfo Info;
437 
438   for (User *U : Addr->users()) {
439     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
440     if (IntrInst) {
441       // We don't model addresses with multiple start/end markers, but the
442       // markers do not need to be in the region.
443       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
444         if (Info.LifeStart)
445           return {};
446         Info.LifeStart = IntrInst;
447         continue;
448       }
449       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
450         if (Info.LifeEnd)
451           return {};
452         Info.LifeEnd = IntrInst;
453         continue;
454       }
455       // At this point, permit debug uses outside of the region.
456       // This is fixed in a later call to fixupDebugInfoPostExtraction().
457       if (isa<DbgInfoIntrinsic>(IntrInst))
458         continue;
459     }
460     // Find untracked uses of the address, bail.
461     if (!definedInRegion(Blocks, U))
462       return {};
463   }
464 
465   if (!Info.LifeStart || !Info.LifeEnd)
466     return {};
467 
468   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
469   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
470   // Do legality check.
471   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
472       !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
473     return {};
474 
475   // Check to see if we have a place to do hoisting, if not, bail.
476   if (Info.HoistLifeEnd && !ExitBlock)
477     return {};
478 
479   return Info;
480 }
481 
482 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
483                                 ValueSet &SinkCands, ValueSet &HoistCands,
484                                 BasicBlock *&ExitBlock) const {
485   Function *Func = (*Blocks.begin())->getParent();
486   ExitBlock = getCommonExitBlock(Blocks);
487 
488   auto moveOrIgnoreLifetimeMarkers =
489       [&](const LifetimeMarkerInfo &LMI) -> bool {
490     if (!LMI.LifeStart)
491       return false;
492     if (LMI.SinkLifeStart) {
493       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
494                         << "\n");
495       SinkCands.insert(LMI.LifeStart);
496     }
497     if (LMI.HoistLifeEnd) {
498       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
499       HoistCands.insert(LMI.LifeEnd);
500     }
501     return true;
502   };
503 
504   // Look up allocas in the original function in CodeExtractorAnalysisCache, as
505   // this is much faster than walking all the instructions.
506   for (AllocaInst *AI : CEAC.getAllocas()) {
507     BasicBlock *BB = AI->getParent();
508     if (Blocks.count(BB))
509       continue;
510 
511     // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
512     // check whether it is actually still in the original function.
513     Function *AIFunc = BB->getParent();
514     if (AIFunc != Func)
515       continue;
516 
517     LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
518     bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
519     if (Moved) {
520       LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
521       SinkCands.insert(AI);
522       continue;
523     }
524 
525     // Find bitcasts in the outlined region that have lifetime marker users
526     // outside that region. Replace the lifetime marker use with an
527     // outside region bitcast to avoid unnecessary alloca/reload instructions
528     // and extra lifetime markers.
529     SmallVector<Instruction *, 2> LifetimeBitcastUsers;
530     for (User *U : AI->users()) {
531       if (!definedInRegion(Blocks, U))
532         continue;
533 
534       if (U->stripInBoundsConstantOffsets() != AI)
535         continue;
536 
537       Instruction *Bitcast = cast<Instruction>(U);
538       for (User *BU : Bitcast->users()) {
539         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
540         if (!IntrInst)
541           continue;
542 
543         if (!IntrInst->isLifetimeStartOrEnd())
544           continue;
545 
546         if (definedInRegion(Blocks, IntrInst))
547           continue;
548 
549         LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
550                           << *Bitcast << " in out-of-region lifetime marker "
551                           << *IntrInst << "\n");
552         LifetimeBitcastUsers.push_back(IntrInst);
553       }
554     }
555 
556     for (Instruction *I : LifetimeBitcastUsers) {
557       Module *M = AIFunc->getParent();
558       LLVMContext &Ctx = M->getContext();
559       auto *Int8PtrTy = PointerType::getUnqual(Ctx);
560       CastInst *CastI =
561           CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I->getIterator());
562       I->replaceUsesOfWith(I->getOperand(1), CastI);
563     }
564 
565     // Follow any bitcasts.
566     SmallVector<Instruction *, 2> Bitcasts;
567     SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
568     for (User *U : AI->users()) {
569       if (U->stripInBoundsConstantOffsets() == AI) {
570         Instruction *Bitcast = cast<Instruction>(U);
571         LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
572         if (LMI.LifeStart) {
573           Bitcasts.push_back(Bitcast);
574           BitcastLifetimeInfo.push_back(LMI);
575           continue;
576         }
577       }
578 
579       // Found unknown use of AI.
580       if (!definedInRegion(Blocks, U)) {
581         Bitcasts.clear();
582         break;
583       }
584     }
585 
586     // Either no bitcasts reference the alloca or there are unknown uses.
587     if (Bitcasts.empty())
588       continue;
589 
590     LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
591     SinkCands.insert(AI);
592     for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
593       Instruction *BitcastAddr = Bitcasts[I];
594       const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
595       assert(LMI.LifeStart &&
596              "Unsafe to sink bitcast without lifetime markers");
597       moveOrIgnoreLifetimeMarkers(LMI);
598       if (!definedInRegion(Blocks, BitcastAddr)) {
599         LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
600                           << "\n");
601         SinkCands.insert(BitcastAddr);
602       }
603     }
604   }
605 }
606 
607 bool CodeExtractor::isEligible() const {
608   if (Blocks.empty())
609     return false;
610   BasicBlock *Header = *Blocks.begin();
611   Function *F = Header->getParent();
612 
613   // For functions with varargs, check that varargs handling is only done in the
614   // outlined function, i.e vastart and vaend are only used in outlined blocks.
615   if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
616     auto containsVarArgIntrinsic = [](const Instruction &I) {
617       if (const CallInst *CI = dyn_cast<CallInst>(&I))
618         if (const Function *Callee = CI->getCalledFunction())
619           return Callee->getIntrinsicID() == Intrinsic::vastart ||
620                  Callee->getIntrinsicID() == Intrinsic::vaend;
621       return false;
622     };
623 
624     for (auto &BB : *F) {
625       if (Blocks.count(&BB))
626         continue;
627       if (llvm::any_of(BB, containsVarArgIntrinsic))
628         return false;
629     }
630   }
631   return true;
632 }
633 
634 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
635                                       const ValueSet &SinkCands) const {
636   for (BasicBlock *BB : Blocks) {
637     // If a used value is defined outside the region, it's an input.  If an
638     // instruction is used outside the region, it's an output.
639     for (Instruction &II : *BB) {
640       for (auto &OI : II.operands()) {
641         Value *V = OI;
642         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
643           Inputs.insert(V);
644       }
645 
646       for (User *U : II.users())
647         if (!definedInRegion(Blocks, U)) {
648           Outputs.insert(&II);
649           break;
650         }
651     }
652   }
653 }
654 
655 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
656 /// of the region, we need to split the entry block of the region so that the
657 /// PHI node is easier to deal with.
