xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision eee8dd90887cbf86fa0fea1ff770377a87af0257)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/InstIterator.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/Verifier.h"
55 #include "llvm/Support/BlockFrequency.h"
56 #include "llvm/Support/BranchProbability.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <map>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
72 using ProfileCount = Function::ProfileCount;
73 
74 #define DEBUG_TYPE "code-extractor"
75 
76 // Provide a command-line option to aggregate function arguments into a struct
77 // for functions produced by the code extractor. This is useful when converting
78 // extracted functions to pthread-based code, as only one argument (void*) can
79 // be passed in to pthread_create().
80 static cl::opt<bool>
81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82                  cl::desc("Aggregate arguments to code-extracted functions"));
83 
84 /// Test whether a block is valid for extraction.
85 static bool isBlockValidForExtraction(const BasicBlock &BB,
86                                       const SetVector<BasicBlock *> &Result,
87                                       bool AllowVarArgs, bool AllowAlloca) {
88   // taking the address of a basic block moved to another function is illegal
89   if (BB.hasAddressTaken())
90     return false;
91 
92   // don't hoist code that uses another basicblock address, as it's likely to
93   // lead to unexpected behavior, like cross-function jumps
94   SmallPtrSet<User const *, 16> Visited;
95   SmallVector<User const *, 16> ToVisit;
96 
97   for (Instruction const &Inst : BB)
98     ToVisit.push_back(&Inst);
99 
100   while (!ToVisit.empty()) {
101     User const *Curr = ToVisit.pop_back_val();
102     if (!Visited.insert(Curr).second)
103       continue;
104     if (isa<BlockAddress const>(Curr))
105       return false; // even a reference to self is likely to be not compatible
106 
107     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108       continue;
109 
110     for (auto const &U : Curr->operands()) {
111       if (auto *UU = dyn_cast<User>(U))
112         ToVisit.push_back(UU);
113     }
114   }
115 
116   // If explicitly requested, allow vastart and alloca. For invoke instructions
117   // verify that extraction is valid.
118   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119     if (isa<AllocaInst>(I)) {
120        if (!AllowAlloca)
121          return false;
122        continue;
123     }
124 
125     if (const auto *II = dyn_cast<InvokeInst>(I)) {
126       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127       // must be a part of the subgraph which is being extracted.
128       if (auto *UBB = II->getUnwindDest())
129         if (!Result.count(UBB))
130           return false;
131       continue;
132     }
133 
134     // All catch handlers of a catchswitch instruction as well as the unwind
135     // destination must be in the subgraph.
136     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137       if (auto *UBB = CSI->getUnwindDest())
138         if (!Result.count(UBB))
139           return false;
140       for (const auto *HBB : CSI->handlers())
141         if (!Result.count(const_cast<BasicBlock*>(HBB)))
142           return false;
143       continue;
144     }
145 
146     // Make sure that entire catch handler is within subgraph. It is sufficient
147     // to check that catch return's block is in the list.
148     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149       for (const auto *U : CPI->users())
150         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152             return false;
153       continue;
154     }
155 
156     // And do similar checks for cleanup handler - the entire handler must be
157     // in subgraph which is going to be extracted. For cleanup return should
158     // additionally check that the unwind destination is also in the subgraph.
159     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160       for (const auto *U : CPI->users())
161         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163             return false;
164       continue;
165     }
166     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167       if (auto *UBB = CRI->getUnwindDest())
168         if (!Result.count(UBB))
169           return false;
170       continue;
171     }
172 
173     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174       if (const Function *F = CI->getCalledFunction()) {
175         auto IID = F->getIntrinsicID();
176         if (IID == Intrinsic::vastart) {
177           if (AllowVarArgs)
178             continue;
179           else
180             return false;
181         }
182 
183         // Currently, we miscompile outlined copies of eh_typid_for. There are
184         // proposals for fixing this in llvm.org/PR39545.
185         if (IID == Intrinsic::eh_typeid_for)
186           return false;
187       }
188     }
189   }
190 
191   return true;
192 }
193 
194 /// Build a set of blocks to extract if the input blocks are viable.
195 static SetVector<BasicBlock *>
196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197                         bool AllowVarArgs, bool AllowAlloca) {
198   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199   SetVector<BasicBlock *> Result;
200 
201   // Loop over the blocks, adding them to our set-vector, and aborting with an
202   // empty set if we encounter invalid blocks.
203   for (BasicBlock *BB : BBs) {
204     // If this block is dead, don't process it.
205     if (DT && !DT->isReachableFromEntry(BB))
206       continue;
207 
208     if (!Result.insert(BB))
209       llvm_unreachable("Repeated basic blocks in extraction input");
210   }
211 
212   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
213                     << '\n');
214 
215   for (auto *BB : Result) {
216     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
217       return {};
218 
219     // Make sure that the first block is not a landing pad.
220     if (BB == Result.front()) {
221       if (BB->isEHPad()) {
222         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
223         return {};
224       }
225       continue;
226     }
227 
228     // All blocks other than the first must not have predecessors outside of
229     // the subgraph which is being extracted.
230     for (auto *PBB : predecessors(BB))
231       if (!Result.count(PBB)) {
232         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
233                              "outside the region except for the first block!\n"
234                           << "Problematic source BB: " << BB->getName() << "\n"
235                           << "Problematic destination BB: " << PBB->getName()
236                           << "\n");
237         return {};
238       }
239   }
240 
241   return Result;
242 }
243 
244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
245                              bool AggregateArgs, BlockFrequencyInfo *BFI,
246                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
247                              bool AllowVarArgs, bool AllowAlloca,
248                              BasicBlock *AllocationBlock, std::string Suffix,
249                              bool ArgsInZeroAddressSpace)
250     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
251       BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
252       AllowVarArgs(AllowVarArgs),
253       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
254       Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {}
255 
256 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
257                              BlockFrequencyInfo *BFI,
258                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
259                              std::string Suffix)
260     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
261       BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false),
262       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
263                                      /* AllowVarArgs */ false,
264                                      /* AllowAlloca */ false)),
265       Suffix(Suffix) {}
266 
267 /// definedInRegion - Return true if the specified value is defined in the
268 /// extracted region.
269 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
270   if (Instruction *I = dyn_cast<Instruction>(V))
271     if (Blocks.count(I->getParent()))
272       return true;
273   return false;
274 }
275 
276 /// definedInCaller - Return true if the specified value is defined in the
277 /// function being code extracted, but not in the region being extracted.
278 /// These values must be passed in as live-ins to the function.
279 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
280   if (isa<Argument>(V)) return true;
281   if (Instruction *I = dyn_cast<Instruction>(V))
282     if (!Blocks.count(I->getParent()))
283       return true;
284   return false;
285 }
286 
287 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
288   BasicBlock *CommonExitBlock = nullptr;
289   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
290     for (auto *Succ : successors(Block)) {
291       // Internal edges, ok.
292       if (Blocks.count(Succ))
293         continue;
294       if (!CommonExitBlock) {
295         CommonExitBlock = Succ;
296         continue;
297       }
298       if (CommonExitBlock != Succ)
299         return true;
300     }
301     return false;
302   };
303 
304   if (any_of(Blocks, hasNonCommonExitSucc))
305     return nullptr;
306 
307   return CommonExitBlock;
308 }
309 
310 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
311   for (BasicBlock &BB : F) {
312     for (Instruction &II : BB.instructionsWithoutDebug())
313       if (auto *AI = dyn_cast<AllocaInst>(&II))
314         Allocas.push_back(AI);
315 
316     findSideEffectInfoForBlock(BB);
317   }
318 }
319 
320 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
321   for (Instruction &II : BB.instructionsWithoutDebug()) {
322     unsigned Opcode = II.getOpcode();
323     Value *MemAddr = nullptr;
324     switch (Opcode) {
325     case Instruction::Store:
326     case Instruction::Load: {
327       if (Opcode == Instruction::Store) {
328         StoreInst *SI = cast<StoreInst>(&II);
329         MemAddr = SI->getPointerOperand();
330       } else {
331         LoadInst *LI = cast<LoadInst>(&II);
332         MemAddr = LI->getPointerOperand();
333       }
334       // Global variable can not be aliased with locals.
