1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DIBuilder.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GlobalValue.h" 40 #include "llvm/IR/InstIterator.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/LLVMContext.h" 47 #include "llvm/IR/MDBuilder.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/PatternMatch.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/IR/Verifier.h" 54 #include "llvm/Support/BlockFrequency.h" 55 #include "llvm/Support/BranchProbability.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <map> 66 #include <utility> 67 #include <vector> 68 69 using namespace llvm; 70 using namespace llvm::PatternMatch; 71 using ProfileCount = Function::ProfileCount; 72 73 #define DEBUG_TYPE "code-extractor" 74 75 // Provide a command-line option to aggregate function arguments into a struct 76 // for functions produced by the code extractor. This is useful when converting 77 // extracted functions to pthread-based code, as only one argument (void*) can 78 // be passed in to pthread_create(). 79 static cl::opt<bool> 80 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 81 cl::desc("Aggregate arguments to code-extracted functions")); 82 83 /// Test whether a block is valid for extraction. 84 static bool isBlockValidForExtraction(const BasicBlock &BB, 85 const SetVector<BasicBlock *> &Result, 86 bool AllowVarArgs, bool AllowAlloca) { 87 // taking the address of a basic block moved to another function is illegal 88 if (BB.hasAddressTaken()) 89 return false; 90 91 // don't hoist code that uses another basicblock address, as it's likely to 92 // lead to unexpected behavior, like cross-function jumps 93 SmallPtrSet<User const *, 16> Visited; 94 SmallVector<User const *, 16> ToVisit; 95 96 for (Instruction const &Inst : BB) 97 ToVisit.push_back(&Inst); 98 99 while (!ToVisit.empty()) { 100 User const *Curr = ToVisit.pop_back_val(); 101 if (!Visited.insert(Curr).second) 102 continue; 103 if (isa<BlockAddress const>(Curr)) 104 return false; // even a reference to self is likely to be not compatible 105 106 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 107 continue; 108 109 for (auto const &U : Curr->operands()) { 110 if (auto *UU = dyn_cast<User>(U)) 111 ToVisit.push_back(UU); 112 } 113 } 114 115 // If explicitly requested, allow vastart and alloca. For invoke instructions 116 // verify that extraction is valid. 117 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 118 if (isa<AllocaInst>(I)) { 119 if (!AllowAlloca) 120 return false; 121 continue; 122 } 123 124 if (const auto *II = dyn_cast<InvokeInst>(I)) { 125 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 126 // must be a part of the subgraph which is being extracted. 127 if (auto *UBB = II->getUnwindDest()) 128 if (!Result.count(UBB)) 129 return false; 130 continue; 131 } 132 133 // All catch handlers of a catchswitch instruction as well as the unwind 134 // destination must be in the subgraph. 135 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 136 if (auto *UBB = CSI->getUnwindDest()) 137 if (!Result.count(UBB)) 138 return false; 139 for (const auto *HBB : CSI->handlers()) 140 if (!Result.count(const_cast<BasicBlock*>(HBB))) 141 return false; 142 continue; 143 } 144 145 // Make sure that entire catch handler is within subgraph. It is sufficient 146 // to check that catch return's block is in the list. 147 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 148 for (const auto *U : CPI->users()) 149 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 150 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 151 return false; 152 continue; 153 } 154 155 // And do similar checks for cleanup handler - the entire handler must be 156 // in subgraph which is going to be extracted. For cleanup return should 157 // additionally check that the unwind destination is also in the subgraph. 158 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 159 for (const auto *U : CPI->users()) 160 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 161 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 162 return false; 163 continue; 164 } 165 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 166 if (auto *UBB = CRI->getUnwindDest()) 167 if (!Result.count(UBB)) 168 return false; 169 continue; 170 } 171 172 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 173 if (const Function *F = CI->getCalledFunction()) { 174 auto IID = F->getIntrinsicID(); 175 if (IID == Intrinsic::vastart) { 176 if (AllowVarArgs) 177 continue; 178 else 179 return false; 180 } 181 182 // Currently, we miscompile outlined copies of eh_typid_for. There are 183 // proposals for fixing this in llvm.org/PR39545. 184 if (IID == Intrinsic::eh_typeid_for) 185 return false; 186 } 187 } 188 } 189 190 return true; 191 } 192 193 /// Build a set of blocks to extract if the input blocks are viable. 194 static SetVector<BasicBlock *> 195 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 196 bool AllowVarArgs, bool AllowAlloca) { 197 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 198 SetVector<BasicBlock *> Result; 199 200 // Loop over the blocks, adding them to our set-vector, and aborting with an 201 // empty set if we encounter invalid blocks. 202 for (BasicBlock *BB : BBs) { 203 // If this block is dead, don't process it. 204 if (DT && !DT->isReachableFromEntry(BB)) 205 continue; 206 207 if (!Result.insert(BB)) 208 llvm_unreachable("Repeated basic blocks in extraction input"); 209 } 210 211 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 212 << '\n'); 213 214 for (auto *BB : Result) { 215 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 216 return {}; 217 218 // Make sure that the first block is not a landing pad. 219 if (BB == Result.front()) { 220 if (BB->isEHPad()) { 221 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 222 return {}; 223 } 224 continue; 225 } 226 227 // All blocks other than the first must not have predecessors outside of 228 // the subgraph which is being extracted. 229 for (auto *PBB : predecessors(BB)) 230 if (!Result.count(PBB)) { 231 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 232 "outside the region except for the first block!\n" 233 << "Problematic source BB: " << BB->getName() << "\n" 234 << "Problematic destination BB: " << PBB->getName() 235 << "\n"); 236 return {}; 237 } 238 } 239 240 return Result; 241 } 242 243 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 244 bool AggregateArgs, BlockFrequencyInfo *BFI, 245 BranchProbabilityInfo *BPI, AssumptionCache *AC, 246 bool AllowVarArgs, bool AllowAlloca, 247 BasicBlock *AllocationBlock, std::string Suffix, 248 bool ArgsInZeroAddressSpace) 249 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 250 BPI(BPI), AC(AC), AllocationBlock(AllocationBlock), 251 AllowVarArgs(AllowVarArgs), 252 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 253 Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {} 254 255 /// definedInRegion - Return true if the specified value is defined in the 256 /// extracted region. 257 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 258 if (Instruction *I = dyn_cast<Instruction>(V)) 259 if (Blocks.count(I->getParent())) 260 return true; 261 return false; 262 } 263 264 /// definedInCaller - Return true if the specified value is defined in the 265 /// function being code extracted, but not in the region being extracted. 266 /// These values must be passed in as live-ins to the function. 267 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 268 if (isa<Argument>(V)) return true; 269 if (Instruction *I = dyn_cast<Instruction>(V)) 270 if (!Blocks.count(I->getParent())) 271 return true; 272 return false; 273 } 274 275 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 276 BasicBlock *CommonExitBlock = nullptr; 277 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 278 for (auto *Succ : successors(Block)) { 279 // Internal edges, ok. 280 if (Blocks.count(Succ)) 281 continue; 282 if (!CommonExitBlock) { 283 CommonExitBlock = Succ; 284 continue; 285 } 286 if (CommonExitBlock != Succ) 287 return true; 288 } 289 return false; 290 }; 291 292 if (any_of(Blocks, hasNonCommonExitSucc)) 293 return nullptr; 294 295 return CommonExitBlock; 296 } 297 298 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 299 for (BasicBlock &BB : F) { 300 for (Instruction &II : BB.instructionsWithoutDebug()) 301 if (auto *AI = dyn_cast<AllocaInst>(&II)) 302 Allocas.push_back(AI); 303 304 findSideEffectInfoForBlock(BB); 305 } 306 } 307 308 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 309 for (Instruction &II : BB.instructionsWithoutDebug()) { 310 unsigned Opcode = II.getOpcode(); 311 Value *MemAddr = nullptr; 312 switch (Opcode) { 313 case Instruction::Store: 314 case Instruction::Load: { 315 if (Opcode == Instruction::Store) { 316 StoreInst *SI = cast<StoreInst>(&II); 317 MemAddr = SI->getPointerOperand(); 318 } else { 319 LoadInst *LI = cast<LoadInst>(&II); 320 MemAddr = LI->getPointerOperand(); 321 } 322 // Global variable can not be aliased with locals. 