xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision df3478e480b3b2e9fe125697b7931dc48b09e450)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/InstIterator.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/Verifier.h"
55 #include "llvm/Support/BlockFrequency.h"
56 #include "llvm/Support/BranchProbability.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <map>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
72 using ProfileCount = Function::ProfileCount;
73 
74 #define DEBUG_TYPE "code-extractor"
75 
76 // Provide a command-line option to aggregate function arguments into a struct
77 // for functions produced by the code extractor. This is useful when converting
78 // extracted functions to pthread-based code, as only one argument (void*) can
79 // be passed in to pthread_create().
80 static cl::opt<bool>
81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82                  cl::desc("Aggregate arguments to code-extracted functions"));
83 
84 /// Test whether a block is valid for extraction.
85 static bool isBlockValidForExtraction(const BasicBlock &BB,
86                                       const SetVector<BasicBlock *> &Result,
87                                       bool AllowVarArgs, bool AllowAlloca) {
88   // taking the address of a basic block moved to another function is illegal
89   if (BB.hasAddressTaken())
90     return false;
91 
92   // don't hoist code that uses another basicblock address, as it's likely to
93   // lead to unexpected behavior, like cross-function jumps
94   SmallPtrSet<User const *, 16> Visited;
95   SmallVector<User const *, 16> ToVisit;
96 
97   for (Instruction const &Inst : BB)
98     ToVisit.push_back(&Inst);
99 
100   while (!ToVisit.empty()) {
101     User const *Curr = ToVisit.pop_back_val();
102     if (!Visited.insert(Curr).second)
103       continue;
104     if (isa<BlockAddress const>(Curr))
105       return false; // even a reference to self is likely to be not compatible
106 
107     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108       continue;
109 
110     for (auto const &U : Curr->operands()) {
111       if (auto *UU = dyn_cast<User>(U))
112         ToVisit.push_back(UU);
113     }
114   }
115 
116   // If explicitly requested, allow vastart and alloca. For invoke instructions
117   // verify that extraction is valid.
118   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119     if (isa<AllocaInst>(I)) {
120        if (!AllowAlloca)
121          return false;
122        continue;
123     }
124 
125     if (const auto *II = dyn_cast<InvokeInst>(I)) {
126       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127       // must be a part of the subgraph which is being extracted.
128       if (auto *UBB = II->getUnwindDest())
129         if (!Result.count(UBB))
130           return false;
131       continue;
132     }
133 
134     // All catch handlers of a catchswitch instruction as well as the unwind
135     // destination must be in the subgraph.
136     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137       if (auto *UBB = CSI->getUnwindDest())
138         if (!Result.count(UBB))
139           return false;
140       for (const auto *HBB : CSI->handlers())
141         if (!Result.count(const_cast<BasicBlock*>(HBB)))
142           return false;
143       continue;
144     }
145 
146     // Make sure that entire catch handler is within subgraph. It is sufficient
147     // to check that catch return's block is in the list.
148     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149       for (const auto *U : CPI->users())
150         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152             return false;
153       continue;
154     }
155 
156     // And do similar checks for cleanup handler - the entire handler must be
157     // in subgraph which is going to be extracted. For cleanup return should
158     // additionally check that the unwind destination is also in the subgraph.
159     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160       for (const auto *U : CPI->users())
161         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163             return false;
164       continue;
165     }
166     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167       if (auto *UBB = CRI->getUnwindDest())
168         if (!Result.count(UBB))
169           return false;
170       continue;
171     }
172 
173     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174       if (const Function *F = CI->getCalledFunction()) {
175         auto IID = F->getIntrinsicID();
176         if (IID == Intrinsic::vastart) {
177           if (AllowVarArgs)
178             continue;
179           else
180             return false;
181         }
182 
183         // Currently, we miscompile outlined copies of eh_typid_for. There are
184         // proposals for fixing this in llvm.org/PR39545.
185         if (IID == Intrinsic::eh_typeid_for)
186           return false;
187       }
188     }
189   }
190 
191   return true;
192 }
193 
194 /// Build a set of blocks to extract if the input blocks are viable.
195 static SetVector<BasicBlock *>
196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197                         bool AllowVarArgs, bool AllowAlloca) {
198   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199   SetVector<BasicBlock *> Result;
200 
201   // Loop over the blocks, adding them to our set-vector, and aborting with an
202   // empty set if we encounter invalid blocks.
203   for (BasicBlock *BB : BBs) {
204     // If this block is dead, don't process it.
205     if (DT && !DT->isReachableFromEntry(BB))
206       continue;
207 
208     if (!Result.insert(BB))
209       llvm_unreachable("Repeated basic blocks in extraction input");
210   }
211 
212   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
213                     << '\n');
214 
215   for (auto *BB : Result) {
216     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
217       return {};
218 
219     // Make sure that the first block is not a landing pad.