335       if (isa<Constant>(MemAddr))
336         break;
337       Value *Base = MemAddr->stripInBoundsConstantOffsets();
338       if (!isa<AllocaInst>(Base)) {
339         SideEffectingBlocks.insert(&BB);
340         return;
341       }
342       BaseMemAddrs[&BB].insert(Base);
343       break;
344     }
345     default: {
346       IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
347       if (IntrInst) {
348         if (IntrInst->isLifetimeStartOrEnd())
349           break;
350         SideEffectingBlocks.insert(&BB);
351         return;
352       }
353       // Treat all the other cases conservatively if it has side effects.
354       if (II.mayHaveSideEffects()) {
355         SideEffectingBlocks.insert(&BB);
356         return;
357       }
358     }
359     }
360   }
361 }
362 
363 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
364     BasicBlock &BB, AllocaInst *Addr) const {
365   if (SideEffectingBlocks.count(&BB))
366     return true;
367   auto It = BaseMemAddrs.find(&BB);
368   if (It != BaseMemAddrs.end())
369     return It->second.count(Addr);
370   return false;
371 }
372 
373 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
374     const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
375   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
376   Function *Func = (*Blocks.begin())->getParent();
377   for (BasicBlock &BB : *Func) {
378     if (Blocks.count(&BB))
379       continue;
380     if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
381       return false;
382   }
383   return true;
384 }
385 
386 BasicBlock *
387 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
388   BasicBlock *SinglePredFromOutlineRegion = nullptr;
389   assert(!Blocks.count(CommonExitBlock) &&
390          "Expect a block outside the region!");
391   for (auto *Pred : predecessors(CommonExitBlock)) {
392     if (!Blocks.count(Pred))
393       continue;
394     if (!SinglePredFromOutlineRegion) {
395       SinglePredFromOutlineRegion = Pred;
396     } else if (SinglePredFromOutlineRegion != Pred) {
397       SinglePredFromOutlineRegion = nullptr;
398       break;
399     }
400   }
401 
402   if (SinglePredFromOutlineRegion)
403     return SinglePredFromOutlineRegion;
404 
405 #ifndef NDEBUG
406   auto getFirstPHI = [](BasicBlock *BB) {
407     BasicBlock::iterator I = BB->begin();
408     PHINode *FirstPhi = nullptr;
409     while (I != BB->end()) {
410       PHINode *Phi = dyn_cast<PHINode>(I);
411       if (!Phi)
412         break;
413       if (!FirstPhi) {
414         FirstPhi = Phi;
415         break;
416       }
417     }
418     return FirstPhi;
419   };
420   // If there are any phi nodes, the single pred either exists or has already
421   // be created before code extraction.
422   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
423 #endif
424 
425   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
426       CommonExitBlock->getFirstNonPHI()->getIterator());
427 
428   for (BasicBlock *Pred :
429        llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
430     if (Blocks.count(Pred))
431       continue;
432     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
433   }
434   // Now add the old exit block to the outline region.
435   Blocks.insert(CommonExitBlock);
436   OldTargets.push_back(NewExitBlock);
437   return CommonExitBlock;
438 }
439 
440 // Find the pair of life time markers for address 'Addr' that are either
441 // defined inside the outline region or can legally be shrinkwrapped into the
442 // outline region. If there are not other untracked uses of the address, return
443 // the pair of markers if found; otherwise return a pair of nullptr.
444 CodeExtractor::LifetimeMarkerInfo
445 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
446                                   Instruction *Addr,
447                                   BasicBlock *ExitBlock) const {
448   LifetimeMarkerInfo Info;
449 
450   for (User *U : Addr->users()) {
451     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
452     if (IntrInst) {
453       // We don't model addresses with multiple start/end markers, but the
454       // markers do not need to be in the region.
455       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
456         if (Info.LifeStart)
457           return {};
458         Info.LifeStart = IntrInst;
459         continue;
460       }
461       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
462         if (Info.LifeEnd)
463           return {};
464         Info.LifeEnd = IntrInst;
465         continue;
466       }
467       // At this point, permit debug uses outside of the region.
468       // This is fixed in a later call to fixupDebugInfoPostExtraction().
469       if (isa<DbgInfoIntrinsic>(IntrInst))
470         continue;
471     }
472     // Find untracked uses of the address, bail.
473     if (!definedInRegion(Blocks, U))
474       return {};
475   }
476 
477   if (!Info.LifeStart || !Info.LifeEnd)
478     return {};
479 
480   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
481   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
482   // Do legality check.
483   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
484       !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
485     return {};
486 
487   // Check to see if we have a place to do hoisting, if not, bail.
488   if (Info.HoistLifeEnd && !ExitBlock)
489     return {};
490 
491   return Info;
492 }
493 
494 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
495                                 ValueSet &SinkCands, ValueSet &HoistCands,
496                                 BasicBlock *&ExitBlock) const {
497   Function *Func = (*Blocks.begin())->getParent();
498   ExitBlock = getCommonExitBlock(Blocks);
499 
500   auto moveOrIgnoreLifetimeMarkers =
501       [&](const LifetimeMarkerInfo &LMI) -> bool {
502     if (!LMI.LifeStart)
503       return false;
504     if (LMI.SinkLifeStart) {
505       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
506                         << "\n");
507       SinkCands.insert(LMI.LifeStart);
508     }
509     if (LMI.HoistLifeEnd) {
510       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
511       HoistCands.insert(LMI.LifeEnd);
512     }
513     return true;
514   };
515 
516   // Look up allocas in the original function in CodeExtractorAnalysisCache, as
517   // this is much faster than walking all the instructions.
518   for (AllocaInst *AI : CEAC.getAllocas()) {
519     BasicBlock *BB = AI->getParent();
520     if (Blocks.count(BB))
521       continue;
522 
523     // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
524     // check whether it is actually still in the original function.
525     Function *AIFunc = BB->getParent();
526     if (AIFunc != Func)
527       continue;
528 
529     LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
530     bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
531     if (Moved) {
532       LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
533       SinkCands.insert(AI);
534       continue;
535     }
536 
537     // Find bitcasts in the outlined region that have lifetime marker users
538     // outside that region. Replace the lifetime marker use with an
539     // outside region bitcast to avoid unnecessary alloca/reload instructions
540     // and extra lifetime markers.
541     SmallVector<Instruction *, 2> LifetimeBitcastUsers;
542     for (User *U : AI->users()) {
543       if (!definedInRegion(Blocks, U))
544         continue;
545 
546       if (U->stripInBoundsConstantOffsets() != AI)
547         continue;
548 
549       Instruction *Bitcast = cast<Instruction>(U);
550       for (User *BU : Bitcast->users()) {
551         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
552         if (!IntrInst)
553           continue;
554 
555         if (!IntrInst->isLifetimeStartOrEnd())
556           continue;
557 
558         if (definedInRegion(Blocks, IntrInst))
559           continue;
560 
561         LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
562                           << *Bitcast << " in out-of-region lifetime marker "
563                           << *IntrInst << "\n");
564         LifetimeBitcastUsers.push_back(IntrInst);
565       }
566     }
567 
568     for (Instruction *I : LifetimeBitcastUsers) {
569       Module *M = AIFunc->getParent();
570       LLVMContext &Ctx = M->getContext();
571       auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
572       CastInst *CastI =
573           CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I);
574       I->replaceUsesOfWith(I->getOperand(1), CastI);
575     }
576 
577     // Follow any bitcasts.