323 if (isa<Constant>(MemAddr)) 324 break; 325 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 326 if (!isa<AllocaInst>(Base)) { 327 SideEffectingBlocks.insert(&BB); 328 return; 329 } 330 BaseMemAddrs[&BB].insert(Base); 331 break; 332 } 333 default: { 334 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 335 if (IntrInst) { 336 if (IntrInst->isLifetimeStartOrEnd()) 337 break; 338 SideEffectingBlocks.insert(&BB); 339 return; 340 } 341 // Treat all the other cases conservatively if it has side effects. 342 if (II.mayHaveSideEffects()) { 343 SideEffectingBlocks.insert(&BB); 344 return; 345 } 346 } 347 } 348 } 349 } 350 351 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 352 BasicBlock &BB, AllocaInst *Addr) const { 353 if (SideEffectingBlocks.count(&BB)) 354 return true; 355 auto It = BaseMemAddrs.find(&BB); 356 if (It != BaseMemAddrs.end()) 357 return It->second.count(Addr); 358 return false; 359 } 360 361 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 362 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 363 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 364 Function *Func = (*Blocks.begin())->getParent(); 365 for (BasicBlock &BB : *Func) { 366 if (Blocks.count(&BB)) 367 continue; 368 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 369 return false; 370 } 371 return true; 372 } 373 374 BasicBlock * 375 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 376 BasicBlock *SinglePredFromOutlineRegion = nullptr; 377 assert(!Blocks.count(CommonExitBlock) && 378 "Expect a block outside the region!"); 379 for (auto *Pred : predecessors(CommonExitBlock)) { 380 if (!Blocks.count(Pred)) 381 continue; 382 if (!SinglePredFromOutlineRegion) { 383 SinglePredFromOutlineRegion = Pred; 384 } else if (SinglePredFromOutlineRegion != Pred) { 385 SinglePredFromOutlineRegion = nullptr; 386 break; 387 } 388 } 389 390 if (SinglePredFromOutlineRegion) 391 return SinglePredFromOutlineRegion; 392 393 #ifndef NDEBUG 394 auto getFirstPHI = [](BasicBlock *BB) { 395 BasicBlock::iterator I = BB->begin(); 396 PHINode *FirstPhi = nullptr; 397 while (I != BB->end()) { 398 PHINode *Phi = dyn_cast<PHINode>(I); 399 if (!Phi) 400 break; 401 if (!FirstPhi) { 402 FirstPhi = Phi; 403 break; 404 } 405 } 406 return FirstPhi; 407 }; 408 // If there are any phi nodes, the single pred either exists or has already 409 // be created before code extraction. 410 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 411 #endif 412 413 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 414 CommonExitBlock->getFirstNonPHI()->getIterator()); 415 416 for (BasicBlock *Pred : 417 llvm::make_early_inc_range(predecessors(CommonExitBlock))) { 418 if (Blocks.count(Pred)) 419 continue; 420 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 421 } 422 // Now add the old exit block to the outline region. 423 Blocks.insert(CommonExitBlock); 424 OldTargets.push_back(NewExitBlock); 425 return CommonExitBlock; 426 } 427 428 // Find the pair of life time markers for address 'Addr' that are either 429 // defined inside the outline region or can legally be shrinkwrapped into the 430 // outline region. If there are not other untracked uses of the address, return 431 // the pair of markers if found; otherwise return a pair of nullptr. 432 CodeExtractor::LifetimeMarkerInfo 433 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 434 Instruction *Addr, 435 BasicBlock *ExitBlock) const { 436 LifetimeMarkerInfo Info; 437 438 for (User *U : Addr->users()) { 439 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 440 if (IntrInst) { 441 // We don't model addresses with multiple start/end markers, but the 442 // markers do not need to be in the region. 443 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 444 if (Info.LifeStart) 445 return {}; 446 Info.LifeStart = IntrInst; 447 continue; 448 } 449 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 450 if (Info.LifeEnd) 451 return {}; 452 Info.LifeEnd = IntrInst; 453 continue; 454 } 455 // At this point, permit debug uses outside of the region. 456 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 457 if (isa<DbgInfoIntrinsic>(IntrInst)) 458 continue; 459 } 460 // Find untracked uses of the address, bail. 461 if (!definedInRegion(Blocks, U)) 462 return {}; 463 } 464 465 if (!Info.LifeStart || !Info.LifeEnd) 466 return {}; 467 468 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 469 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 470 // Do legality check. 471 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 472 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 473 return {}; 474 475 // Check to see if we have a place to do hoisting, if not, bail. 476 if (Info.HoistLifeEnd && !ExitBlock) 477 return {}; 478 479 return Info; 480 } 481 482 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 483 ValueSet &SinkCands, ValueSet &HoistCands, 484 BasicBlock *&ExitBlock) const { 485 Function *Func = (*Blocks.begin())->getParent(); 486 ExitBlock = getCommonExitBlock(Blocks); 487 488 auto moveOrIgnoreLifetimeMarkers = 489 [&](const LifetimeMarkerInfo &LMI) -> bool { 490 if (!LMI.LifeStart) 491 return false; 492 if (LMI.SinkLifeStart) { 493 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 494 << "\n"); 495 SinkCands.insert(LMI.LifeStart); 496 } 497 if (LMI.HoistLifeEnd) { 498 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 499 HoistCands.insert(LMI.LifeEnd); 500 } 501 return true; 502 }; 503 504 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 505 // this is much faster than walking all the instructions. 506 for (AllocaInst *AI : CEAC.getAllocas()) { 507 BasicBlock *BB = AI->getParent(); 508 if (Blocks.count(BB)) 509 continue; 510 511 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 512 // check whether it is actually still in the original function. 513 Function *AIFunc = BB->getParent(); 514 if (AIFunc != Func) 515 continue; 516 517 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 518 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 519 if (Moved) { 520 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 521 SinkCands.insert(AI); 522 continue; 523 } 524 525 // Find bitcasts in the outlined region that have lifetime marker users 526 // outside that region. Replace the lifetime marker use with an 527 // outside region bitcast to avoid unnecessary alloca/reload instructions 528 // and extra lifetime markers. 529 SmallVector<Instruction *, 2> LifetimeBitcastUsers; 530 for (User *U : AI->users()) { 531 if (!definedInRegion(Blocks, U)) 532 continue; 533 534 if (U->stripInBoundsConstantOffsets() != AI) 535 continue; 536 537 Instruction *Bitcast = cast<Instruction>(U); 538 for (User *BU : Bitcast->users()) { 539 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU); 540 if (!IntrInst) 541 continue; 542 543 if (!IntrInst->isLifetimeStartOrEnd()) 544 continue; 545 546 if (definedInRegion(Blocks, IntrInst)) 547 continue; 548 549 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast" 550 << *Bitcast << " in out-of-region lifetime marker " 551 << *IntrInst << "\n"); 552 LifetimeBitcastUsers.push_back(IntrInst); 553 } 554 } 555 556 for (Instruction *I : LifetimeBitcastUsers) { 557 Module *M = AIFunc->getParent(); 558 LLVMContext &Ctx = M->getContext(); 559 auto *Int8PtrTy = PointerType::getUnqual(Ctx); 560 CastInst *CastI = 561 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I->getIterator()); 562 I->replaceUsesOfWith(I->getOperand(1), CastI); 563 } 564 565 // Follow any bitcasts. 