658 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
659   unsigned NumPredsFromRegion = 0;
660   unsigned NumPredsOutsideRegion = 0;
661 
662   if (Header != &Header->getParent()->getEntryBlock()) {
663     PHINode *PN = dyn_cast<PHINode>(Header->begin());
664     if (!PN) return;  // No PHI nodes.
665 
666     // If the header node contains any PHI nodes, check to see if there is more
667     // than one entry from outside the region.  If so, we need to sever the
668     // header block into two.
669     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
670       if (Blocks.count(PN->getIncomingBlock(i)))
671         ++NumPredsFromRegion;
672       else
673         ++NumPredsOutsideRegion;
674 
675     // If there is one (or fewer) predecessor from outside the region, we don't
676     // need to do anything special.
677     if (NumPredsOutsideRegion <= 1) return;
678   }
679 
680   // Otherwise, we need to split the header block into two pieces: one
681   // containing PHI nodes merging values from outside of the region, and a
682   // second that contains all of the code for the block and merges back any
683   // incoming values from inside of the region.
684   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
685 
686   // We only want to code extract the second block now, and it becomes the new
687   // header of the region.
688   BasicBlock *OldPred = Header;
689   Blocks.remove(OldPred);
690   Blocks.insert(NewBB);
691   Header = NewBB;
692 
693   // Okay, now we need to adjust the PHI nodes and any branches from within the
694   // region to go to the new header block instead of the old header block.
695   if (NumPredsFromRegion) {
696     PHINode *PN = cast<PHINode>(OldPred->begin());
697     // Loop over all of the predecessors of OldPred that are in the region,
698     // changing them to branch to NewBB instead.
699     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
700       if (Blocks.count(PN->getIncomingBlock(i))) {
701         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
702         TI->replaceUsesOfWith(OldPred, NewBB);
703       }
704 
705     // Okay, everything within the region is now branching to the right block, we
706     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
707     BasicBlock::iterator AfterPHIs;
708     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
709       PHINode *PN = cast<PHINode>(AfterPHIs);
710       // Create a new PHI node in the new region, which has an incoming value
711       // from OldPred of PN.
712       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
713                                        PN->getName() + ".ce");
714       NewPN->insertBefore(NewBB->begin());
715       PN->replaceAllUsesWith(NewPN);
716       NewPN->addIncoming(PN, OldPred);
717 
718       // Loop over all of the incoming value in PN, moving them to NewPN if they
719       // are from the extracted region.
720       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
721         if (Blocks.count(PN->getIncomingBlock(i))) {
722           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
723           PN->removeIncomingValue(i);
724           --i;
725         }
726       }
727     }
728   }
729 }
730 
731 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
732 /// outlined region, we split these PHIs on two: one with inputs from region
733 /// and other with remaining incoming blocks; then first PHIs are placed in
734 /// outlined region.
735 void CodeExtractor::severSplitPHINodesOfExits(
736     const SetVector<BasicBlock *> &Exits) {
737   for (BasicBlock *ExitBB : Exits) {
738     BasicBlock *NewBB = nullptr;
739 
740     for (PHINode &PN : ExitBB->phis()) {
741       // Find all incoming values from the outlining region.
742       SmallVector<unsigned, 2> IncomingVals;
743       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
744         if (Blocks.count(PN.getIncomingBlock(i)))
745           IncomingVals.push_back(i);
746 
747       // Do not process PHI if there is one (or fewer) predecessor from region.
748       // If PHI has exactly one predecessor from region, only this one incoming
749       // will be replaced on codeRepl block, so it should be safe to skip PHI.
750       if (IncomingVals.size() <= 1)
751         continue;
752 
753       // Create block for new PHIs and add it to the list of outlined if it
754       // wasn't done before.
755       if (!NewBB) {
756         NewBB = BasicBlock::Create(ExitBB->getContext(),
757                                    ExitBB->getName() + ".split",
758                                    ExitBB->getParent(), ExitBB);
759         NewBB->IsNewDbgInfoFormat = ExitBB->IsNewDbgInfoFormat;
760         SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
761         for (BasicBlock *PredBB : Preds)
762           if (Blocks.count(PredBB))
763             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
764         BranchInst::Create(ExitBB, NewBB);
765         Blocks.insert(NewBB);
766       }
767 
768       // Split this PHI.
769       PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(),
770                                        PN.getName() + ".ce");
771       NewPN->insertBefore(NewBB->getFirstNonPHIIt());
772       for (unsigned i : IncomingVals)
773         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
774       for (unsigned i : reverse(IncomingVals))
775         PN.removeIncomingValue(i, false);
776       PN.addIncoming(NewPN, NewBB);
777     }
778   }
779 }
780 
781 void CodeExtractor::splitReturnBlocks() {
782   for (BasicBlock *Block : Blocks)
783     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
784       BasicBlock *New =
785           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
786       if (DT) {
787         // Old dominates New. New node dominates all other nodes dominated
788         // by Old.
789         DomTreeNode *OldNode = DT->getNode(Block);
790         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
791                                                OldNode->end());
792 
793         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
794 
795         for (DomTreeNode *I : Children)
796           DT->changeImmediateDominator(I, NewNode);
797       }
798     }
799 }
800 
801 /// constructFunction - make a function based on inputs and outputs, as follows:
802 /// f(in0, ..., inN, out0, ..., outN)
803 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
804                                            const ValueSet &outputs,
805                                            BasicBlock *header,
806                                            BasicBlock *newRootNode,
807                                            BasicBlock *newHeader,
808                                            Function *oldFunction,
809                                            Module *M) {
810   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
811   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
812 
813   // This function returns unsigned, outputs will go back by reference.
814   switch (NumExitBlocks) {
815   case 0:
816   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
817   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
818   default: RetTy = Type::getInt16Ty(header->getContext()); break;
819   }
820 
821   std::vector<Type *> ParamTy;
822   std::vector<Type *> AggParamTy;
823   ValueSet StructValues;
824   const DataLayout &DL = M->getDataLayout();
825 
826   // Add the types of the input values to the function's argument list
827   for (Value *value : inputs) {
828     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
829     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
830       AggParamTy.push_back(value->getType());
831       StructValues.insert(value);
832     } else
833       ParamTy.push_back(value->getType());
834   }
835 
836   // Add the types of the output values to the function's argument list.