578     SmallVector<Instruction *, 2> Bitcasts;
579     SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
580     for (User *U : AI->users()) {
581       if (U->stripInBoundsConstantOffsets() == AI) {
582         Instruction *Bitcast = cast<Instruction>(U);
583         LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
584         if (LMI.LifeStart) {
585           Bitcasts.push_back(Bitcast);
586           BitcastLifetimeInfo.push_back(LMI);
587           continue;
588         }
589       }
590 
591       // Found unknown use of AI.
592       if (!definedInRegion(Blocks, U)) {
593         Bitcasts.clear();
594         break;
595       }
596     }
597 
598     // Either no bitcasts reference the alloca or there are unknown uses.
599     if (Bitcasts.empty())
600       continue;
601 
602     LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
603     SinkCands.insert(AI);
604     for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
605       Instruction *BitcastAddr = Bitcasts[I];
606       const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
607       assert(LMI.LifeStart &&
608              "Unsafe to sink bitcast without lifetime markers");
609       moveOrIgnoreLifetimeMarkers(LMI);
610       if (!definedInRegion(Blocks, BitcastAddr)) {
611         LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
612                           << "\n");
613         SinkCands.insert(BitcastAddr);
614       }
615     }
616   }
617 }
618 
619 bool CodeExtractor::isEligible() const {
620   if (Blocks.empty())
621     return false;
622   BasicBlock *Header = *Blocks.begin();
623   Function *F = Header->getParent();
624 
625   // For functions with varargs, check that varargs handling is only done in the
626   // outlined function, i.e vastart and vaend are only used in outlined blocks.
627   if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
628     auto containsVarArgIntrinsic = [](const Instruction &I) {
629       if (const CallInst *CI = dyn_cast<CallInst>(&I))
630         if (const Function *Callee = CI->getCalledFunction())
631           return Callee->getIntrinsicID() == Intrinsic::vastart ||
632                  Callee->getIntrinsicID() == Intrinsic::vaend;
633       return false;
634     };
635 
636     for (auto &BB : *F) {
637       if (Blocks.count(&BB))
638         continue;
639       if (llvm::any_of(BB, containsVarArgIntrinsic))
640         return false;
641     }
642   }
643   return true;
644 }
645 
646 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
647                                       const ValueSet &SinkCands) const {
648   for (BasicBlock *BB : Blocks) {
649     // If a used value is defined outside the region, it's an input.  If an
650     // instruction is used outside the region, it's an output.
651     for (Instruction &II : *BB) {
652       for (auto &OI : II.operands()) {
653         Value *V = OI;
654         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
655           Inputs.insert(V);
656       }
657 
658       for (User *U : II.users())
659         if (!definedInRegion(Blocks, U)) {
660           Outputs.insert(&II);
661           break;
662         }
663     }
664   }
665 }
666 
667 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
668 /// of the region, we need to split the entry block of the region so that the
669 /// PHI node is easier to deal with.
670 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
671   unsigned NumPredsFromRegion = 0;
672   unsigned NumPredsOutsideRegion = 0;
673 
674   if (Header != &Header->getParent()->getEntryBlock()) {
675     PHINode *PN = dyn_cast<PHINode>(Header->begin());
676     if (!PN) return;  // No PHI nodes.
677 
678     // If the header node contains any PHI nodes, check to see if there is more
679     // than one entry from outside the region.  If so, we need to sever the
680     // header block into two.
681     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
682       if (Blocks.count(PN->getIncomingBlock(i)))
683         ++NumPredsFromRegion;
684       else
685         ++NumPredsOutsideRegion;
686 
687     // If there is one (or fewer) predecessor from outside the region, we don't
688     // need to do anything special.
689     if (NumPredsOutsideRegion <= 1) return;
690   }
691 
692   // Otherwise, we need to split the header block into two pieces: one
693   // containing PHI nodes merging values from outside of the region, and a
694   // second that contains all of the code for the block and merges back any
695   // incoming values from inside of the region.
696   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
697 
698   // We only want to code extract the second block now, and it becomes the new
699   // header of the region.
700   BasicBlock *OldPred = Header;
701   Blocks.remove(OldPred);
702   Blocks.insert(NewBB);
703   Header = NewBB;
704 
705   // Okay, now we need to adjust the PHI nodes and any branches from within the
706   // region to go to the new header block instead of the old header block.
707   if (NumPredsFromRegion) {
708     PHINode *PN = cast<PHINode>(OldPred->begin());
709     // Loop over all of the predecessors of OldPred that are in the region,
710     // changing them to branch to NewBB instead.
711     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
712       if (Blocks.count(PN->getIncomingBlock(i))) {
713         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
714         TI->replaceUsesOfWith(OldPred, NewBB);
715       }
716 
717     // Okay, everything within the region is now branching to the right block, we
718     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
719     BasicBlock::iterator AfterPHIs;
720     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
721       PHINode *PN = cast<PHINode>(AfterPHIs);
722       // Create a new PHI node in the new region, which has an incoming value
723       // from OldPred of PN.
724       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
725                                        PN->getName() + ".ce");
726       NewPN->insertBefore(NewBB->begin());
727       PN->replaceAllUsesWith(NewPN);
728       NewPN->addIncoming(PN, OldPred);
729 
730       // Loop over all of the incoming value in PN, moving them to NewPN if they
731       // are from the extracted region.
732       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
733         if (Blocks.count(PN->getIncomingBlock(i))) {
734           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
735           PN->removeIncomingValue(i);
736           --i;
737         }
738       }
739     }
740   }
741 }
742 
743 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
744 /// outlined region, we split these PHIs on two: one with inputs from region
745 /// and other with remaining incoming blocks; then first PHIs are placed in
746 /// outlined region.
747 void CodeExtractor::severSplitPHINodesOfExits(
748     const SmallPtrSetImpl<BasicBlock *> &Exits) {
749   for (BasicBlock *ExitBB : Exits) {
750     BasicBlock *NewBB = nullptr;
751 
752     for (PHINode &PN : ExitBB->phis()) {
753       // Find all incoming values from the outlining region.
754       SmallVector<unsigned, 2> IncomingVals;
755       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
756         if (Blocks.count(PN.getIncomingBlock(i)))
757           IncomingVals.push_back(i);
758 
759       // Do not process PHI if there is one (or fewer) predecessor from region.
760       // If PHI has exactly one predecessor from region, only this one incoming
761       // will be replaced on codeRepl block, so it should be safe to skip PHI.
762       if (IncomingVals.size() <= 1)
763         continue;
764 
765       // Create block for new PHIs and add it to the list of outlined if it
766       // wasn't done before.
767       if (!NewBB) {
768         NewBB = BasicBlock::Create(ExitBB->getContext(),
769                                    ExitBB->getName() + ".split",
770                                    ExitBB->getParent(), ExitBB);
771         SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
772         for (BasicBlock *PredBB : Preds)
773           if (Blocks.count(PredBB))
774             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
775         BranchInst::Create(ExitBB, NewBB);
776         Blocks.insert(NewBB);
777       }
778 
779       // Split this PHI.
780       PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(),
781                                        PN.getName() + ".ce");
782       NewPN->insertBefore(NewBB->getFirstNonPHIIt());
783       for (unsigned i : IncomingVals)
784         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
785       for (unsigned i : reverse(IncomingVals))
786         PN.removeIncomingValue(i, false);
787       PN.addIncoming(NewPN, NewBB);
788     }
789   }
790 }
791 
792 void CodeExtractor::splitReturnBlocks() {
793   for (BasicBlock *Block : Blocks)
794     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
795       BasicBlock *New =
796           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
797       if (DT) {
798         // Old dominates New. New node dominates all other nodes dominated
799         // by Old.