566 SmallVector<Instruction *, 2> Bitcasts; 567 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 568 for (User *U : AI->users()) { 569 if (U->stripInBoundsConstantOffsets() == AI) { 570 Instruction *Bitcast = cast<Instruction>(U); 571 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 572 if (LMI.LifeStart) { 573 Bitcasts.push_back(Bitcast); 574 BitcastLifetimeInfo.push_back(LMI); 575 continue; 576 } 577 } 578 579 // Found unknown use of AI. 580 if (!definedInRegion(Blocks, U)) { 581 Bitcasts.clear(); 582 break; 583 } 584 } 585 586 // Either no bitcasts reference the alloca or there are unknown uses. 587 if (Bitcasts.empty()) 588 continue; 589 590 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 591 SinkCands.insert(AI); 592 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 593 Instruction *BitcastAddr = Bitcasts[I]; 594 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 595 assert(LMI.LifeStart && 596 "Unsafe to sink bitcast without lifetime markers"); 597 moveOrIgnoreLifetimeMarkers(LMI); 598 if (!definedInRegion(Blocks, BitcastAddr)) { 599 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 600 << "\n"); 601 SinkCands.insert(BitcastAddr); 602 } 603 } 604 } 605 } 606 607 bool CodeExtractor::isEligible() const { 608 if (Blocks.empty()) 609 return false; 610 BasicBlock *Header = *Blocks.begin(); 611 Function *F = Header->getParent(); 612 613 // For functions with varargs, check that varargs handling is only done in the 614 // outlined function, i.e vastart and vaend are only used in outlined blocks. 615 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 616 auto containsVarArgIntrinsic = [](const Instruction &I) { 617 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 618 if (const Function *Callee = CI->getCalledFunction()) 619 return Callee->getIntrinsicID() == Intrinsic::vastart || 620 Callee->getIntrinsicID() == Intrinsic::vaend; 621 return false; 622 }; 623 624 for (auto &BB : *F) { 625 if (Blocks.count(&BB)) 626 continue; 627 if (llvm::any_of(BB, containsVarArgIntrinsic)) 628 return false; 629 } 630 } 631 return true; 632 } 633 634 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 635 const ValueSet &SinkCands) const { 636 for (BasicBlock *BB : Blocks) { 637 // If a used value is defined outside the region, it's an input. If an 638 // instruction is used outside the region, it's an output. 639 for (Instruction &II : *BB) { 640 for (auto &OI : II.operands()) { 641 Value *V = OI; 642 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 643 Inputs.insert(V); 644 } 645 646 for (User *U : II.users()) 647 if (!definedInRegion(Blocks, U)) { 648 Outputs.insert(&II); 649 break; 650 } 651 } 652 } 653 } 654 655 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 656 /// of the region, we need to split the entry block of the region so that the 657 /// PHI node is easier to deal with. 658 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 659 unsigned NumPredsFromRegion = 0; 660 unsigned NumPredsOutsideRegion = 0; 661 662 if (Header != &Header->getParent()->getEntryBlock()) { 663 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 664 if (!PN) return; // No PHI nodes. 665 666 // If the header node contains any PHI nodes, check to see if there is more 667 // than one entry from outside the region. If so, we need to sever the 668 // header block into two. 669 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 670 if (Blocks.count(PN->getIncomingBlock(i))) 671 ++NumPredsFromRegion; 672 else 673 ++NumPredsOutsideRegion; 674 675 // If there is one (or fewer) predecessor from outside the region, we don't 676 // need to do anything special. 677 if (NumPredsOutsideRegion <= 1) return; 678 } 679 680 // Otherwise, we need to split the header block into two pieces: one 681 // containing PHI nodes merging values from outside of the region, and a 682 // second that contains all of the code for the block and merges back any 683 // incoming values from inside of the region. 684 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 685 686 // We only want to code extract the second block now, and it becomes the new 687 // header of the region. 688 BasicBlock *OldPred = Header; 689 Blocks.remove(OldPred); 690 Blocks.insert(NewBB); 691 Header = NewBB; 692 693 // Okay, now we need to adjust the PHI nodes and any branches from within the 694 // region to go to the new header block instead of the old header block. 695 if (NumPredsFromRegion) { 696 PHINode *PN = cast<PHINode>(OldPred->begin()); 697 // Loop over all of the predecessors of OldPred that are in the region, 698 // changing them to branch to NewBB instead. 699 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 700 if (Blocks.count(PN->getIncomingBlock(i))) { 701 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 702 TI->replaceUsesOfWith(OldPred, NewBB); 703 } 704 705 // Okay, everything within the region is now branching to the right block, we 706 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 707 BasicBlock::iterator AfterPHIs; 708 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 709 PHINode *PN = cast<PHINode>(AfterPHIs); 710 // Create a new PHI node in the new region, which has an incoming value 711 // from OldPred of PN. 712 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 713 PN->getName() + ".ce"); 714 NewPN->insertBefore(NewBB->begin()); 715 PN->replaceAllUsesWith(NewPN); 716 NewPN->addIncoming(PN, OldPred); 717 718 // Loop over all of the incoming value in PN, moving them to NewPN if they 719 // are from the extracted region. 720 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 721 if (Blocks.count(PN->getIncomingBlock(i))) { 722 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 723 PN->removeIncomingValue(i); 724 --i; 725 } 726 } 727 } 728 } 729 } 730 731 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 732 /// outlined region, we split these PHIs on two: one with inputs from region 733 /// and other with remaining incoming blocks; then first PHIs are placed in 734 /// outlined region. 735 void CodeExtractor::severSplitPHINodesOfExits( 736 const SetVector<BasicBlock *> &Exits) { 737 for (BasicBlock *ExitBB : Exits) { 738 BasicBlock *NewBB = nullptr; 739 740 for (PHINode &PN : ExitBB->phis()) { 741 // Find all incoming values from the outlining region. 742 SmallVector<unsigned, 2> IncomingVals; 743 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 744 if (Blocks.count(PN.getIncomingBlock(i))) 745 IncomingVals.push_back(i); 746 747 // Do not process PHI if there is one (or fewer) predecessor from region. 748 // If PHI has exactly one predecessor from region, only this one incoming 749 // will be replaced on codeRepl block, so it should be safe to skip PHI. 750 if (IncomingVals.size() <= 1) 751 continue; 752 753 // Create block for new PHIs and add it to the list of outlined if it 754 // wasn't done before. 755 if (!NewBB) { 756 NewBB = BasicBlock::Create(ExitBB->getContext(), 757 ExitBB->getName() + ".split", 758 ExitBB->getParent(), ExitBB); 759 NewBB->IsNewDbgInfoFormat = ExitBB->IsNewDbgInfoFormat; 760 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB)); 761 for (BasicBlock *PredBB : Preds) 762 if (Blocks.count(PredBB)) 763 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 764 BranchInst::Create(ExitBB, NewBB); 765 Blocks.insert(NewBB); 766 } 767 768 // Split this PHI. 769 PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(), 770 PN.getName() + ".ce"); 771 NewPN->insertBefore(NewBB->getFirstNonPHIIt()); 772 for (unsigned i : IncomingVals) 773 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 774 for (unsigned i : reverse(IncomingVals)) 775 PN.removeIncomingValue(i, false); 776 PN.addIncoming(NewPN, NewBB); 777 } 778 } 779 } 780 781 void CodeExtractor::splitReturnBlocks() { 782 for (BasicBlock *Block : Blocks) 783 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 784 BasicBlock *New = 785 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 786 if (DT) { 787 // Old dominates New. New node dominates all other nodes dominated 788 // by Old. 789 DomTreeNode *OldNode = DT->getNode(Block); 790 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 791 OldNode->end()); 792 793 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 794 795 for (DomTreeNode *I : Children) 796 DT->changeImmediateDominator(I, NewNode); 797 } 798 } 799 } 800 801 /// constructFunction - make a function based on inputs and outputs, as follows: 802 /// f(in0, ..., inN, out0, ..., outN) 803 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 804 const ValueSet &outputs, 805 BasicBlock *header, 806 BasicBlock *newRootNode, 807 BasicBlock *newHeader, 808 Function *oldFunction, 809 Module *M) { 810 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 811 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 812 813 // This function returns unsigned, outputs will go back by reference. 