837   for (Value *output : outputs) {
838     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
839     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
840       AggParamTy.push_back(output->getType());
841       StructValues.insert(output);
842     } else
843       ParamTy.push_back(
844           PointerType::get(output->getType(), DL.getAllocaAddrSpace()));
845   }
846 
847   assert(
848       (ParamTy.size() + AggParamTy.size()) ==
849           (inputs.size() + outputs.size()) &&
850       "Number of scalar and aggregate params does not match inputs, outputs");
851   assert((StructValues.empty() || AggregateArgs) &&
852          "Expeced StructValues only with AggregateArgs set");
853 
854   // Concatenate scalar and aggregate params in ParamTy.
855   size_t NumScalarParams = ParamTy.size();
856   StructType *StructTy = nullptr;
857   if (AggregateArgs && !AggParamTy.empty()) {
858     StructTy = StructType::get(M->getContext(), AggParamTy);
859     ParamTy.push_back(PointerType::get(
860         StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace()));
861   }
862 
863   LLVM_DEBUG({
864     dbgs() << "Function type: " << *RetTy << " f(";
865     for (Type *i : ParamTy)
866       dbgs() << *i << ", ";
867     dbgs() << ")\n";
868   });
869 
870   FunctionType *funcType = FunctionType::get(
871       RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
872 
873   std::string SuffixToUse =
874       Suffix.empty()
875           ? (header->getName().empty() ? "extracted" : header->getName().str())
876           : Suffix;
877   // Create the new function
878   Function *newFunction = Function::Create(
879       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
880       oldFunction->getName() + "." + SuffixToUse, M);
881   newFunction->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
882 
883   // Inherit all of the target dependent attributes and white-listed
884   // target independent attributes.
885   //  (e.g. If the extracted region contains a call to an x86.sse
886   //  instruction we need to make sure that the extracted region has the
887   //  "target-features" attribute allowing it to be lowered.
888   // FIXME: This should be changed to check to see if a specific
889   //           attribute can not be inherited.
890   for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
891     if (Attr.isStringAttribute()) {
892       if (Attr.getKindAsString() == "thunk")
893         continue;
894     } else
895       switch (Attr.getKindAsEnum()) {
896       // Those attributes cannot be propagated safely. Explicitly list them
897       // here so we get a warning if new attributes are added.
898       case Attribute::AllocSize:
899       case Attribute::Builtin:
900       case Attribute::Convergent:
901       case Attribute::JumpTable:
902       case Attribute::Naked:
903       case Attribute::NoBuiltin:
904       case Attribute::NoMerge:
905       case Attribute::NoReturn:
906       case Attribute::NoSync:
907       case Attribute::ReturnsTwice:
908       case Attribute::Speculatable:
909       case Attribute::StackAlignment:
910       case Attribute::WillReturn:
911       case Attribute::AllocKind:
912       case Attribute::PresplitCoroutine:
913       case Attribute::Memory:
914       case Attribute::NoFPClass:
915       case Attribute::CoroDestroyOnlyWhenComplete:
916         continue;
917       // Those attributes should be safe to propagate to the extracted function.
918       case Attribute::AlwaysInline:
919       case Attribute::Cold:
920       case Attribute::DisableSanitizerInstrumentation:
921       case Attribute::FnRetThunkExtern:
922       case Attribute::Hot:
923       case Attribute::HybridPatchable:
924       case Attribute::NoRecurse:
925       case Attribute::InlineHint:
926       case Attribute::MinSize:
927       case Attribute::NoCallback:
928       case Attribute::NoDuplicate:
929       case Attribute::NoFree:
930       case Attribute::NoImplicitFloat:
931       case Attribute::NoInline:
932       case Attribute::NonLazyBind:
933       case Attribute::NoRedZone:
934       case Attribute::NoUnwind:
935       case Attribute::NoSanitizeBounds:
936       case Attribute::NoSanitizeCoverage:
937       case Attribute::NullPointerIsValid:
938       case Attribute::OptimizeForDebugging:
939       case Attribute::OptForFuzzing:
940       case Attribute::OptimizeNone:
941       case Attribute::OptimizeForSize:
942       case Attribute::SafeStack:
943       case Attribute::ShadowCallStack:
944       case Attribute::SanitizeAddress:
945       case Attribute::SanitizeMemory:
946       case Attribute::SanitizeNumericalStability:
947       case Attribute::SanitizeThread:
948       case Attribute::SanitizeHWAddress:
949       case Attribute::SanitizeMemTag:
950       case Attribute::SanitizeRealtime:
951       case Attribute::SpeculativeLoadHardening:
952       case Attribute::StackProtect:
953       case Attribute::StackProtectReq:
954       case Attribute::StackProtectStrong:
955       case Attribute::StrictFP:
956       case Attribute::UWTable:
957       case Attribute::VScaleRange:
958       case Attribute::NoCfCheck:
959       case Attribute::MustProgress:
960       case Attribute::NoProfile:
961       case Attribute::SkipProfile:
962         break;
963       // These attributes cannot be applied to functions.
964       case Attribute::Alignment:
965       case Attribute::AllocatedPointer:
966       case Attribute::AllocAlign:
967       case Attribute::ByVal:
968       case Attribute::Dereferenceable:
969       case Attribute::DereferenceableOrNull:
970       case Attribute::ElementType:
971       case Attribute::InAlloca:
972       case Attribute::InReg:
973       case Attribute::Nest:
974       case Attribute::NoAlias:
975       case Attribute::NoCapture:
976       case Attribute::NoUndef:
977       case Attribute::NonNull:
978       case Attribute::Preallocated:
979       case Attribute::ReadNone:
980       case Attribute::ReadOnly:
981       case Attribute::Returned:
982       case Attribute::SExt:
983       case Attribute::StructRet:
984       case Attribute::SwiftError:
985       case Attribute::SwiftSelf:
986       case Attribute::SwiftAsync:
987       case Attribute::ZExt:
988       case Attribute::ImmArg:
989       case Attribute::ByRef:
990       case Attribute::WriteOnly:
991       case Attribute::Writable:
992       case Attribute::DeadOnUnwind:
993       case Attribute::Range:
994       case Attribute::Initializes:
995       //  These are not really attributes.
996       case Attribute::None:
997       case Attribute::EndAttrKinds:
998       case Attribute::EmptyKey:
999       case Attribute::TombstoneKey:
1000         llvm_unreachable("Not a function attribute");
1001       }
1002 
1003     newFunction->addFnAttr(Attr);
1004   }
1005 
1006   if (NumExitBlocks == 0) {
1007     // Mark the new function `noreturn` if applicable. Terminators which resume
1008     // exception propagation are treated as returning instructions. This is to
1009     // avoid inserting traps after calls to outlined functions which unwind.