800         DomTreeNode *OldNode = DT->getNode(Block);
801         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
802                                                OldNode->end());
803 
804         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
805 
806         for (DomTreeNode *I : Children)
807           DT->changeImmediateDominator(I, NewNode);
808       }
809     }
810 }
811 
812 /// constructFunction - make a function based on inputs and outputs, as follows:
813 /// f(in0, ..., inN, out0, ..., outN)
814 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
815                                            const ValueSet &outputs,
816                                            BasicBlock *header,
817                                            BasicBlock *newRootNode,
818                                            BasicBlock *newHeader,
819                                            Function *oldFunction,
820                                            Module *M) {
821   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
822   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
823 
824   // This function returns unsigned, outputs will go back by reference.
825   switch (NumExitBlocks) {
826   case 0:
827   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
828   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
829   default: RetTy = Type::getInt16Ty(header->getContext()); break;
830   }
831 
832   std::vector<Type *> ParamTy;
833   std::vector<Type *> AggParamTy;
834   ValueSet StructValues;
835   const DataLayout &DL = M->getDataLayout();
836 
837   // Add the types of the input values to the function's argument list
838   for (Value *value : inputs) {
839     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
840     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
841       AggParamTy.push_back(value->getType());
842       StructValues.insert(value);
843     } else
844       ParamTy.push_back(value->getType());
845   }
846 
847   // Add the types of the output values to the function's argument list.
848   for (Value *output : outputs) {
849     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
850     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
851       AggParamTy.push_back(output->getType());
852       StructValues.insert(output);
853     } else
854       ParamTy.push_back(
855           PointerType::get(output->getType(), DL.getAllocaAddrSpace()));
856   }
857 
858   assert(
859       (ParamTy.size() + AggParamTy.size()) ==
860           (inputs.size() + outputs.size()) &&
861       "Number of scalar and aggregate params does not match inputs, outputs");
862   assert((StructValues.empty() || AggregateArgs) &&
863          "Expeced StructValues only with AggregateArgs set");
864 
865   // Concatenate scalar and aggregate params in ParamTy.
866   size_t NumScalarParams = ParamTy.size();
867   StructType *StructTy = nullptr;
868   if (AggregateArgs && !AggParamTy.empty()) {
869     StructTy = StructType::get(M->getContext(), AggParamTy);
870     ParamTy.push_back(PointerType::get(
871         StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace()));
872   }
873 
874   LLVM_DEBUG({
875     dbgs() << "Function type: " << *RetTy << " f(";
876     for (Type *i : ParamTy)
877       dbgs() << *i << ", ";
878     dbgs() << ")\n";
879   });
880 
881   FunctionType *funcType = FunctionType::get(
882       RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
883 
884   std::string SuffixToUse =
885       Suffix.empty()
886           ? (header->getName().empty() ? "extracted" : header->getName().str())
887           : Suffix;
888   // Create the new function
889   Function *newFunction = Function::Create(
890       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
891       oldFunction->getName() + "." + SuffixToUse, M);
892 
893   // Inherit all of the target dependent attributes and white-listed
894   // target independent attributes.
895   //  (e.g. If the extracted region contains a call to an x86.sse
896   //  instruction we need to make sure that the extracted region has the
897   //  "target-features" attribute allowing it to be lowered.
898   // FIXME: This should be changed to check to see if a specific
899   //           attribute can not be inherited.
900   for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
901     if (Attr.isStringAttribute()) {
902       if (Attr.getKindAsString() == "thunk")
903         continue;
904     } else
905       switch (Attr.getKindAsEnum()) {
906       // Those attributes cannot be propagated safely. Explicitly list them
907       // here so we get a warning if new attributes are added.
908       case Attribute::AllocSize:
909       case Attribute::Builtin:
910       case Attribute::Convergent:
911       case Attribute::JumpTable:
912       case Attribute::Naked:
913       case Attribute::NoBuiltin:
914       case Attribute::NoMerge:
915       case Attribute::NoReturn:
916       case Attribute::NoSync:
917       case Attribute::ReturnsTwice:
918       case Attribute::Speculatable:
919       case Attribute::StackAlignment:
920       case Attribute::WillReturn:
921       case Attribute::AllocKind:
922       case Attribute::PresplitCoroutine:
923       case Attribute::Memory:
924       case Attribute::NoFPClass:
925         continue;
926       // Those attributes should be safe to propagate to the extracted function.
927       case Attribute::AlwaysInline:
928       case Attribute::Cold:
929       case Attribute::DisableSanitizerInstrumentation:
930       case Attribute::FnRetThunkExtern:
931       case Attribute::Hot:
932       case Attribute::NoRecurse:
933       case Attribute::InlineHint:
934       case Attribute::MinSize:
935       case Attribute::NoCallback:
936       case Attribute::NoDuplicate:
937       case Attribute::NoFree:
938       case Attribute::NoImplicitFloat:
939       case Attribute::NoInline:
940       case Attribute::NonLazyBind:
941       case Attribute::NoRedZone:
942       case Attribute::NoUnwind:
943       case Attribute::NoSanitizeBounds:
944       case Attribute::NoSanitizeCoverage:
945       case Attribute::NullPointerIsValid:
946       case Attribute::OptimizeForDebugging:
947       case Attribute::OptForFuzzing:
948       case Attribute::OptimizeNone:
949       case Attribute::OptimizeForSize:
950       case Attribute::SafeStack:
951       case Attribute::ShadowCallStack:
952       case Attribute::SanitizeAddress:
953       case Attribute::SanitizeMemory:
954       case Attribute::SanitizeThread:
955       case Attribute::SanitizeHWAddress:
956       case Attribute::SanitizeMemTag:
957       case Attribute::SpeculativeLoadHardening:
958       case Attribute::StackProtect:
959       case Attribute::StackProtectReq:
960       case Attribute::StackProtectStrong:
961       case Attribute::StrictFP:
962       case Attribute::UWTable:
963       case Attribute::VScaleRange:
964       case Attribute::NoCfCheck:
965       case Attribute::MustProgress:
966       case Attribute::NoProfile:
967       case Attribute::SkipProfile:
968         break;
969       // These attributes cannot be applied to functions.
970       case Attribute::Alignment:
971       case Attribute::AllocatedPointer:
972       case Attribute::AllocAlign:
973       case Attribute::ByVal:
974       case Attribute::Dereferenceable:
975       case Attribute::DereferenceableOrNull:
976       case Attribute::ElementType:
977       case Attribute::InAlloca:
978       case Attribute::InReg:
979       case Attribute::Nest:
980       case Attribute::NoAlias:
981       case Attribute::NoCapture:
982       case Attribute::NoUndef:
983       case Attribute::NonNull:
984       case Attribute::Preallocated:
985       case Attribute::ReadNone:
986       case Attribute::ReadOnly:
987       case Attribute::Returned:
988       case Attribute::SExt:
989       case Attribute::StructRet:
990       case Attribute::SwiftError:
991       case Attribute::SwiftSelf:
992       case Attribute::SwiftAsync:
993       case Attribute::ZExt:
994       case Attribute::ImmArg:
995       case Attribute::ByRef:
996       case Attribute::WriteOnly:
997       //  These are not really attributes.
998       case Attribute::None:
999       case Attribute::EndAttrKinds:
1000       case Attribute::EmptyKey:
1001       case Attribute::TombstoneKey:
1002         llvm_unreachable("Not a function attribute");
1003       }
1004 
1005     newFunction->addFnAttr(Attr);
1006   }
1007   newFunction->insert(newFunction->end(), newRootNode);
1008 
1009   // Create scalar and aggregate iterators to name all of the arguments we
1010   // inserted.