814 switch (NumExitBlocks) { 815 case 0: 816 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 817 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 818 default: RetTy = Type::getInt16Ty(header->getContext()); break; 819 } 820 821 std::vector<Type *> ParamTy; 822 std::vector<Type *> AggParamTy; 823 ValueSet StructValues; 824 const DataLayout &DL = M->getDataLayout(); 825 826 // Add the types of the input values to the function's argument list 827 for (Value *value : inputs) { 828 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 829 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) { 830 AggParamTy.push_back(value->getType()); 831 StructValues.insert(value); 832 } else 833 ParamTy.push_back(value->getType()); 834 } 835 836 // Add the types of the output values to the function's argument list. 837 for (Value *output : outputs) { 838 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 839 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 840 AggParamTy.push_back(output->getType()); 841 StructValues.insert(output); 842 } else 843 ParamTy.push_back( 844 PointerType::get(output->getType(), DL.getAllocaAddrSpace())); 845 } 846 847 assert( 848 (ParamTy.size() + AggParamTy.size()) == 849 (inputs.size() + outputs.size()) && 850 "Number of scalar and aggregate params does not match inputs, outputs"); 851 assert((StructValues.empty() || AggregateArgs) && 852 "Expeced StructValues only with AggregateArgs set"); 853 854 // Concatenate scalar and aggregate params in ParamTy. 855 size_t NumScalarParams = ParamTy.size(); 856 StructType *StructTy = nullptr; 857 if (AggregateArgs && !AggParamTy.empty()) { 858 StructTy = StructType::get(M->getContext(), AggParamTy); 859 ParamTy.push_back(PointerType::get( 860 StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace())); 861 } 862 863 LLVM_DEBUG({ 864 dbgs() << "Function type: " << *RetTy << " f("; 865 for (Type *i : ParamTy) 866 dbgs() << *i << ", "; 867 dbgs() << ")\n"; 868 }); 869 870 FunctionType *funcType = FunctionType::get( 871 RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg()); 872 873 std::string SuffixToUse = 874 Suffix.empty() 875 ? (header->getName().empty() ? "extracted" : header->getName().str()) 876 : Suffix; 877 // Create the new function 878 Function *newFunction = Function::Create( 879 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 880 oldFunction->getName() + "." + SuffixToUse, M); 881 newFunction->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat; 882 883 // Inherit all of the target dependent attributes and white-listed 884 // target independent attributes. 885 // (e.g. If the extracted region contains a call to an x86.sse 886 // instruction we need to make sure that the extracted region has the 887 // "target-features" attribute allowing it to be lowered. 888 // FIXME: This should be changed to check to see if a specific 889 // attribute can not be inherited. 890 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) { 891 if (Attr.isStringAttribute()) { 892 if (Attr.getKindAsString() == "thunk") 893 continue; 894 } else 895 switch (Attr.getKindAsEnum()) { 896 // Those attributes cannot be propagated safely. Explicitly list them 897 // here so we get a warning if new attributes are added. 898 case Attribute::AllocSize: 899 case Attribute::Builtin: 900 case Attribute::Convergent: 901 case Attribute::JumpTable: 902 case Attribute::Naked: 903 case Attribute::NoBuiltin: 904 case Attribute::NoMerge: 905 case Attribute::NoReturn: 906 case Attribute::NoSync: 907 case Attribute::ReturnsTwice: 908 case Attribute::Speculatable: 909 case Attribute::StackAlignment: 910 case Attribute::WillReturn: 911 case Attribute::AllocKind: 912 case Attribute::PresplitCoroutine: 913 case Attribute::Memory: 914 case Attribute::NoFPClass: 915 case Attribute::CoroDestroyOnlyWhenComplete: 916 continue; 917 // Those attributes should be safe to propagate to the extracted function. 918 case Attribute::AlwaysInline: 919 case Attribute::Cold: 920 case Attribute::DisableSanitizerInstrumentation: 921 case Attribute::FnRetThunkExtern: 922 case Attribute::Hot: 923 case Attribute::HybridPatchable: 924 case Attribute::NoRecurse: 925 case Attribute::InlineHint: 926 case Attribute::MinSize: 927 case Attribute::NoCallback: 928 case Attribute::NoDuplicate: 929 case Attribute::NoFree: 930 case Attribute::NoImplicitFloat: 931 case Attribute::NoInline: 932 case Attribute::NonLazyBind: 933 case Attribute::NoRedZone: 934 case Attribute::NoUnwind: 935 case Attribute::NoSanitizeBounds: 936 case Attribute::NoSanitizeCoverage: 937 case Attribute::NullPointerIsValid: 938 case Attribute::OptimizeForDebugging: 939 case Attribute::OptForFuzzing: 940 case Attribute::OptimizeNone: 941 case Attribute::OptimizeForSize: 942 case Attribute::SafeStack: 943 case Attribute::ShadowCallStack: 944 case Attribute::SanitizeAddress: 945 case Attribute::SanitizeMemory: 946 case Attribute::SanitizeNumericalStability: 947 case Attribute::SanitizeThread: 948 case Attribute::SanitizeHWAddress: 949 case Attribute::SanitizeMemTag: 950 case Attribute::SanitizeRealtime: 951 case Attribute::SpeculativeLoadHardening: 952 case Attribute::StackProtect: 953 case Attribute::StackProtectReq: 954 case Attribute::StackProtectStrong: 955 case Attribute::StrictFP: 956 case Attribute::UWTable: 957 case Attribute::VScaleRange: 958 case Attribute::NoCfCheck: 959 case Attribute::MustProgress: 960 case Attribute::NoProfile: 961 case Attribute::SkipProfile: 962 break; 963 // These attributes cannot be applied to functions. 964 case Attribute::Alignment: 965 case Attribute::AllocatedPointer: 966 case Attribute::AllocAlign: 967 case Attribute::ByVal: 968 case Attribute::Dereferenceable: 969 case Attribute::DereferenceableOrNull: 970 case Attribute::ElementType: 971 case Attribute::InAlloca: 972 case Attribute::InReg: 973 case Attribute::Nest: 974 case Attribute::NoAlias: 975 case Attribute::NoCapture: 976 case Attribute::NoUndef: 977 case Attribute::NonNull: 978 case Attribute::Preallocated: 979 case Attribute::ReadNone: 980 case Attribute::ReadOnly: 981 case Attribute::Returned: 982 case Attribute::SExt: 983 case Attribute::StructRet: 984 case Attribute::SwiftError: 985 case Attribute::SwiftSelf: 986 case Attribute::SwiftAsync: 987 case Attribute::ZExt: 988 case Attribute::ImmArg: 989 case Attribute::ByRef: 990 case Attribute::WriteOnly: 991 case Attribute::Writable: 992 case Attribute::DeadOnUnwind: 993 case Attribute::Range: 994 case Attribute::Initializes: 995 // These are not really attributes. 996 case Attribute::None: 997 case Attribute::EndAttrKinds: 998 case Attribute::EmptyKey: 999 case Attribute::TombstoneKey: 1000 llvm_unreachable("Not a function attribute"); 1001 } 1002 1003 newFunction->addFnAttr(Attr); 1004 } 1005 1006 if (NumExitBlocks == 0) { 1007 // Mark the new function `noreturn` if applicable. Terminators which resume 1008 // exception propagation are treated as returning instructions. This is to 1009 // avoid inserting traps after calls to outlined functions which unwind. 1010 if (none_of(Blocks, [](const BasicBlock *BB) { 1011 const Instruction *Term = BB->getTerminator(); 1012 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1013 })) 1014 newFunction->setDoesNotReturn(); 1015 } 1016 1017 newFunction->insert(newFunction->end(), newRootNode); 1018 1019 // Create scalar and aggregate iterators to name all of the arguments we 1020 // inserted. 1021 Function::arg_iterator ScalarAI = newFunction->arg_begin(); 1022 Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams); 1023 1024 // Rewrite all users of the inputs in the extracted region to use the 1025 // arguments (or appropriate addressing into struct) instead. 1026 for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) { 1027 Value *RewriteVal; 1028 if (AggregateArgs && StructValues.contains(inputs[i])) { 1029 Value *Idx[2]; 1030 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 1031 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx); 1032 BasicBlock::iterator TI = newFunction->begin()->getTerminator()->getIterator(); 1033 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1034 StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI); 1035 RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP, 1036 "loadgep_" + inputs[i]->getName(), TI); 1037 ++aggIdx; 1038 } else 1039 RewriteVal = &*ScalarAI++; 1040 1041 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 1042 for (User *use : Users) 1043 if (Instruction *inst = dyn_cast<Instruction>(use)) 1044 if (Blocks.count(inst->getParent())) 1045 inst->replaceUsesOfWith(inputs[i], RewriteVal); 1046 } 1047 1048 // Set names for input and output arguments. 1049 if (NumScalarParams) { 1050 ScalarAI = newFunction->arg_begin(); 1051 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI) 1052 if (!StructValues.contains(inputs[i])) 1053 ScalarAI->setName(inputs[i]->getName()); 1054 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI) 1055 if (!StructValues.contains(outputs[i])) 1056 ScalarAI->setName(outputs[i]->getName() + ".out"); 1057 } 1058 1059 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 1060 // within the new function. This must be done before we lose track of which 1061 // blocks were originally in the code region. 