1010     if (none_of(Blocks, [](const BasicBlock *BB) {
1011           const Instruction *Term = BB->getTerminator();
1012           return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1013         }))
1014       newFunction->setDoesNotReturn();
1015   }
1016 
1017   newFunction->insert(newFunction->end(), newRootNode);
1018 
1019   // Create scalar and aggregate iterators to name all of the arguments we
1020   // inserted.
1021   Function::arg_iterator ScalarAI = newFunction->arg_begin();
1022   Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1023 
1024   // Rewrite all users of the inputs in the extracted region to use the
1025   // arguments (or appropriate addressing into struct) instead.
1026   for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1027     Value *RewriteVal;
1028     if (AggregateArgs && StructValues.contains(inputs[i])) {
1029       Value *Idx[2];
1030       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1031       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1032       BasicBlock::iterator TI = newFunction->begin()->getTerminator()->getIterator();
1033       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1034           StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1035       RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1036                                 "loadgep_" + inputs[i]->getName(), TI);
1037       ++aggIdx;
1038     } else
1039       RewriteVal = &*ScalarAI++;
1040 
1041     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1042     for (User *use : Users)
1043       if (Instruction *inst = dyn_cast<Instruction>(use))
1044         if (Blocks.count(inst->getParent()))
1045           inst->replaceUsesOfWith(inputs[i], RewriteVal);
1046   }
1047 
1048   // Set names for input and output arguments.
1049   if (NumScalarParams) {
1050     ScalarAI = newFunction->arg_begin();
1051     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
1052       if (!StructValues.contains(inputs[i]))
1053         ScalarAI->setName(inputs[i]->getName());
1054     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
1055       if (!StructValues.contains(outputs[i]))
1056         ScalarAI->setName(outputs[i]->getName() + ".out");
1057   }
1058 
1059   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1060   // within the new function. This must be done before we lose track of which
1061   // blocks were originally in the code region.
1062   std::vector<User *> Users(header->user_begin(), header->user_end());
1063   for (auto &U : Users)
1064     // The BasicBlock which contains the branch is not in the region
1065     // modify the branch target to a new block
1066     if (Instruction *I = dyn_cast<Instruction>(U))
1067       if (I->isTerminator() && I->getFunction() == oldFunction &&
1068           !Blocks.count(I->getParent()))
1069         I->replaceUsesOfWith(header, newHeader);
1070 
1071   return newFunction;
1072 }
1073 
1074 /// Erase lifetime.start markers which reference inputs to the extraction
1075 /// region, and insert the referenced memory into \p LifetimesStart.
1076 ///
1077 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1078 /// of allocas which will be moved from the caller function into the extracted
1079 /// function (\p SunkAllocas).
1080 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1081                                          const SetVector<Value *> &SunkAllocas,
1082                                          SetVector<Value *> &LifetimesStart) {
1083   for (BasicBlock *BB : Blocks) {
1084     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1085       auto *II = dyn_cast<IntrinsicInst>(&I);
1086       if (!II || !II->isLifetimeStartOrEnd())
1087         continue;
1088 
1089       // Get the memory operand of the lifetime marker. If the underlying
1090       // object is a sunk alloca, or is otherwise defined in the extraction
1091       // region, the lifetime marker must not be erased.
1092       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1093       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1094         continue;
1095 
1096       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1097         LifetimesStart.insert(Mem);
1098       II->eraseFromParent();
1099     }
1100   }
1101 }
1102 
1103 /// Insert lifetime start/end markers surrounding the call to the new function
1104 /// for objects defined in the caller.
1105 static void insertLifetimeMarkersSurroundingCall(
1106     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1107     CallInst *TheCall) {
1108   LLVMContext &Ctx = M->getContext();
1109   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1110   Instruction *Term = TheCall->getParent()->getTerminator();
1111 
1112   // Emit lifetime markers for the pointers given in \p Objects. Insert the
1113   // markers before the call if \p InsertBefore, and after the call otherwise.
1114   auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects,
1115                            bool InsertBefore) {
1116     for (Value *Mem : Objects) {
1117       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1118                                             TheCall->getFunction()) &&
1119              "Input memory not defined in original function");
1120 
1121       Function *Func = Intrinsic::getDeclaration(M, MarkerFunc, Mem->getType());
1122       auto Marker = CallInst::Create(Func, {NegativeOne, Mem});
1123       if (InsertBefore)
1124         Marker->insertBefore(TheCall);
1125       else
1126         Marker->insertBefore(Term);
1127     }
1128   };
1129 
1130   if (!LifetimesStart.empty()) {
1131     insertMarkers(Intrinsic::lifetime_start, LifetimesStart,
1132                   /*InsertBefore=*/true);
1133   }
1134 
1135   if (!LifetimesEnd.empty()) {
1136     insertMarkers(Intrinsic::lifetime_end, LifetimesEnd,
1137                   /*InsertBefore=*/false);
1138   }
1139 }
1140 
1141 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1142 /// the call instruction, splitting any PHI nodes in the header block as
1143 /// necessary.
1144 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1145                                                     BasicBlock *codeReplacer,
1146                                                     ValueSet &inputs,
1147                                                     ValueSet &outputs) {
1148   // Emit a call to the new function, passing in: *pointer to struct (if
1149   // aggregating parameters), or plan inputs and allocated memory for outputs
1150   std::vector<Value *> params, ReloadOutputs, Reloads;
1151   ValueSet StructValues;
1152 
1153   Module *M = newFunction->getParent();
1154   LLVMContext &Context = M->getContext();
1155   const DataLayout &DL = M->getDataLayout();
1156   CallInst *call = nullptr;
1157 
1158   // Add inputs as params, or to be filled into the struct
1159   unsigned ScalarInputArgNo = 0;
1160   SmallVector<unsigned, 1> SwiftErrorArgs;
1161   for (Value *input : inputs) {
1162     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1163       StructValues.insert(input);
1164     else {
1165       params.push_back(input);
1166       if (input->isSwiftError())
1167         SwiftErrorArgs.push_back(ScalarInputArgNo);
1168     }
1169     ++ScalarInputArgNo;
1170   }
1171 
1172   // Create allocas for the outputs
1173   unsigned ScalarOutputArgNo = 0;
1174   for (Value *output : outputs) {
1175     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1176       StructValues.insert(output);
1177     } else {
1178       AllocaInst *alloca =
1179         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1180                        nullptr, output->getName() + ".loc",
1181                        codeReplacer->getParent()->front().begin());
1182       ReloadOutputs.push_back(alloca);
1183       params.push_back(alloca);
1184       ++ScalarOutputArgNo;
1185     }
1186   }
1187 
1188   StructType *StructArgTy = nullptr;
1189   AllocaInst *Struct = nullptr;
1190   unsigned NumAggregatedInputs = 0;
1191   if (AggregateArgs && !StructValues.empty()) {
1192     std::vector<Type *> ArgTypes;
1193     for (Value *V : StructValues)
1194       ArgTypes.push_back(V->getType());
1195 
1196     // Allocate a struct at the beginning of this function
1197     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1198     Struct = new AllocaInst(
1199         StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg",
1200         AllocationBlock ? AllocationBlock->getFirstInsertionPt()
1201                         : codeReplacer->getParent()->front().begin());
1202 
1203     if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) {
1204       auto *StructSpaceCast = new AddrSpaceCastInst(
1205           Struct, PointerType ::get(Context, 0), "structArg.ascast");
1206       StructSpaceCast->insertAfter(Struct);
1207       params.push_back(StructSpaceCast);
1208     } else {
1209       params.push_back(Struct);
1210     }
1211     // Store aggregated inputs in the struct.