1011   Function::arg_iterator ScalarAI = newFunction->arg_begin();
1012   Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1013 
1014   // Rewrite all users of the inputs in the extracted region to use the
1015   // arguments (or appropriate addressing into struct) instead.
1016   for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1017     Value *RewriteVal;
1018     if (AggregateArgs && StructValues.contains(inputs[i])) {
1019       Value *Idx[2];
1020       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1021       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1022       Instruction *TI = newFunction->begin()->getTerminator();
1023       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1024           StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1025       RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1026                                 "loadgep_" + inputs[i]->getName(), TI);
1027       ++aggIdx;
1028     } else
1029       RewriteVal = &*ScalarAI++;
1030 
1031     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1032     for (User *use : Users)
1033       if (Instruction *inst = dyn_cast<Instruction>(use))
1034         if (Blocks.count(inst->getParent()))
1035           inst->replaceUsesOfWith(inputs[i], RewriteVal);
1036   }
1037 
1038   // Set names for input and output arguments.
1039   if (NumScalarParams) {
1040     ScalarAI = newFunction->arg_begin();
1041     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
1042       if (!StructValues.contains(inputs[i]))
1043         ScalarAI->setName(inputs[i]->getName());
1044     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
1045       if (!StructValues.contains(outputs[i]))
1046         ScalarAI->setName(outputs[i]->getName() + ".out");
1047   }
1048 
1049   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1050   // within the new function. This must be done before we lose track of which
1051   // blocks were originally in the code region.
1052   std::vector<User *> Users(header->user_begin(), header->user_end());
1053   for (auto &U : Users)
1054     // The BasicBlock which contains the branch is not in the region
1055     // modify the branch target to a new block
1056     if (Instruction *I = dyn_cast<Instruction>(U))
1057       if (I->isTerminator() && I->getFunction() == oldFunction &&
1058           !Blocks.count(I->getParent()))
1059         I->replaceUsesOfWith(header, newHeader);
1060 
1061   return newFunction;
1062 }
1063 
1064 /// Erase lifetime.start markers which reference inputs to the extraction
1065 /// region, and insert the referenced memory into \p LifetimesStart.
1066 ///
1067 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1068 /// of allocas which will be moved from the caller function into the extracted
1069 /// function (\p SunkAllocas).
1070 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1071                                          const SetVector<Value *> &SunkAllocas,
1072                                          SetVector<Value *> &LifetimesStart) {
1073   for (BasicBlock *BB : Blocks) {
1074     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1075       auto *II = dyn_cast<IntrinsicInst>(&I);
1076       if (!II || !II->isLifetimeStartOrEnd())
1077         continue;
1078 
1079       // Get the memory operand of the lifetime marker. If the underlying
1080       // object is a sunk alloca, or is otherwise defined in the extraction
1081       // region, the lifetime marker must not be erased.
1082       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1083       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1084         continue;
1085 
1086       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1087         LifetimesStart.insert(Mem);
1088       II->eraseFromParent();
1089     }
1090   }
1091 }
1092 
1093 /// Insert lifetime start/end markers surrounding the call to the new function
1094 /// for objects defined in the caller.
1095 static void insertLifetimeMarkersSurroundingCall(
1096     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1097     CallInst *TheCall) {
1098   LLVMContext &Ctx = M->getContext();
1099   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1100   Instruction *Term = TheCall->getParent()->getTerminator();
1101 
1102   // Emit lifetime markers for the pointers given in \p Objects. Insert the
1103   // markers before the call if \p InsertBefore, and after the call otherwise.
1104   auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects,
1105                            bool InsertBefore) {
1106     for (Value *Mem : Objects) {
1107       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1108                                             TheCall->getFunction()) &&
1109              "Input memory not defined in original function");
1110 
1111       Function *Func = Intrinsic::getDeclaration(M, MarkerFunc, Mem->getType());
1112       auto Marker = CallInst::Create(Func, {NegativeOne, Mem});
1113       if (InsertBefore)
1114         Marker->insertBefore(TheCall);
1115       else
1116         Marker->insertBefore(Term);
1117     }
1118   };
1119 
1120   if (!LifetimesStart.empty()) {
1121     insertMarkers(Intrinsic::lifetime_start, LifetimesStart,
1122                   /*InsertBefore=*/true);
1123   }
1124 
1125   if (!LifetimesEnd.empty()) {
1126     insertMarkers(Intrinsic::lifetime_end, LifetimesEnd,
1127                   /*InsertBefore=*/false);
1128   }
1129 }
1130 
1131 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1132 /// the call instruction, splitting any PHI nodes in the header block as
1133 /// necessary.
1134 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1135                                                     BasicBlock *codeReplacer,
1136                                                     ValueSet &inputs,
1137                                                     ValueSet &outputs) {
1138   // Emit a call to the new function, passing in: *pointer to struct (if
1139   // aggregating parameters), or plan inputs and allocated memory for outputs
1140   std::vector<Value *> params, ReloadOutputs, Reloads;
1141   ValueSet StructValues;
1142 
1143   Module *M = newFunction->getParent();
1144   LLVMContext &Context = M->getContext();
1145   const DataLayout &DL = M->getDataLayout();
1146   CallInst *call = nullptr;
1147 
1148   // Add inputs as params, or to be filled into the struct
1149   unsigned ScalarInputArgNo = 0;
1150   SmallVector<unsigned, 1> SwiftErrorArgs;
1151   for (Value *input : inputs) {
1152     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1153       StructValues.insert(input);
1154     else {
1155       params.push_back(input);
1156       if (input->isSwiftError())
1157         SwiftErrorArgs.push_back(ScalarInputArgNo);
1158     }
1159     ++ScalarInputArgNo;
1160   }
1161 
1162   // Create allocas for the outputs
1163   unsigned ScalarOutputArgNo = 0;
1164   for (Value *output : outputs) {
1165     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1166       StructValues.insert(output);
1167     } else {
1168       AllocaInst *alloca =
1169         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1170                        nullptr, output->getName() + ".loc",
1171                        &codeReplacer->getParent()->front().front());
1172       ReloadOutputs.push_back(alloca);
1173       params.push_back(alloca);
1174       ++ScalarOutputArgNo;
1175     }
1176   }
1177 
1178   StructType *StructArgTy = nullptr;
1179   AllocaInst *Struct = nullptr;
1180   unsigned NumAggregatedInputs = 0;
1181   if (AggregateArgs && !StructValues.empty()) {
1182     std::vector<Type *> ArgTypes;
1183     for (Value *V : StructValues)
1184       ArgTypes.push_back(V->getType());
1185 
1186     // Allocate a struct at the beginning of this function
1187     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1188     Struct = new AllocaInst(
1189         StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg",
1190         AllocationBlock ? &*AllocationBlock->getFirstInsertionPt()
1191                         : &codeReplacer->getParent()->front().front());
1192 
1193     if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) {
1194       auto *StructSpaceCast = new AddrSpaceCastInst(
1195           Struct, PointerType ::get(Context, 0), "structArg.ascast");
1196       StructSpaceCast->insertAfter(Struct);
1197       params.push_back(StructSpaceCast);
1198     } else {
1199       params.push_back(Struct);
1200     }
1201     // Store aggregated inputs in the struct.