1062 std::vector<User *> Users(header->user_begin(), header->user_end()); 1063 for (auto &U : Users) 1064 // The BasicBlock which contains the branch is not in the region 1065 // modify the branch target to a new block 1066 if (Instruction *I = dyn_cast<Instruction>(U)) 1067 if (I->isTerminator() && I->getFunction() == oldFunction && 1068 !Blocks.count(I->getParent())) 1069 I->replaceUsesOfWith(header, newHeader); 1070 1071 return newFunction; 1072 } 1073 1074 /// Erase lifetime.start markers which reference inputs to the extraction 1075 /// region, and insert the referenced memory into \p LifetimesStart. 1076 /// 1077 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 1078 /// of allocas which will be moved from the caller function into the extracted 1079 /// function (\p SunkAllocas). 1080 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 1081 const SetVector<Value *> &SunkAllocas, 1082 SetVector<Value *> &LifetimesStart) { 1083 for (BasicBlock *BB : Blocks) { 1084 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 1085 auto *II = dyn_cast<IntrinsicInst>(&I); 1086 if (!II || !II->isLifetimeStartOrEnd()) 1087 continue; 1088 1089 // Get the memory operand of the lifetime marker. If the underlying 1090 // object is a sunk alloca, or is otherwise defined in the extraction 1091 // region, the lifetime marker must not be erased. 1092 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1093 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1094 continue; 1095 1096 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1097 LifetimesStart.insert(Mem); 1098 II->eraseFromParent(); 1099 } 1100 } 1101 } 1102 1103 /// Insert lifetime start/end markers surrounding the call to the new function 1104 /// for objects defined in the caller. 1105 static void insertLifetimeMarkersSurroundingCall( 1106 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1107 CallInst *TheCall) { 1108 LLVMContext &Ctx = M->getContext(); 1109 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1110 Instruction *Term = TheCall->getParent()->getTerminator(); 1111 1112 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1113 // markers before the call if \p InsertBefore, and after the call otherwise. 1114 auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects, 1115 bool InsertBefore) { 1116 for (Value *Mem : Objects) { 1117 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1118 TheCall->getFunction()) && 1119 "Input memory not defined in original function"); 1120 1121 Function *Func = Intrinsic::getDeclaration(M, MarkerFunc, Mem->getType()); 1122 auto Marker = CallInst::Create(Func, {NegativeOne, Mem}); 1123 if (InsertBefore) 1124 Marker->insertBefore(TheCall); 1125 else 1126 Marker->insertBefore(Term); 1127 } 1128 }; 1129 1130 if (!LifetimesStart.empty()) { 1131 insertMarkers(Intrinsic::lifetime_start, LifetimesStart, 1132 /*InsertBefore=*/true); 1133 } 1134 1135 if (!LifetimesEnd.empty()) { 1136 insertMarkers(Intrinsic::lifetime_end, LifetimesEnd, 1137 /*InsertBefore=*/false); 1138 } 1139 } 1140 1141 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1142 /// the call instruction, splitting any PHI nodes in the header block as 1143 /// necessary. 1144 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1145 BasicBlock *codeReplacer, 1146 ValueSet &inputs, 1147 ValueSet &outputs) { 1148 // Emit a call to the new function, passing in: *pointer to struct (if 1149 // aggregating parameters), or plan inputs and allocated memory for outputs 1150 std::vector<Value *> params, ReloadOutputs, Reloads; 1151 ValueSet StructValues; 1152 1153 Module *M = newFunction->getParent(); 1154 LLVMContext &Context = M->getContext(); 1155 const DataLayout &DL = M->getDataLayout(); 1156 CallInst *call = nullptr; 1157 1158 // Add inputs as params, or to be filled into the struct 1159 unsigned ScalarInputArgNo = 0; 1160 SmallVector<unsigned, 1> SwiftErrorArgs; 1161 for (Value *input : inputs) { 1162 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input)) 1163 StructValues.insert(input); 1164 else { 1165 params.push_back(input); 1166 if (input->isSwiftError()) 1167 SwiftErrorArgs.push_back(ScalarInputArgNo); 1168 } 1169 ++ScalarInputArgNo; 1170 } 1171 1172 // Create allocas for the outputs 1173 unsigned ScalarOutputArgNo = 0; 1174 for (Value *output : outputs) { 1175 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 1176 StructValues.insert(output); 1177 } else { 1178 AllocaInst *alloca = 1179 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1180 nullptr, output->getName() + ".loc", 1181 codeReplacer->getParent()->front().begin()); 1182 ReloadOutputs.push_back(alloca); 1183 params.push_back(alloca); 1184 ++ScalarOutputArgNo; 1185 } 1186 } 1187 1188 StructType *StructArgTy = nullptr; 1189 AllocaInst *Struct = nullptr; 1190 unsigned NumAggregatedInputs = 0; 1191 if (AggregateArgs && !StructValues.empty()) { 1192 std::vector<Type *> ArgTypes; 1193 for (Value *V : StructValues) 1194 ArgTypes.push_back(V->getType()); 1195 1196 // Allocate a struct at the beginning of this function 1197 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1198 Struct = new AllocaInst( 1199 StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg", 1200 AllocationBlock ? AllocationBlock->getFirstInsertionPt() 1201 : codeReplacer->getParent()->front().begin()); 1202 1203 if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) { 1204 auto *StructSpaceCast = new AddrSpaceCastInst( 1205 Struct, PointerType ::get(Context, 0), "structArg.ascast"); 1206 StructSpaceCast->insertAfter(Struct); 1207 params.push_back(StructSpaceCast); 1208 } else { 1209 params.push_back(Struct); 1210 } 1211 // Store aggregated inputs in the struct. 1212 for (unsigned i = 0, e = StructValues.size(); i != e; ++i) { 1213 if (inputs.contains(StructValues[i])) { 1214 Value *Idx[2]; 1215 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1216 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1217 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1218 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1219 GEP->insertInto(codeReplacer, codeReplacer->end()); 1220 new StoreInst(StructValues[i], GEP, codeReplacer); 1221 NumAggregatedInputs++; 1222 } 1223 } 1224 } 1225 1226 // Emit the call to the function 1227 call = CallInst::Create(newFunction, params, 1228 NumExitBlocks > 1 ? "targetBlock" : ""); 1229 // Add debug location to the new call, if the original function has debug 1230 // info. In that case, the terminator of the entry block of the extracted 1231 // function contains the first debug location of the extracted function, 1232 // set in extractCodeRegion. 1233 if (codeReplacer->getParent()->getSubprogram()) { 1234 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1235 call->setDebugLoc(DL); 1236 } 1237 call->insertInto(codeReplacer, codeReplacer->end()); 1238 1239 // Set swifterror parameter attributes. 1240 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1241 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1242 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1243 } 1244 1245 // Reload the outputs passed in by reference, use the struct if output is in 1246 // the aggregate or reload from the scalar argument. 1247 for (unsigned i = 0, e = outputs.size(), scalarIdx = 0, 1248 aggIdx = NumAggregatedInputs; 1249 i != e; ++i) { 1250 Value *Output = nullptr; 1251 if (AggregateArgs && StructValues.contains(outputs[i])) { 1252 Value *Idx[2]; 1253 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1254 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1255 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1256 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1257 GEP->insertInto(codeReplacer, codeReplacer->end()); 1258 Output = GEP; 1259 ++aggIdx; 1260 } else { 1261 Output = ReloadOutputs[scalarIdx]; 1262 ++scalarIdx; 1263 } 1264 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1265 outputs[i]->getName() + ".reload", 1266 codeReplacer); 1267 Reloads.push_back(load); 1268 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1269 for (User *U : Users) { 1270 Instruction *inst = cast<Instruction>(U); 1271 if (!Blocks.count(inst->getParent())) 1272 inst->replaceUsesOfWith(outputs[i], load); 1273 } 1274 } 1275 1276 // Now we can emit a switch statement using the call as a value. 1277 SwitchInst *TheSwitch = 1278 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1279 codeReplacer, 0, codeReplacer); 1280 1281 // Since there may be multiple exits from the original region, make the new 1282 // function return an unsigned, switch on that number. This loop iterates 1283 // over all of the blocks in the extracted region, updating any terminator 1284 // instructions in the to-be-extracted region that branch to blocks that are 1285 // not in the region to be extracted. 