1212     for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1213       if (inputs.contains(StructValues[i])) {
1214         Value *Idx[2];
1215         Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1216         Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1217         GetElementPtrInst *GEP = GetElementPtrInst::Create(
1218             StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1219         GEP->insertInto(codeReplacer, codeReplacer->end());
1220         new StoreInst(StructValues[i], GEP, codeReplacer);
1221         NumAggregatedInputs++;
1222       }
1223     }
1224   }
1225 
1226   // Emit the call to the function
1227   call = CallInst::Create(newFunction, params,
1228                           NumExitBlocks > 1 ? "targetBlock" : "");
1229   // Add debug location to the new call, if the original function has debug
1230   // info. In that case, the terminator of the entry block of the extracted
1231   // function contains the first debug location of the extracted function,
1232   // set in extractCodeRegion.
1233   if (codeReplacer->getParent()->getSubprogram()) {
1234     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1235       call->setDebugLoc(DL);
1236   }
1237   call->insertInto(codeReplacer, codeReplacer->end());
1238 
1239   // Set swifterror parameter attributes.
1240   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1241     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1242     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1243   }
1244 
1245   // Reload the outputs passed in by reference, use the struct if output is in
1246   // the aggregate or reload from the scalar argument.
1247   for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1248                 aggIdx = NumAggregatedInputs;
1249        i != e; ++i) {
1250     Value *Output = nullptr;
1251     if (AggregateArgs && StructValues.contains(outputs[i])) {
1252       Value *Idx[2];
1253       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1254       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1255       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1256           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1257       GEP->insertInto(codeReplacer, codeReplacer->end());
1258       Output = GEP;
1259       ++aggIdx;
1260     } else {
1261       Output = ReloadOutputs[scalarIdx];
1262       ++scalarIdx;
1263     }
1264     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1265                                   outputs[i]->getName() + ".reload",
1266                                   codeReplacer);
1267     Reloads.push_back(load);
1268     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1269     for (User *U : Users) {
1270       Instruction *inst = cast<Instruction>(U);
1271       if (!Blocks.count(inst->getParent()))
1272         inst->replaceUsesOfWith(outputs[i], load);
1273     }
1274   }
1275 
1276   // Now we can emit a switch statement using the call as a value.
1277   SwitchInst *TheSwitch =
1278       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1279                          codeReplacer, 0, codeReplacer);
1280 
1281   // Since there may be multiple exits from the original region, make the new
1282   // function return an unsigned, switch on that number.  This loop iterates
1283   // over all of the blocks in the extracted region, updating any terminator
1284   // instructions in the to-be-extracted region that branch to blocks that are
1285   // not in the region to be extracted.
1286   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1287 
1288   // Iterate over the previously collected targets, and create new blocks inside
1289   // the function to branch to.
1290   unsigned switchVal = 0;
1291   for (BasicBlock *OldTarget : OldTargets) {
1292     if (Blocks.count(OldTarget))
1293       continue;
1294     BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1295     if (NewTarget)
1296       continue;
1297 
1298     // If we don't already have an exit stub for this non-extracted
1299     // destination, create one now!
1300     NewTarget = BasicBlock::Create(Context,
1301                                     OldTarget->getName() + ".exitStub",
1302                                     newFunction);
1303     unsigned SuccNum = switchVal++;
1304 
1305     Value *brVal = nullptr;
1306     assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1307     switch (NumExitBlocks) {
1308     case 0:
1309     case 1: break;  // No value needed.
1310     case 2:         // Conditional branch, return a bool
1311       brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1312       break;
1313     default:
1314       brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1315       break;
1316     }
1317 
1318     ReturnInst::Create(Context, brVal, NewTarget);
1319 
1320     // Update the switch instruction.
1321     TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1322                                         SuccNum),
1323                         OldTarget);
1324   }
1325 
1326   for (BasicBlock *Block : Blocks) {
1327     Instruction *TI = Block->getTerminator();
1328     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1329       if (Blocks.count(TI->getSuccessor(i)))
1330         continue;
1331       BasicBlock *OldTarget = TI->getSuccessor(i);
1332       // add a new basic block which returns the appropriate value
1333       BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1334       assert(NewTarget && "Unknown target block!");
1335 
1336       // rewrite the original branch instruction with this new target
1337       TI->setSuccessor(i, NewTarget);
1338    }
1339   }
1340 
1341   // Store the arguments right after the definition of output value.
1342   // This should be proceeded after creating exit stubs to be ensure that invoke
1343   // result restore will be placed in the outlined function.
1344   Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1345   std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1346   Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1347   std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1348 
1349   for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1350        ++i) {
1351     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1352     if (!OutI)
1353       continue;
1354 
1355     // Find proper insertion point.
1356     BasicBlock::iterator InsertPt;
1357     // In case OutI is an invoke, we insert the store at the beginning in the
1358     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1359     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1360       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1361     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1362       InsertPt = Phi->getParent()->getFirstInsertionPt();
1363     else
1364       InsertPt = std::next(OutI->getIterator());
1365 
1366     assert((InsertPt->getFunction() == newFunction ||
1367             Blocks.count(InsertPt->getParent())) &&
1368            "InsertPt should be in new function");
1369     if (AggregateArgs && StructValues.contains(outputs[i])) {
1370       assert(AggOutputArgBegin != newFunction->arg_end() &&
1371              "Number of aggregate output arguments should match "
1372              "the number of defined values");
1373       Value *Idx[2];
1374       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1375       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1376       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1377           StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1378           InsertPt);
1379       new StoreInst(outputs[i], GEP, InsertPt);
1380       ++aggIdx;
1381       // Since there should be only one struct argument aggregating
1382       // all the output values, we shouldn't increment AggOutputArgBegin, which
1383       // always points to the struct argument, in this case.