1202     for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1203       if (inputs.contains(StructValues[i])) {
1204         Value *Idx[2];
1205         Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1206         Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1207         GetElementPtrInst *GEP = GetElementPtrInst::Create(
1208             StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1209         GEP->insertInto(codeReplacer, codeReplacer->end());
1210         new StoreInst(StructValues[i], GEP, codeReplacer);
1211         NumAggregatedInputs++;
1212       }
1213     }
1214   }
1215 
1216   // Emit the call to the function
1217   call = CallInst::Create(newFunction, params,
1218                           NumExitBlocks > 1 ? "targetBlock" : "");
1219   // Add debug location to the new call, if the original function has debug
1220   // info. In that case, the terminator of the entry block of the extracted
1221   // function contains the first debug location of the extracted function,
1222   // set in extractCodeRegion.
1223   if (codeReplacer->getParent()->getSubprogram()) {
1224     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1225       call->setDebugLoc(DL);
1226   }
1227   call->insertInto(codeReplacer, codeReplacer->end());
1228 
1229   // Set swifterror parameter attributes.
1230   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1231     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1232     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1233   }
1234 
1235   // Reload the outputs passed in by reference, use the struct if output is in
1236   // the aggregate or reload from the scalar argument.
1237   for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1238                 aggIdx = NumAggregatedInputs;
1239        i != e; ++i) {
1240     Value *Output = nullptr;
1241     if (AggregateArgs && StructValues.contains(outputs[i])) {
1242       Value *Idx[2];
1243       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1244       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1245       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1246           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1247       GEP->insertInto(codeReplacer, codeReplacer->end());
1248       Output = GEP;
1249       ++aggIdx;
1250     } else {
1251       Output = ReloadOutputs[scalarIdx];
1252       ++scalarIdx;
1253     }
1254     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1255                                   outputs[i]->getName() + ".reload",
1256                                   codeReplacer);
1257     Reloads.push_back(load);
1258     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1259     for (User *U : Users) {
1260       Instruction *inst = cast<Instruction>(U);
1261       if (!Blocks.count(inst->getParent()))
1262         inst->replaceUsesOfWith(outputs[i], load);
1263     }
1264   }
1265 
1266   // Now we can emit a switch statement using the call as a value.
1267   SwitchInst *TheSwitch =
1268       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1269                          codeReplacer, 0, codeReplacer);
1270 
1271   // Since there may be multiple exits from the original region, make the new
1272   // function return an unsigned, switch on that number.  This loop iterates
1273   // over all of the blocks in the extracted region, updating any terminator
1274   // instructions in the to-be-extracted region that branch to blocks that are
1275   // not in the region to be extracted.
1276   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1277 
1278   // Iterate over the previously collected targets, and create new blocks inside
1279   // the function to branch to.
1280   unsigned switchVal = 0;
1281   for (BasicBlock *OldTarget : OldTargets) {
1282     if (Blocks.count(OldTarget))
1283       continue;
1284     BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1285     if (NewTarget)
1286       continue;
1287 
1288     // If we don't already have an exit stub for this non-extracted
1289     // destination, create one now!
1290     NewTarget = BasicBlock::Create(Context,
1291                                     OldTarget->getName() + ".exitStub",
1292                                     newFunction);
1293     unsigned SuccNum = switchVal++;
1294 
1295     Value *brVal = nullptr;
1296     assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1297     switch (NumExitBlocks) {
1298     case 0:
1299     case 1: break;  // No value needed.
1300     case 2:         // Conditional branch, return a bool
1301       brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1302       break;
1303     default:
1304       brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1305       break;
1306     }
1307 
1308     ReturnInst::Create(Context, brVal, NewTarget);
1309 
1310     // Update the switch instruction.
1311     TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1312                                         SuccNum),
1313                         OldTarget);
1314   }
1315 
1316   for (BasicBlock *Block : Blocks) {
1317     Instruction *TI = Block->getTerminator();
1318     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1319       if (Blocks.count(TI->getSuccessor(i)))
1320         continue;
1321       BasicBlock *OldTarget = TI->getSuccessor(i);
1322       // add a new basic block which returns the appropriate value
1323       BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1324       assert(NewTarget && "Unknown target block!");
1325 
1326       // rewrite the original branch instruction with this new target
1327       TI->setSuccessor(i, NewTarget);
1328    }
1329   }
1330 
1331   // Store the arguments right after the definition of output value.
1332   // This should be proceeded after creating exit stubs to be ensure that invoke
1333   // result restore will be placed in the outlined function.
1334   Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1335   std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1336   Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1337   std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1338 
1339   for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1340        ++i) {
1341     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1342     if (!OutI)
1343       continue;
1344 
1345     // Find proper insertion point.
1346     BasicBlock::iterator InsertPt;
1347     // In case OutI is an invoke, we insert the store at the beginning in the
1348     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1349     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1350       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1351     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1352       InsertPt = Phi->getParent()->getFirstInsertionPt();
1353     else
1354       InsertPt = std::next(OutI->getIterator());
1355 
1356     Instruction *InsertBefore = &*InsertPt;
1357     assert((InsertBefore->getFunction() == newFunction ||
1358             Blocks.count(InsertBefore->getParent())) &&
1359            "InsertPt should be in new function");
1360     if (AggregateArgs && StructValues.contains(outputs[i])) {
1361       assert(AggOutputArgBegin != newFunction->arg_end() &&
1362              "Number of aggregate output arguments should match "
1363              "the number of defined values");
1364       Value *Idx[2];
1365       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1366       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1367       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1368           StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1369           InsertBefore);
1370       new StoreInst(outputs[i], GEP, InsertBefore);
1371       ++aggIdx;
1372       // Since there should be only one struct argument aggregating
1373       // all the output values, we shouldn't increment AggOutputArgBegin, which
1374       // always points to the struct argument, in this case.
1375     } else {
1376       assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1377              "Number of scalar output arguments should match "
1378              "the number of defined values");
1379       new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore);
1380       ++ScalarOutputArgBegin;
1381     }
1382   }
1383 
1384   // Now that we've done the deed, simplify the switch instruction.
1385   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1386   switch (NumExitBlocks) {
1387   case 0:
1388     // There are no successors (the block containing the switch itself), which
1389     // means that previously this was the last part of the function, and hence
1390     // this should be rewritten as a `ret'
1391 
1392     // Check if the function should return a value
1393     if (OldFnRetTy->isVoidTy()) {
1394       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1395     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1396       // return what we have
1397       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1398     } else {
1399       // Otherwise we must have code extracted an unwind or something, just
1400       // return whatever we want.
1401       ReturnInst::Create(Context,
1402                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1403     }
1404 
1405     TheSwitch->eraseFromParent();
1406     break;
1407   case 1:
1408     // Only a single destination, change the switch into an unconditional
1409     // branch.
1410     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1411     TheSwitch->eraseFromParent();
1412     break;
1413   case 2:
1414     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1415                        call, TheSwitch);
1416     TheSwitch->eraseFromParent();
1417     break;
1418   default:
1419     // Otherwise, make the default destination of the switch instruction be one
1420     // of the other successors.
1421     TheSwitch->setCondition(call);
1422     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1423     // Remove redundant case
1424     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1425     break;
1426   }
1427 
1428   // Insert lifetime markers around the reloads of any output values. The
1429   // allocas output values are stored in are only in-use in the codeRepl block.
1430   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1431 
1432   return call;
1433 }
1434 
1435 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1436   auto newFuncIt = newFunction->front().getIterator();
1437   for (BasicBlock *Block : Blocks) {
1438     // Delete the basic block from the old function, and the list of blocks
1439     Block->removeFromParent();
1440 
1441     // Insert this basic block into the new function
1442     // Insert the original blocks after the entry block created
1443     // for the new function. The entry block may be followed
1444     // by a set of exit blocks at this point, but these exit
1445     // blocks better be placed at the end of the new function.