1286 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1287 1288 // Iterate over the previously collected targets, and create new blocks inside 1289 // the function to branch to. 1290 unsigned switchVal = 0; 1291 for (BasicBlock *OldTarget : OldTargets) { 1292 if (Blocks.count(OldTarget)) 1293 continue; 1294 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1295 if (NewTarget) 1296 continue; 1297 1298 // If we don't already have an exit stub for this non-extracted 1299 // destination, create one now! 1300 NewTarget = BasicBlock::Create(Context, 1301 OldTarget->getName() + ".exitStub", 1302 newFunction); 1303 unsigned SuccNum = switchVal++; 1304 1305 Value *brVal = nullptr; 1306 assert(NumExitBlocks < 0xffff && "too many exit blocks for switch"); 1307 switch (NumExitBlocks) { 1308 case 0: 1309 case 1: break; // No value needed. 1310 case 2: // Conditional branch, return a bool 1311 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1312 break; 1313 default: 1314 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1315 break; 1316 } 1317 1318 ReturnInst::Create(Context, brVal, NewTarget); 1319 1320 // Update the switch instruction. 1321 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1322 SuccNum), 1323 OldTarget); 1324 } 1325 1326 for (BasicBlock *Block : Blocks) { 1327 Instruction *TI = Block->getTerminator(); 1328 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1329 if (Blocks.count(TI->getSuccessor(i))) 1330 continue; 1331 BasicBlock *OldTarget = TI->getSuccessor(i); 1332 // add a new basic block which returns the appropriate value 1333 BasicBlock *NewTarget = ExitBlockMap[OldTarget]; 1334 assert(NewTarget && "Unknown target block!"); 1335 1336 // rewrite the original branch instruction with this new target 1337 TI->setSuccessor(i, NewTarget); 1338 } 1339 } 1340 1341 // Store the arguments right after the definition of output value. 1342 // This should be proceeded after creating exit stubs to be ensure that invoke 1343 // result restore will be placed in the outlined function. 1344 Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin(); 1345 std::advance(ScalarOutputArgBegin, ScalarInputArgNo); 1346 Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin(); 1347 std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo); 1348 1349 for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e; 1350 ++i) { 1351 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1352 if (!OutI) 1353 continue; 1354 1355 // Find proper insertion point. 1356 BasicBlock::iterator InsertPt; 1357 // In case OutI is an invoke, we insert the store at the beginning in the 1358 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1359 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1360 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1361 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1362 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1363 else 1364 InsertPt = std::next(OutI->getIterator()); 1365 1366 assert((InsertPt->getFunction() == newFunction || 1367 Blocks.count(InsertPt->getParent())) && 1368 "InsertPt should be in new function"); 1369 if (AggregateArgs && StructValues.contains(outputs[i])) { 1370 assert(AggOutputArgBegin != newFunction->arg_end() && 1371 "Number of aggregate output arguments should match " 1372 "the number of defined values"); 1373 Value *Idx[2]; 1374 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1375 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1376 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1377 StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(), 1378 InsertPt); 1379 new StoreInst(outputs[i], GEP, InsertPt); 1380 ++aggIdx; 1381 // Since there should be only one struct argument aggregating 1382 // all the output values, we shouldn't increment AggOutputArgBegin, which 1383 // always points to the struct argument, in this case. 1384 } else { 1385 assert(ScalarOutputArgBegin != newFunction->arg_end() && 1386 "Number of scalar output arguments should match " 1387 "the number of defined values"); 1388 new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertPt); 1389 ++ScalarOutputArgBegin; 1390 } 1391 } 1392 1393 // Now that we've done the deed, simplify the switch instruction. 1394 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1395 switch (NumExitBlocks) { 1396 case 0: 1397 // There are no successors (the block containing the switch itself), which 1398 // means that previously this was the last part of the function, and hence 1399 // this should be rewritten as a `ret` or `unreachable`. 1400 if (newFunction->doesNotReturn()) { 1401 // If fn is no return, end with an unreachable terminator. 1402 (void)new UnreachableInst(Context, TheSwitch->getIterator()); 1403 } else if (OldFnRetTy->isVoidTy()) { 1404 // We have no return value. 1405 ReturnInst::Create(Context, nullptr, 1406 TheSwitch->getIterator()); // Return void 1407 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1408 // return what we have 1409 ReturnInst::Create(Context, TheSwitch->getCondition(), 1410 TheSwitch->getIterator()); 1411 } else { 1412 // Otherwise we must have code extracted an unwind or something, just 1413 // return whatever we want. 1414 ReturnInst::Create(Context, Constant::getNullValue(OldFnRetTy), 1415 TheSwitch->getIterator()); 1416 } 1417 1418 TheSwitch->eraseFromParent(); 1419 break; 1420 case 1: 1421 // Only a single destination, change the switch into an unconditional 1422 // branch. 1423 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getIterator()); 1424 TheSwitch->eraseFromParent(); 1425 break; 1426 case 2: 1427 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1428 call, TheSwitch->getIterator()); 1429 TheSwitch->eraseFromParent(); 1430 break; 1431 default: 1432 // Otherwise, make the default destination of the switch instruction be one 1433 // of the other successors. 1434 TheSwitch->setCondition(call); 1435 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1436 // Remove redundant case 1437 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1438 break; 1439 } 1440 1441 // Insert lifetime markers around the reloads of any output values. The 1442 // allocas output values are stored in are only in-use in the codeRepl block. 1443 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1444 1445 return call; 1446 } 1447 1448 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1449 auto newFuncIt = newFunction->front().getIterator(); 1450 for (BasicBlock *Block : Blocks) { 1451 // Delete the basic block from the old function, and the list of blocks 1452 Block->removeFromParent(); 1453 1454 // Insert this basic block into the new function 1455 // Insert the original blocks after the entry block created 1456 // for the new function. The entry block may be followed 1457 // by a set of exit blocks at this point, but these exit 1458 // blocks better be placed at the end of the new function. 1459 newFuncIt = newFunction->insert(std::next(newFuncIt), Block); 1460 } 1461 } 1462 1463 void CodeExtractor::calculateNewCallTerminatorWeights( 1464 BasicBlock *CodeReplacer, 1465 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1466 BranchProbabilityInfo *BPI) { 1467 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1468 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1469 1470 // Update the branch weights for the exit block. 1471 Instruction *TI = CodeReplacer->getTerminator(); 1472 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1473 1474 // Block Frequency distribution with dummy node. 1475 Distribution BranchDist; 1476 1477 SmallVector<BranchProbability, 4> EdgeProbabilities( 1478 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1479 1480 // Add each of the frequencies of the successors. 1481 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1482 BlockNode ExitNode(i); 1483 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1484 if (ExitFreq != 0) 1485 BranchDist.addExit(ExitNode, ExitFreq); 1486 else 1487 EdgeProbabilities[i] = BranchProbability::getZero(); 1488 } 1489 1490 // Check for no total weight. 1491 if (BranchDist.Total == 0) { 1492 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1493 return; 1494 } 1495 1496 // Normalize the distribution so that they can fit in unsigned. 1497 BranchDist.normalize(); 1498 1499 // Create normalized branch weights and set the metadata. 