1384     } else {
1385       assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1386              "Number of scalar output arguments should match "
1387              "the number of defined values");
1388       new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertPt);
1389       ++ScalarOutputArgBegin;
1390     }
1391   }
1392 
1393   // Now that we've done the deed, simplify the switch instruction.
1394   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1395   switch (NumExitBlocks) {
1396   case 0:
1397     // There are no successors (the block containing the switch itself), which
1398     // means that previously this was the last part of the function, and hence
1399     // this should be rewritten as a `ret` or `unreachable`.
1400     if (newFunction->doesNotReturn()) {
1401       // If fn is no return, end with an unreachable terminator.
1402       (void)new UnreachableInst(Context, TheSwitch->getIterator());
1403     } else if (OldFnRetTy->isVoidTy()) {
1404       // We have no return value.
1405       ReturnInst::Create(Context, nullptr,
1406                          TheSwitch->getIterator()); // Return void
1407     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1408       // return what we have
1409       ReturnInst::Create(Context, TheSwitch->getCondition(),
1410                          TheSwitch->getIterator());
1411     } else {
1412       // Otherwise we must have code extracted an unwind or something, just
1413       // return whatever we want.
1414       ReturnInst::Create(Context, Constant::getNullValue(OldFnRetTy),
1415                          TheSwitch->getIterator());
1416     }
1417 
1418     TheSwitch->eraseFromParent();
1419     break;
1420   case 1:
1421     // Only a single destination, change the switch into an unconditional
1422     // branch.
1423     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getIterator());
1424     TheSwitch->eraseFromParent();
1425     break;
1426   case 2:
1427     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1428                        call, TheSwitch->getIterator());
1429     TheSwitch->eraseFromParent();
1430     break;
1431   default:
1432     // Otherwise, make the default destination of the switch instruction be one
1433     // of the other successors.
1434     TheSwitch->setCondition(call);
1435     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1436     // Remove redundant case
1437     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1438     break;
1439   }
1440 
1441   // Insert lifetime markers around the reloads of any output values. The
1442   // allocas output values are stored in are only in-use in the codeRepl block.
1443   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1444 
1445   return call;
1446 }
1447 
1448 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1449   auto newFuncIt = newFunction->front().getIterator();
1450   for (BasicBlock *Block : Blocks) {
1451     // Delete the basic block from the old function, and the list of blocks
1452     Block->removeFromParent();
1453 
1454     // Insert this basic block into the new function
1455     // Insert the original blocks after the entry block created
1456     // for the new function. The entry block may be followed
1457     // by a set of exit blocks at this point, but these exit
1458     // blocks better be placed at the end of the new function.
1459     newFuncIt = newFunction->insert(std::next(newFuncIt), Block);
1460   }
1461 }
1462 
1463 void CodeExtractor::calculateNewCallTerminatorWeights(
1464     BasicBlock *CodeReplacer,
1465     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1466     BranchProbabilityInfo *BPI) {
1467   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1468   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1469 
1470   // Update the branch weights for the exit block.
1471   Instruction *TI = CodeReplacer->getTerminator();
1472   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1473 
1474   // Block Frequency distribution with dummy node.
1475   Distribution BranchDist;
1476 
1477   SmallVector<BranchProbability, 4> EdgeProbabilities(
1478       TI->getNumSuccessors(), BranchProbability::getUnknown());
1479 
1480   // Add each of the frequencies of the successors.
1481   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1482     BlockNode ExitNode(i);
1483     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1484     if (ExitFreq != 0)
1485       BranchDist.addExit(ExitNode, ExitFreq);
1486     else
1487       EdgeProbabilities[i] = BranchProbability::getZero();
1488   }
1489 
1490   // Check for no total weight.
1491   if (BranchDist.Total == 0) {
1492     BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1493     return;
1494   }
1495 
1496   // Normalize the distribution so that they can fit in unsigned.
1497   BranchDist.normalize();
1498 
1499   // Create normalized branch weights and set the metadata.
1500   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1501     const auto &Weight = BranchDist.Weights[I];
1502 
1503     // Get the weight and update the current BFI.
1504     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1505     BranchProbability BP(Weight.Amount, BranchDist.Total);
1506     EdgeProbabilities[Weight.TargetNode.Index] = BP;
1507   }
1508   BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1509   TI->setMetadata(
1510       LLVMContext::MD_prof,
1511       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1512 }
1513 
1514 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1515 /// \p F.
1516 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1517   for (Instruction &I : instructions(F)) {
1518     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1519     SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1520     findDbgUsers(DbgUsers, &I, &DbgVariableRecords);
1521     for (DbgVariableIntrinsic *DVI : DbgUsers)
1522       if (DVI->getFunction() != &F)
1523         DVI->eraseFromParent();
1524     for (DbgVariableRecord *DVR : DbgVariableRecords)
1525       if (DVR->getFunction() != &F)
1526         DVR->eraseFromParent();
1527   }
1528 }
1529 
1530 /// Fix up the debug info in the old and new functions by pointing line
1531 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1532 /// intrinsics which point to values outside of the new function.
1533 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1534                                          CallInst &TheCall) {
1535   DISubprogram *OldSP = OldFunc.getSubprogram();
1536   LLVMContext &Ctx = OldFunc.getContext();
1537 
1538   if (!OldSP) {
1539     // Erase any debug info the new function contains.
1540     stripDebugInfo(NewFunc);
1541     // Make sure the old function doesn't contain any non-local metadata refs.
1542     eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1543     return;
1544   }
1545 
1546   // Create a subprogram for the new function. Leave out a description of the
1547   // function arguments, as the parameters don't correspond to anything at the
1548   // source level.
1549   assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1550   DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1551                 OldSP->getUnit());
1552   auto SPType =
1553       DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt));
1554   DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1555                                     DISubprogram::SPFlagOptimized |
1556                                     DISubprogram::SPFlagLocalToUnit;
1557   auto NewSP = DIB.createFunction(
1558       OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1559       /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1560   NewFunc.setSubprogram(NewSP);
1561 
1562   auto IsInvalidLocation = [&NewFunc](Value *Location) {
1563     // Location is invalid if it isn't a constant or an instruction, or is an
1564     // instruction but isn't in the new function.
1565     if (!Location ||
1566         (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1567       return true;
1568     Instruction *LocationInst = dyn_cast<Instruction>(Location);
1569     return LocationInst && LocationInst->getFunction() != &NewFunc;
1570   };
1571 
1572   // Debug intrinsics in the new function need to be updated in one of two
1573   // ways:
1574   //  1) They need to be deleted, because they describe a value in the old
1575   //     function.
1576   //  2) They need to point to fresh metadata, e.g. because they currently
1577   //     point to a variable in the wrong scope.