1446     newFuncIt = newFunction->insert(std::next(newFuncIt), Block);
1447   }
1448 }
1449 
1450 void CodeExtractor::calculateNewCallTerminatorWeights(
1451     BasicBlock *CodeReplacer,
1452     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1453     BranchProbabilityInfo *BPI) {
1454   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1455   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1456 
1457   // Update the branch weights for the exit block.
1458   Instruction *TI = CodeReplacer->getTerminator();
1459   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1460 
1461   // Block Frequency distribution with dummy node.
1462   Distribution BranchDist;
1463 
1464   SmallVector<BranchProbability, 4> EdgeProbabilities(
1465       TI->getNumSuccessors(), BranchProbability::getUnknown());
1466 
1467   // Add each of the frequencies of the successors.
1468   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1469     BlockNode ExitNode(i);
1470     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1471     if (ExitFreq != 0)
1472       BranchDist.addExit(ExitNode, ExitFreq);
1473     else
1474       EdgeProbabilities[i] = BranchProbability::getZero();
1475   }
1476 
1477   // Check for no total weight.
1478   if (BranchDist.Total == 0) {
1479     BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1480     return;
1481   }
1482 
1483   // Normalize the distribution so that they can fit in unsigned.
1484   BranchDist.normalize();
1485 
1486   // Create normalized branch weights and set the metadata.
1487   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1488     const auto &Weight = BranchDist.Weights[I];
1489 
1490     // Get the weight and update the current BFI.
1491     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1492     BranchProbability BP(Weight.Amount, BranchDist.Total);
1493     EdgeProbabilities[Weight.TargetNode.Index] = BP;
1494   }
1495   BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1496   TI->setMetadata(
1497       LLVMContext::MD_prof,
1498       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1499 }
1500 
1501 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1502 /// \p F.
1503 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1504   for (Instruction &I : instructions(F)) {
1505     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1506     findDbgUsers(DbgUsers, &I);
1507     for (DbgVariableIntrinsic *DVI : DbgUsers)
1508       if (DVI->getFunction() != &F)
1509         DVI->eraseFromParent();
1510   }
1511 }
1512 
1513 /// Fix up the debug info in the old and new functions by pointing line
1514 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1515 /// intrinsics which point to values outside of the new function.
1516 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1517                                          CallInst &TheCall) {
1518   DISubprogram *OldSP = OldFunc.getSubprogram();
1519   LLVMContext &Ctx = OldFunc.getContext();
1520 
1521   if (!OldSP) {
1522     // Erase any debug info the new function contains.
1523     stripDebugInfo(NewFunc);
1524     // Make sure the old function doesn't contain any non-local metadata refs.
1525     eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1526     return;
1527   }
1528 
1529   // Create a subprogram for the new function. Leave out a description of the
1530   // function arguments, as the parameters don't correspond to anything at the
1531   // source level.
1532   assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1533   DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1534                 OldSP->getUnit());
1535   auto SPType =
1536       DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt));
1537   DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1538                                     DISubprogram::SPFlagOptimized |
1539                                     DISubprogram::SPFlagLocalToUnit;
1540   auto NewSP = DIB.createFunction(
1541       OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1542       /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1543   NewFunc.setSubprogram(NewSP);
1544 
1545   // Debug intrinsics in the new function need to be updated in one of two
1546   // ways:
1547   //  1) They need to be deleted, because they describe a value in the old
1548   //     function.
1549   //  2) They need to point to fresh metadata, e.g. because they currently
1550   //     point to a variable in the wrong scope.
1551   SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1552   SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1553   DenseMap<const MDNode *, MDNode *> Cache;
1554   for (Instruction &I : instructions(NewFunc)) {
1555     auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1556     if (!DII)
1557       continue;
1558 
1559     // Point the intrinsic to a fresh label within the new function if the
1560     // intrinsic was not inlined from some other function.
1561     if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1562       if (DLI->getDebugLoc().getInlinedAt())
1563         continue;
1564       DILabel *OldLabel = DLI->getLabel();
1565       DINode *&NewLabel = RemappedMetadata[OldLabel];
1566       if (!NewLabel) {
1567         DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1568             *OldLabel->getScope(), *NewSP, Ctx, Cache);
1569         NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(),
1570                                 OldLabel->getFile(), OldLabel->getLine());
1571       }
1572       DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1573       continue;
1574     }
1575 
1576     auto IsInvalidLocation = [&NewFunc](Value *Location) {
1577       // Location is invalid if it isn't a constant or an instruction, or is an
1578       // instruction but isn't in the new function.
1579       if (!Location ||
1580           (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1581         return true;
1582       Instruction *LocationInst = dyn_cast<Instruction>(Location);
1583       return LocationInst && LocationInst->getFunction() != &NewFunc;
1584     };
1585 
1586     auto *DVI = cast<DbgVariableIntrinsic>(DII);
1587     // If any of the used locations are invalid, delete the intrinsic.
1588     if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1589       DebugIntrinsicsToDelete.push_back(DVI);
1590       continue;
1591     }
1592     // DbgAssign intrinsics have an extra Value argument:
1593     if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
1594         DAI && IsInvalidLocation(DAI->getAddress())) {
1595       DebugIntrinsicsToDelete.push_back(DVI);
1596       continue;
1597     }
1598     // If the variable was in the scope of the old function, i.e. it was not
1599     // inlined, point the intrinsic to a fresh variable within the new function.
1600     if (!DVI->getDebugLoc().getInlinedAt()) {
1601       DILocalVariable *OldVar = DVI->getVariable();
1602       DINode *&NewVar = RemappedMetadata[OldVar];
1603       if (!NewVar) {
1604         DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1605             *OldVar->getScope(), *NewSP, Ctx, Cache);
1606         NewVar = DIB.createAutoVariable(
1607             NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1608             OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1609             OldVar->getAlignInBits());
1610       }
1611       DVI->setVariable(cast<DILocalVariable>(NewVar));
1612     }
1613   }
1614 
1615   for (auto *DII : DebugIntrinsicsToDelete)
1616     DII->eraseFromParent();
1617   DIB.finalizeSubprogram(NewSP);
1618 
1619   // Fix up the scope information attached to the line locations in the new
1620   // function.
1621   for (Instruction &I : instructions(NewFunc)) {
1622     if (const DebugLoc &DL = I.getDebugLoc())
1623       I.setDebugLoc(
1624           DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache));
1625 
1626     // Loop info metadata may contain line locations. Fix them up.
1627     auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * {
1628       if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1629         return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache);
1630       return MD;
1631     };
1632     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1633   }
1634   if (!TheCall.getDebugLoc())
1635     TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1636 
1637   eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1638 }
1639 
1640 Function *
1641 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1642   ValueSet Inputs, Outputs;
1643   return extractCodeRegion(CEAC, Inputs, Outputs);
1644 }
1645 
1646 Function *
1647 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1648                                  ValueSet &inputs, ValueSet &outputs) {
1649   if (!isEligible())
1650     return nullptr;
1651 
1652   // Assumption: this is a single-entry code region, and the header is the first
1653   // block in the region.
1654   BasicBlock *header = *Blocks.begin();
1655   Function *oldFunction = header->getParent();
1656 
1657   // Calculate the entry frequency of the new function before we change the root
1658   //   block.
1659   BlockFrequency EntryFreq;
1660   if (BFI) {
1661     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1662     for (BasicBlock *Pred : predecessors(header)) {
1663       if (Blocks.count(Pred))
1664         continue;
1665       EntryFreq +=
1666           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1667     }
1668   }
1669 
1670   // Remove @llvm.assume calls that will be moved to the new function from the
1671   // old function's assumption cache.