1500 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1501 const auto &Weight = BranchDist.Weights[I]; 1502 1503 // Get the weight and update the current BFI. 1504 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1505 BranchProbability BP(Weight.Amount, BranchDist.Total); 1506 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1507 } 1508 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1509 TI->setMetadata( 1510 LLVMContext::MD_prof, 1511 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1512 } 1513 1514 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1515 /// \p F. 1516 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1517 for (Instruction &I : instructions(F)) { 1518 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1519 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords; 1520 findDbgUsers(DbgUsers, &I, &DbgVariableRecords); 1521 for (DbgVariableIntrinsic *DVI : DbgUsers) 1522 if (DVI->getFunction() != &F) 1523 DVI->eraseFromParent(); 1524 for (DbgVariableRecord *DVR : DbgVariableRecords) 1525 if (DVR->getFunction() != &F) 1526 DVR->eraseFromParent(); 1527 } 1528 } 1529 1530 /// Fix up the debug info in the old and new functions by pointing line 1531 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1532 /// intrinsics which point to values outside of the new function. 1533 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1534 CallInst &TheCall) { 1535 DISubprogram *OldSP = OldFunc.getSubprogram(); 1536 LLVMContext &Ctx = OldFunc.getContext(); 1537 1538 if (!OldSP) { 1539 // Erase any debug info the new function contains. 1540 stripDebugInfo(NewFunc); 1541 // Make sure the old function doesn't contain any non-local metadata refs. 1542 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1543 return; 1544 } 1545 1546 // Create a subprogram for the new function. Leave out a description of the 1547 // function arguments, as the parameters don't correspond to anything at the 1548 // source level. 1549 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1550 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, 1551 OldSP->getUnit()); 1552 auto SPType = 1553 DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt)); 1554 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1555 DISubprogram::SPFlagOptimized | 1556 DISubprogram::SPFlagLocalToUnit; 1557 auto NewSP = DIB.createFunction( 1558 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1559 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1560 NewFunc.setSubprogram(NewSP); 1561 1562 auto IsInvalidLocation = [&NewFunc](Value *Location) { 1563 // Location is invalid if it isn't a constant or an instruction, or is an 1564 // instruction but isn't in the new function. 1565 if (!Location || 1566 (!isa<Constant>(Location) && !isa<Instruction>(Location))) 1567 return true; 1568 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1569 return LocationInst && LocationInst->getFunction() != &NewFunc; 1570 }; 1571 1572 // Debug intrinsics in the new function need to be updated in one of two 1573 // ways: 1574 // 1) They need to be deleted, because they describe a value in the old 1575 // function. 1576 // 2) They need to point to fresh metadata, e.g. because they currently 1577 // point to a variable in the wrong scope. 1578 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1579 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1580 SmallVector<DbgVariableRecord *, 4> DVRsToDelete; 1581 DenseMap<const MDNode *, MDNode *> Cache; 1582 1583 auto GetUpdatedDIVariable = [&](DILocalVariable *OldVar) { 1584 DINode *&NewVar = RemappedMetadata[OldVar]; 1585 if (!NewVar) { 1586 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram( 1587 *OldVar->getScope(), *NewSP, Ctx, Cache); 1588 NewVar = DIB.createAutoVariable( 1589 NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1590 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1591 OldVar->getAlignInBits()); 1592 } 1593 return cast<DILocalVariable>(NewVar); 1594 }; 1595 1596 auto UpdateDbgLabel = [&](auto *LabelRecord) { 1597 // Point the label record to a fresh label within the new function if 1598 // the record was not inlined from some other function. 1599 if (LabelRecord->getDebugLoc().getInlinedAt()) 1600 return; 1601 DILabel *OldLabel = LabelRecord->getLabel(); 1602 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1603 if (!NewLabel) { 1604 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram( 1605 *OldLabel->getScope(), *NewSP, Ctx, Cache); 1606 NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(), 1607 OldLabel->getFile(), OldLabel->getLine()); 1608 } 1609 LabelRecord->setLabel(cast<DILabel>(NewLabel)); 1610 }; 1611 1612 auto UpdateDbgRecordsOnInst = [&](Instruction &I) -> void { 1613 for (DbgRecord &DR : I.getDbgRecordRange()) { 1614 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1615 UpdateDbgLabel(DLR); 1616 continue; 1617 } 1618 1619 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1620 // Apply the two updates that dbg.values get: invalid operands, and 1621 // variable metadata fixup. 1622 if (any_of(DVR.location_ops(), IsInvalidLocation)) { 1623 DVRsToDelete.push_back(&DVR); 1624 continue; 1625 } 1626 if (DVR.isDbgAssign() && IsInvalidLocation(DVR.getAddress())) { 1627 DVRsToDelete.push_back(&DVR); 1628 continue; 1629 } 1630 if (!DVR.getDebugLoc().getInlinedAt()) 1631 DVR.setVariable(GetUpdatedDIVariable(DVR.getVariable())); 1632 } 1633 }; 1634 1635 for (Instruction &I : instructions(NewFunc)) { 1636 UpdateDbgRecordsOnInst(I); 1637 1638 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1639 if (!DII) 1640 continue; 1641 1642 // Point the intrinsic to a fresh label within the new function if the 1643 // intrinsic was not inlined from some other function. 1644 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1645 UpdateDbgLabel(DLI); 1646 continue; 1647 } 1648 1649 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1650 // If any of the used locations are invalid, delete the intrinsic. 1651 if (any_of(DVI->location_ops(), IsInvalidLocation)) { 1652 DebugIntrinsicsToDelete.push_back(DVI); 1653 continue; 1654 } 1655 // DbgAssign intrinsics have an extra Value argument: 1656 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 1657 DAI && IsInvalidLocation(DAI->getAddress())) { 1658 DebugIntrinsicsToDelete.push_back(DVI); 1659 continue; 1660 } 1661 // If the variable was in the scope of the old function, i.e. it was not 1662 // inlined, point the intrinsic to a fresh variable within the new function. 1663 if (!DVI->getDebugLoc().getInlinedAt()) 1664 DVI->setVariable(GetUpdatedDIVariable(DVI->getVariable())); 1665 } 1666 1667 for (auto *DII : DebugIntrinsicsToDelete) 1668 DII->eraseFromParent(); 1669 for (auto *DVR : DVRsToDelete) 1670 DVR->getMarker()->MarkedInstr->dropOneDbgRecord(DVR); 1671 DIB.finalizeSubprogram(NewSP); 1672 1673 // Fix up the scope information attached to the line locations and the 1674 // debug assignment metadata in the new function. 1675 DenseMap<DIAssignID *, DIAssignID *> AssignmentIDMap; 1676 for (Instruction &I : instructions(NewFunc)) { 1677 if (const DebugLoc &DL = I.getDebugLoc()) 1678 I.setDebugLoc( 1679 DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache)); 1680 for (DbgRecord &DR : I.getDbgRecordRange()) 1681 DR.setDebugLoc(DebugLoc::replaceInlinedAtSubprogram(DR.getDebugLoc(), 1682 *NewSP, Ctx, Cache)); 1683 1684 // Loop info metadata may contain line locations. Fix them up. 1685 auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * { 1686 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1687 return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache); 1688 return MD; 1689 }; 1690 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1691 at::remapAssignID(AssignmentIDMap, I); 1692 } 1693 if (!TheCall.getDebugLoc()) 1694 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP)); 1695 1696 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1697 } 1698 1699 Function * 1700 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1701 ValueSet Inputs, Outputs; 1702 return extractCodeRegion(CEAC, Inputs, Outputs); 1703 } 1704 1705 Function * 1706 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC, 1707 ValueSet &inputs, ValueSet &outputs) { 1708 if (!isEligible()) 1709 return nullptr; 1710 1711 // Assumption: this is a single-entry code region, and the header is the first 1712 // block in the region. 1713 BasicBlock *header = *Blocks.begin(); 1714 Function *oldFunction = header->getParent(); 1715 1716 // Calculate the entry frequency of the new function before we change the root 1717 // block. 