1578   SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1579   SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1580   SmallVector<DbgVariableRecord *, 4> DVRsToDelete;
1581   DenseMap<const MDNode *, MDNode *> Cache;
1582 
1583   auto GetUpdatedDIVariable = [&](DILocalVariable *OldVar) {
1584     DINode *&NewVar = RemappedMetadata[OldVar];
1585     if (!NewVar) {
1586       DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1587           *OldVar->getScope(), *NewSP, Ctx, Cache);
1588       NewVar = DIB.createAutoVariable(
1589           NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1590           OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1591           OldVar->getAlignInBits());
1592     }
1593     return cast<DILocalVariable>(NewVar);
1594   };
1595 
1596   auto UpdateDbgLabel = [&](auto *LabelRecord) {
1597     // Point the label record to a fresh label within the new function if
1598     // the record was not inlined from some other function.
1599     if (LabelRecord->getDebugLoc().getInlinedAt())
1600       return;
1601     DILabel *OldLabel = LabelRecord->getLabel();
1602     DINode *&NewLabel = RemappedMetadata[OldLabel];
1603     if (!NewLabel) {
1604       DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1605           *OldLabel->getScope(), *NewSP, Ctx, Cache);
1606       NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(),
1607                               OldLabel->getFile(), OldLabel->getLine());
1608     }
1609     LabelRecord->setLabel(cast<DILabel>(NewLabel));
1610   };
1611 
1612   auto UpdateDbgRecordsOnInst = [&](Instruction &I) -> void {
1613     for (DbgRecord &DR : I.getDbgRecordRange()) {
1614       if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1615         UpdateDbgLabel(DLR);
1616         continue;
1617       }
1618 
1619       DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1620       // Apply the two updates that dbg.values get: invalid operands, and
1621       // variable metadata fixup.
1622       if (any_of(DVR.location_ops(), IsInvalidLocation)) {
1623         DVRsToDelete.push_back(&DVR);
1624         continue;
1625       }
1626       if (DVR.isDbgAssign() && IsInvalidLocation(DVR.getAddress())) {
1627         DVRsToDelete.push_back(&DVR);
1628         continue;
1629       }
1630       if (!DVR.getDebugLoc().getInlinedAt())
1631         DVR.setVariable(GetUpdatedDIVariable(DVR.getVariable()));
1632     }
1633   };
1634 
1635   for (Instruction &I : instructions(NewFunc)) {
1636     UpdateDbgRecordsOnInst(I);
1637 
1638     auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1639     if (!DII)
1640       continue;
1641 
1642     // Point the intrinsic to a fresh label within the new function if the
1643     // intrinsic was not inlined from some other function.
1644     if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1645       UpdateDbgLabel(DLI);
1646       continue;
1647     }
1648 
1649     auto *DVI = cast<DbgVariableIntrinsic>(DII);
1650     // If any of the used locations are invalid, delete the intrinsic.
1651     if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1652       DebugIntrinsicsToDelete.push_back(DVI);
1653       continue;
1654     }
1655     // DbgAssign intrinsics have an extra Value argument:
1656     if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
1657         DAI && IsInvalidLocation(DAI->getAddress())) {
1658       DebugIntrinsicsToDelete.push_back(DVI);
1659       continue;
1660     }
1661     // If the variable was in the scope of the old function, i.e. it was not
1662     // inlined, point the intrinsic to a fresh variable within the new function.
1663     if (!DVI->getDebugLoc().getInlinedAt())
1664       DVI->setVariable(GetUpdatedDIVariable(DVI->getVariable()));
1665   }
1666 
1667   for (auto *DII : DebugIntrinsicsToDelete)
1668     DII->eraseFromParent();
1669   for (auto *DVR : DVRsToDelete)
1670     DVR->getMarker()->MarkedInstr->dropOneDbgRecord(DVR);
1671   DIB.finalizeSubprogram(NewSP);
1672 
1673   // Fix up the scope information attached to the line locations and the
1674   // debug assignment metadata in the new function.
1675   DenseMap<DIAssignID *, DIAssignID *> AssignmentIDMap;
1676   for (Instruction &I : instructions(NewFunc)) {
1677     if (const DebugLoc &DL = I.getDebugLoc())
1678       I.setDebugLoc(
1679           DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache));
1680     for (DbgRecord &DR : I.getDbgRecordRange())
1681       DR.setDebugLoc(DebugLoc::replaceInlinedAtSubprogram(DR.getDebugLoc(),
1682                                                           *NewSP, Ctx, Cache));
1683 
1684     // Loop info metadata may contain line locations. Fix them up.
1685     auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * {
1686       if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1687         return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache);
1688       return MD;
1689     };
1690     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1691     at::remapAssignID(AssignmentIDMap, I);
1692   }
1693   if (!TheCall.getDebugLoc())
1694     TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1695 
1696   eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1697 }
1698 
1699 Function *
1700 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1701   ValueSet Inputs, Outputs;
1702   return extractCodeRegion(CEAC, Inputs, Outputs);
1703 }
1704 
1705 Function *
1706 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1707                                  ValueSet &inputs, ValueSet &outputs) {
1708   if (!isEligible())
1709     return nullptr;
1710 
1711   // Assumption: this is a single-entry code region, and the header is the first
1712   // block in the region.
1713   BasicBlock *header = *Blocks.begin();
1714   Function *oldFunction = header->getParent();
1715 
1716   // Calculate the entry frequency of the new function before we change the root
1717   //   block.
1718   BlockFrequency EntryFreq;
1719   if (BFI) {
1720     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1721     for (BasicBlock *Pred : predecessors(header)) {
1722       if (Blocks.count(Pred))
1723         continue;
1724       EntryFreq +=
1725           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1726     }
1727   }
1728 
1729   // Remove @llvm.assume calls that will be moved to the new function from the
1730   // old function's assumption cache.
1731   for (BasicBlock *Block : Blocks) {
1732     for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1733       if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1734         if (AC)
1735           AC->unregisterAssumption(AI);
1736         AI->eraseFromParent();
1737       }
1738     }
1739   }
1740 
1741   // If we have any return instructions in the region, split those blocks so
1742   // that the return is not in the region.
1743   splitReturnBlocks();
1744 
1745   // Calculate the exit blocks for the extracted region and the total exit
1746   // weights for each of those blocks.
1747   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1748   SetVector<BasicBlock *> ExitBlocks;
1749   for (BasicBlock *Block : Blocks) {
1750     for (BasicBlock *Succ : successors(Block)) {
1751       if (!Blocks.count(Succ)) {
1752         // Update the branch weight for this successor.