1672   for (BasicBlock *Block : Blocks) {
1673     for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1674       if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1675         if (AC)
1676           AC->unregisterAssumption(AI);
1677         AI->eraseFromParent();
1678       }
1679     }
1680   }
1681 
1682   // If we have any return instructions in the region, split those blocks so
1683   // that the return is not in the region.
1684   splitReturnBlocks();
1685 
1686   // Calculate the exit blocks for the extracted region and the total exit
1687   // weights for each of those blocks.
1688   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1689   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1690   for (BasicBlock *Block : Blocks) {
1691     for (BasicBlock *Succ : successors(Block)) {
1692       if (!Blocks.count(Succ)) {
1693         // Update the branch weight for this successor.
1694         if (BFI) {
1695           BlockFrequency &BF = ExitWeights[Succ];
1696           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1697         }
1698         ExitBlocks.insert(Succ);
1699       }
1700     }
1701   }
1702   NumExitBlocks = ExitBlocks.size();
1703 
1704   for (BasicBlock *Block : Blocks) {
1705     Instruction *TI = Block->getTerminator();
1706     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1707       if (Blocks.count(TI->getSuccessor(i)))
1708         continue;
1709       BasicBlock *OldTarget = TI->getSuccessor(i);
1710       OldTargets.push_back(OldTarget);
1711     }
1712   }
1713 
1714   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1715   severSplitPHINodesOfEntry(header);
1716   severSplitPHINodesOfExits(ExitBlocks);
1717 
1718   // This takes place of the original loop
1719   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1720                                                 "codeRepl", oldFunction,
1721                                                 header);
1722 
1723   // The new function needs a root node because other nodes can branch to the
1724   // head of the region, but the entry node of a function cannot have preds.
1725   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1726                                                "newFuncRoot");
1727   auto *BranchI = BranchInst::Create(header);
1728   // If the original function has debug info, we have to add a debug location
1729   // to the new branch instruction from the artificial entry block.
1730   // We use the debug location of the first instruction in the extracted
1731   // blocks, as there is no other equivalent line in the source code.
1732   if (oldFunction->getSubprogram()) {
1733     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1734       return any_of(*BB, [&BranchI](const Instruction &I) {
1735         if (!I.getDebugLoc())
1736           return false;
1737         BranchI->setDebugLoc(I.getDebugLoc());
1738         return true;
1739       });
1740     });
1741   }
1742   BranchI->insertInto(newFuncRoot, newFuncRoot->end());
1743 
1744   ValueSet SinkingCands, HoistingCands;
1745   BasicBlock *CommonExit = nullptr;
1746   findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1747   assert(HoistingCands.empty() || CommonExit);
1748 
1749   // Find inputs to, outputs from the code region.
1750   findInputsOutputs(inputs, outputs, SinkingCands);
1751 
1752   // Now sink all instructions which only have non-phi uses inside the region.
1753   // Group the allocas at the start of the block, so that any bitcast uses of
1754   // the allocas are well-defined.
1755   AllocaInst *FirstSunkAlloca = nullptr;
1756   for (auto *II : SinkingCands) {
1757     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1758       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1759       if (!FirstSunkAlloca)
1760         FirstSunkAlloca = AI;
1761     }
1762   }
1763   assert((SinkingCands.empty() || FirstSunkAlloca) &&
1764          "Did not expect a sink candidate without any allocas");
1765   for (auto *II : SinkingCands) {
1766     if (!isa<AllocaInst>(II)) {
1767       cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1768     }
1769   }
1770 
1771   if (!HoistingCands.empty()) {
1772     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1773     Instruction *TI = HoistToBlock->getTerminator();
1774     for (auto *II : HoistingCands)
1775       cast<Instruction>(II)->moveBefore(TI);
1776   }
1777 
1778   // Collect objects which are inputs to the extraction region and also
1779   // referenced by lifetime start markers within it. The effects of these
1780   // markers must be replicated in the calling function to prevent the stack
1781   // coloring pass from merging slots which store input objects.
1782   ValueSet LifetimesStart;
1783   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1784 
1785   // Construct new function based on inputs/outputs & add allocas for all defs.
1786   Function *newFunction =
1787       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1788                         oldFunction, oldFunction->getParent());
1789 
1790   // Update the entry count of the function.
1791   if (BFI) {
1792     auto Count = BFI->getProfileCountFromFreq(EntryFreq);
1793     if (Count)
1794       newFunction->setEntryCount(
1795           ProfileCount(*Count, Function::PCT_Real)); // FIXME
1796     BFI->setBlockFreq(codeReplacer, EntryFreq);
1797   }
1798 
1799   CallInst *TheCall =
1800       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1801 
1802   moveCodeToFunction(newFunction);
1803 
1804   // Replicate the effects of any lifetime start/end markers which referenced
1805   // input objects in the extraction region by placing markers around the call.
1806   insertLifetimeMarkersSurroundingCall(
1807       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1808 
1809   // Propagate personality info to the new function if there is one.
1810   if (oldFunction->hasPersonalityFn())
1811     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1812 
1813   // Update the branch weights for the exit block.
1814   if (BFI && NumExitBlocks > 1)
1815     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1816 
1817   // Loop over all of the PHI nodes in the header and exit blocks, and change
1818   // any references to the old incoming edge to be the new incoming edge.
1819   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1820     PHINode *PN = cast<PHINode>(I);
1821     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1822       if (!Blocks.count(PN->getIncomingBlock(i)))
1823         PN->setIncomingBlock(i, newFuncRoot);
1824   }
1825 
1826   for (BasicBlock *ExitBB : ExitBlocks)
1827     for (PHINode &PN : ExitBB->phis()) {
1828       Value *IncomingCodeReplacerVal = nullptr;
1829       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1830         // Ignore incoming values from outside of the extracted region.
1831         if (!Blocks.count(PN.getIncomingBlock(i)))
1832           continue;
1833 
1834         // Ensure that there is only one incoming value from codeReplacer.
1835         if (!IncomingCodeReplacerVal) {
1836           PN.setIncomingBlock(i, codeReplacer);
1837           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1838         } else
1839           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1840                  "PHI has two incompatbile incoming values from codeRepl");
1841       }
1842     }
1843 
1844   fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1845 
1846   // Mark the new function `noreturn` if applicable. Terminators which resume
1847   // exception propagation are treated as returning instructions. This is to
1848   // avoid inserting traps after calls to outlined functions which unwind.
1849   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1850     const Instruction *Term = BB.getTerminator();
1851     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1852   });
1853   if (doesNotReturn)
1854     newFunction->setDoesNotReturn();
1855 
1856   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1857     newFunction->dump();
1858     report_fatal_error("verification of newFunction failed!");
1859   });
1860   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1861              report_fatal_error("verification of oldFunction failed!"));
1862   LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1863                  report_fatal_error("Stale Asumption cache for old Function!"));
1864   return newFunction;
1865 }
1866 
1867 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1868                                           const Function &NewFunc,
1869                                           AssumptionCache *AC) {
1870   for (auto AssumeVH : AC->assumptions()) {
1871     auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1872     if (!I)
1873       continue;
1874 
1875     // There shouldn't be any llvm.assume intrinsics in the new function.
1876     if (I->getFunction() != &OldFunc)
1877       return true;
1878 
1879     // There shouldn't be any stale affected values in the assumption cache
1880     // that were previously in the old function, but that have now been moved
1881     // to the new function.
1882     for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1883       auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1884       if (!AffectedCI)
1885         continue;
1886       if (AffectedCI->getFunction() != &OldFunc)
1887         return true;
1888       auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1889       if (AssumedInst->getFunction() != &OldFunc)
1890         return true;
1891     }
1892   }
1893   return false;
1894 }
1895 
1896 void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1897   ExcludeArgsFromAggregate.insert(Arg);
1898 }
1899