1718 BlockFrequency EntryFreq; 1719 if (BFI) { 1720 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1721 for (BasicBlock *Pred : predecessors(header)) { 1722 if (Blocks.count(Pred)) 1723 continue; 1724 EntryFreq += 1725 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1726 } 1727 } 1728 1729 // Remove @llvm.assume calls that will be moved to the new function from the 1730 // old function's assumption cache. 1731 for (BasicBlock *Block : Blocks) { 1732 for (Instruction &I : llvm::make_early_inc_range(*Block)) { 1733 if (auto *AI = dyn_cast<AssumeInst>(&I)) { 1734 if (AC) 1735 AC->unregisterAssumption(AI); 1736 AI->eraseFromParent(); 1737 } 1738 } 1739 } 1740 1741 // If we have any return instructions in the region, split those blocks so 1742 // that the return is not in the region. 1743 splitReturnBlocks(); 1744 1745 // Calculate the exit blocks for the extracted region and the total exit 1746 // weights for each of those blocks. 1747 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1748 SetVector<BasicBlock *> ExitBlocks; 1749 for (BasicBlock *Block : Blocks) { 1750 for (BasicBlock *Succ : successors(Block)) { 1751 if (!Blocks.count(Succ)) { 1752 // Update the branch weight for this successor. 1753 if (BFI) { 1754 BlockFrequency &BF = ExitWeights[Succ]; 1755 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ); 1756 } 1757 ExitBlocks.insert(Succ); 1758 } 1759 } 1760 } 1761 NumExitBlocks = ExitBlocks.size(); 1762 1763 for (BasicBlock *Block : Blocks) { 1764 for (BasicBlock *OldTarget : successors(Block)) 1765 if (!Blocks.contains(OldTarget)) 1766 OldTargets.push_back(OldTarget); 1767 } 1768 1769 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1770 severSplitPHINodesOfEntry(header); 1771 severSplitPHINodesOfExits(ExitBlocks); 1772 1773 // This takes place of the original loop 1774 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1775 "codeRepl", oldFunction, 1776 header); 1777 codeReplacer->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat; 1778 1779 // The new function needs a root node because other nodes can branch to the 1780 // head of the region, but the entry node of a function cannot have preds. 1781 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1782 "newFuncRoot"); 1783 newFuncRoot->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat; 1784 1785 auto *BranchI = BranchInst::Create(header); 1786 // If the original function has debug info, we have to add a debug location 1787 // to the new branch instruction from the artificial entry block. 1788 // We use the debug location of the first instruction in the extracted 1789 // blocks, as there is no other equivalent line in the source code. 1790 if (oldFunction->getSubprogram()) { 1791 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1792 return any_of(*BB, [&BranchI](const Instruction &I) { 1793 if (!I.getDebugLoc()) 1794 return false; 1795 // Don't use source locations attached to debug-intrinsics: they could 1796 // be from completely unrelated scopes. 1797 if (isa<DbgInfoIntrinsic>(I)) 1798 return false; 1799 BranchI->setDebugLoc(I.getDebugLoc()); 1800 return true; 1801 }); 1802 }); 1803 } 1804 BranchI->insertInto(newFuncRoot, newFuncRoot->end()); 1805 1806 ValueSet SinkingCands, HoistingCands; 1807 BasicBlock *CommonExit = nullptr; 1808 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1809 assert(HoistingCands.empty() || CommonExit); 1810 1811 // Find inputs to, outputs from the code region. 1812 findInputsOutputs(inputs, outputs, SinkingCands); 1813 1814 // Now sink all instructions which only have non-phi uses inside the region. 1815 // Group the allocas at the start of the block, so that any bitcast uses of 1816 // the allocas are well-defined. 1817 AllocaInst *FirstSunkAlloca = nullptr; 1818 for (auto *II : SinkingCands) { 1819 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1820 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1821 if (!FirstSunkAlloca) 1822 FirstSunkAlloca = AI; 1823 } 1824 } 1825 assert((SinkingCands.empty() || FirstSunkAlloca) && 1826 "Did not expect a sink candidate without any allocas"); 1827 for (auto *II : SinkingCands) { 1828 if (!isa<AllocaInst>(II)) { 1829 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1830 } 1831 } 1832 1833 if (!HoistingCands.empty()) { 1834 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1835 Instruction *TI = HoistToBlock->getTerminator(); 1836 for (auto *II : HoistingCands) 1837 cast<Instruction>(II)->moveBefore(TI); 1838 } 1839 1840 // Collect objects which are inputs to the extraction region and also 1841 // referenced by lifetime start markers within it. The effects of these 1842 // markers must be replicated in the calling function to prevent the stack 1843 // coloring pass from merging slots which store input objects. 1844 ValueSet LifetimesStart; 1845 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1846 1847 // Construct new function based on inputs/outputs & add allocas for all defs. 1848 Function *newFunction = 1849 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1850 oldFunction, oldFunction->getParent()); 1851 1852 // Update the entry count of the function. 1853 if (BFI) { 1854 auto Count = BFI->getProfileCountFromFreq(EntryFreq); 1855 if (Count) 1856 newFunction->setEntryCount( 1857 ProfileCount(*Count, Function::PCT_Real)); // FIXME 1858 BFI->setBlockFreq(codeReplacer, EntryFreq); 1859 } 1860 1861 CallInst *TheCall = 1862 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1863 1864 moveCodeToFunction(newFunction); 1865 1866 // Replicate the effects of any lifetime start/end markers which referenced 1867 // input objects in the extraction region by placing markers around the call. 1868 insertLifetimeMarkersSurroundingCall( 1869 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1870 1871 // Propagate personality info to the new function if there is one. 1872 if (oldFunction->hasPersonalityFn()) 1873 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1874 1875 // Update the branch weights for the exit block. 1876 if (BFI && NumExitBlocks > 1) 1877 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1878 1879 // Loop over all of the PHI nodes in the header and exit blocks, and change 1880 // any references to the old incoming edge to be the new incoming edge. 1881 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1882 PHINode *PN = cast<PHINode>(I); 1883 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1884 if (!Blocks.count(PN->getIncomingBlock(i))) 1885 PN->setIncomingBlock(i, newFuncRoot); 1886 } 1887 1888 for (BasicBlock *ExitBB : ExitBlocks) 1889 for (PHINode &PN : ExitBB->phis()) { 1890 Value *IncomingCodeReplacerVal = nullptr; 1891 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1892 // Ignore incoming values from outside of the extracted region. 1893 if (!Blocks.count(PN.getIncomingBlock(i))) 1894 continue; 1895 1896 // Ensure that there is only one incoming value from codeReplacer. 1897 if (!IncomingCodeReplacerVal) { 1898 PN.setIncomingBlock(i, codeReplacer); 1899 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1900 } else 1901 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1902 "PHI has two incompatbile incoming values from codeRepl"); 1903 } 1904 } 1905 1906 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1907 1908 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1909 newFunction->dump(); 1910 report_fatal_error("verification of newFunction failed!"); 1911 }); 1912 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1913 report_fatal_error("verification of oldFunction failed!")); 1914 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1915 report_fatal_error("Stale Asumption cache for old Function!")); 1916 return newFunction; 1917 } 1918 1919 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1920 const Function &NewFunc, 1921 AssumptionCache *AC) { 1922 for (auto AssumeVH : AC->assumptions()) { 1923 auto *I = dyn_cast_or_null<CallInst>(AssumeVH); 1924 if (!I) 1925 continue; 1926 1927 // There shouldn't be any llvm.assume intrinsics in the new function. 1928 if (I->getFunction() != &OldFunc) 1929 return true; 1930 1931 // There shouldn't be any stale affected values in the assumption cache 1932 // that were previously in the old function, but that have now been moved 1933 // to the new function. 1934 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1935 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1936 if (!AffectedCI) 1937 continue; 1938 if (AffectedCI->getFunction() != &OldFunc) 1939 return true; 1940 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); 1941 if (AssumedInst->getFunction() != &OldFunc) 1942 return true; 1943 } 1944 } 1945 return false; 1946 } 1947 1948 void CodeExtractor::excludeArgFromAggregate(Value *Arg) { 1949 ExcludeArgsFromAggregate.insert(Arg); 1950 } 1951