1753         if (BFI) {
1754           BlockFrequency &BF = ExitWeights[Succ];
1755           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1756         }
1757         ExitBlocks.insert(Succ);
1758       }
1759     }
1760   }
1761   NumExitBlocks = ExitBlocks.size();
1762 
1763   for (BasicBlock *Block : Blocks) {
1764     for (BasicBlock *OldTarget : successors(Block))
1765       if (!Blocks.contains(OldTarget))
1766         OldTargets.push_back(OldTarget);
1767   }
1768 
1769   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1770   severSplitPHINodesOfEntry(header);
1771   severSplitPHINodesOfExits(ExitBlocks);
1772 
1773   // This takes place of the original loop
1774   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1775                                                 "codeRepl", oldFunction,
1776                                                 header);
1777   codeReplacer->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1778 
1779   // The new function needs a root node because other nodes can branch to the
1780   // head of the region, but the entry node of a function cannot have preds.
1781   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1782                                                "newFuncRoot");
1783   newFuncRoot->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1784 
1785   auto *BranchI = BranchInst::Create(header);
1786   // If the original function has debug info, we have to add a debug location
1787   // to the new branch instruction from the artificial entry block.
1788   // We use the debug location of the first instruction in the extracted
1789   // blocks, as there is no other equivalent line in the source code.
1790   if (oldFunction->getSubprogram()) {
1791     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1792       return any_of(*BB, [&BranchI](const Instruction &I) {
1793         if (!I.getDebugLoc())
1794           return false;
1795         // Don't use source locations attached to debug-intrinsics: they could
1796         // be from completely unrelated scopes.
1797         if (isa<DbgInfoIntrinsic>(I))
1798           return false;
1799         BranchI->setDebugLoc(I.getDebugLoc());
1800         return true;
1801       });
1802     });
1803   }
1804   BranchI->insertInto(newFuncRoot, newFuncRoot->end());
1805 
1806   ValueSet SinkingCands, HoistingCands;
1807   BasicBlock *CommonExit = nullptr;
1808   findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1809   assert(HoistingCands.empty() || CommonExit);
1810 
1811   // Find inputs to, outputs from the code region.
1812   findInputsOutputs(inputs, outputs, SinkingCands);
1813 
1814   // Now sink all instructions which only have non-phi uses inside the region.
1815   // Group the allocas at the start of the block, so that any bitcast uses of
1816   // the allocas are well-defined.
1817   AllocaInst *FirstSunkAlloca = nullptr;
1818   for (auto *II : SinkingCands) {
1819     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1820       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1821       if (!FirstSunkAlloca)
1822         FirstSunkAlloca = AI;
1823     }
1824   }
1825   assert((SinkingCands.empty() || FirstSunkAlloca) &&
1826          "Did not expect a sink candidate without any allocas");
1827   for (auto *II : SinkingCands) {
1828     if (!isa<AllocaInst>(II)) {
1829       cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1830     }
1831   }
1832 
1833   if (!HoistingCands.empty()) {
1834     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1835     Instruction *TI = HoistToBlock->getTerminator();
1836     for (auto *II : HoistingCands)
1837       cast<Instruction>(II)->moveBefore(TI);
1838   }
1839 
1840   // Collect objects which are inputs to the extraction region and also
1841   // referenced by lifetime start markers within it. The effects of these
1842   // markers must be replicated in the calling function to prevent the stack
1843   // coloring pass from merging slots which store input objects.
1844   ValueSet LifetimesStart;
1845   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1846 
1847   // Construct new function based on inputs/outputs & add allocas for all defs.
1848   Function *newFunction =
1849       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1850                         oldFunction, oldFunction->getParent());
1851 
1852   // Update the entry count of the function.
1853   if (BFI) {
1854     auto Count = BFI->getProfileCountFromFreq(EntryFreq);
1855     if (Count)
1856       newFunction->setEntryCount(
1857           ProfileCount(*Count, Function::PCT_Real)); // FIXME
1858     BFI->setBlockFreq(codeReplacer, EntryFreq);
1859   }
1860 
1861   CallInst *TheCall =
1862       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1863 
1864   moveCodeToFunction(newFunction);
1865 
1866   // Replicate the effects of any lifetime start/end markers which referenced
1867   // input objects in the extraction region by placing markers around the call.
1868   insertLifetimeMarkersSurroundingCall(
1869       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1870 
1871   // Propagate personality info to the new function if there is one.
1872   if (oldFunction->hasPersonalityFn())
1873     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1874 
1875   // Update the branch weights for the exit block.
1876   if (BFI && NumExitBlocks > 1)
1877     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1878 
1879   // Loop over all of the PHI nodes in the header and exit blocks, and change
1880   // any references to the old incoming edge to be the new incoming edge.
1881   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1882     PHINode *PN = cast<PHINode>(I);
1883     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1884       if (!Blocks.count(PN->getIncomingBlock(i)))
1885         PN->setIncomingBlock(i, newFuncRoot);
1886   }
1887 
1888   for (BasicBlock *ExitBB : ExitBlocks)
1889     for (PHINode &PN : ExitBB->phis()) {
1890       Value *IncomingCodeReplacerVal = nullptr;
1891       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1892         // Ignore incoming values from outside of the extracted region.
1893         if (!Blocks.count(PN.getIncomingBlock(i)))
1894           continue;
1895 
1896         // Ensure that there is only one incoming value from codeReplacer.
1897         if (!IncomingCodeReplacerVal) {
1898           PN.setIncomingBlock(i, codeReplacer);
1899           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1900         } else
1901           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1902                  "PHI has two incompatbile incoming values from codeRepl");
1903       }
1904     }
1905 
1906   fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1907 
1908   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1909     newFunction->dump();
1910     report_fatal_error("verification of newFunction failed!");
1911   });
1912   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1913              report_fatal_error("verification of oldFunction failed!"));
1914   LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1915                  report_fatal_error("Stale Asumption cache for old Function!"));
1916   return newFunction;
1917 }
1918 
1919 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1920                                           const Function &NewFunc,
1921                                           AssumptionCache *AC) {
1922   for (auto AssumeVH : AC->assumptions()) {
1923     auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1924     if (!I)
1925       continue;
1926 
1927     // There shouldn't be any llvm.assume intrinsics in the new function.
1928     if (I->getFunction() != &OldFunc)
1929       return true;
1930 
1931     // There shouldn't be any stale affected values in the assumption cache
1932     // that were previously in the old function, but that have now been moved
1933     // to the new function.
1934     for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1935       auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1936       if (!AffectedCI)
1937         continue;
1938       if (AffectedCI->getFunction() != &OldFunc)
1939         return true;
1940       auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1941       if (AssumedInst->getFunction() != &OldFunc)
1942         return true;
1943     }
1944   }
1945   return false;
1946 }
1947 
1948 void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1949   ExcludeArgsFromAggregate.insert(Arg);
1950 }
1951