220     if (BB == Result.front()) {
221       if (BB->isEHPad()) {
222         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
223         return {};
224       }
225       continue;
226     }
227 
228     // All blocks other than the first must not have predecessors outside of
229     // the subgraph which is being extracted.
230     for (auto *PBB : predecessors(BB))
231       if (!Result.count(PBB)) {
232         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
233                              "outside the region except for the first block!\n"
234                           << "Problematic source BB: " << BB->getName() << "\n"
235                           << "Problematic destination BB: " << PBB->getName()
236                           << "\n");
237         return {};
238       }
239   }
240 
241   return Result;
242 }
243 
244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
245                              bool AggregateArgs, BlockFrequencyInfo *BFI,
246                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
247                              bool AllowVarArgs, bool AllowAlloca,
248                              BasicBlock *AllocationBlock, std::string Suffix)
249     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250       BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
251       AllowVarArgs(AllowVarArgs),
252       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
253       Suffix(Suffix) {}
254 
255 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
256                              BlockFrequencyInfo *BFI,
257                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
258                              std::string Suffix)
259     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
260       BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false),
261       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
262                                      /* AllowVarArgs */ false,
263                                      /* AllowAlloca */ false)),
264       Suffix(Suffix) {}
265 
266 /// definedInRegion - Return true if the specified value is defined in the
267 /// extracted region.
268 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
269   if (Instruction *I = dyn_cast<Instruction>(V))
270     if (Blocks.count(I->getParent()))
271       return true;
272   return false;
273 }
274 
275 /// definedInCaller - Return true if the specified value is defined in the
276 /// function being code extracted, but not in the region being extracted.
277 /// These values must be passed in as live-ins to the function.
278 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
279   if (isa<Argument>(V)) return true;
280   if (Instruction *I = dyn_cast<Instruction>(V))
281     if (!Blocks.count(I->getParent()))
282       return true;
283   return false;
284 }
285 
286 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
287   BasicBlock *CommonExitBlock = nullptr;
288   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
289     for (auto *Succ : successors(Block)) {
290       // Internal edges, ok.
291       if (Blocks.count(Succ))
292         continue;
293       if (!CommonExitBlock) {
294         CommonExitBlock = Succ;
295         continue;
296       }
297       if (CommonExitBlock != Succ)
298         return true;
299     }
300     return false;
301   };
302 
303   if (any_of(Blocks, hasNonCommonExitSucc))
304     return nullptr;
305 
306   return CommonExitBlock;
307 }
308 
309 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
310   for (BasicBlock &BB : F) {
311     for (Instruction &II : BB.instructionsWithoutDebug())
312       if (auto *AI = dyn_cast<AllocaInst>(&II))
313         Allocas.push_back(AI);
314 
315     findSideEffectInfoForBlock(BB);
316   }
317 }
318 
319 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
320   for (Instruction &II : BB.instructionsWithoutDebug()) {
321     unsigned Opcode = II.getOpcode();
322     Value *MemAddr = nullptr;
323     switch (Opcode) {
324     case Instruction::Store:
325     case Instruction::Load: {
326       if (Opcode == Instruction::Store) {
327         StoreInst *SI = cast<StoreInst>(&II);
328         MemAddr = SI->getPointerOperand();
329       } else {
330         LoadInst *LI = cast<LoadInst>(&II);
331         MemAddr = LI->getPointerOperand();
332       }
333       // Global variable can not be aliased with locals.
334       if (isa<Constant>(MemAddr))
335         break;
336       Value *Base = MemAddr->stripInBoundsConstantOffsets();
337       if (!isa<AllocaInst>(Base)) {
338         SideEffectingBlocks.insert(&BB);
339         return;
340       }
341       BaseMemAddrs[&BB].insert(Base);
342       break;
343     }
344     default: {
345       IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
346       if (IntrInst) {
347         if (IntrInst->isLifetimeStartOrEnd())
348           break;
349         SideEffectingBlocks.insert(&BB);
350         return;
351       }
352       // Treat all the other cases conservatively if it has side effects.
353       if (II.mayHaveSideEffects()) {
354         SideEffectingBlocks.insert(&BB);
355         return;
356       }
357     }
358     }
359   }
360 }
361 
362 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
363     BasicBlock &BB, AllocaInst *Addr) const {
364   if (SideEffectingBlocks.count(&BB))
365     return true;
366   auto It = BaseMemAddrs.find(&BB);
367   if (It != BaseMemAddrs.end())
368     return It->second.count(Addr);
369   return false;
370 }
371 
372 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
373     const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
374   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
375   Function *Func = (*Blocks.begin())->getParent();
376   for (BasicBlock &BB : *Func) {
377     if (Blocks.count(&BB))
378       continue;
379     if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
380       return false;
381   }
382   return true;
383 }
384 
385 BasicBlock *
386 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
387   BasicBlock *SinglePredFromOutlineRegion = nullptr;
388   assert(!Blocks.count(CommonExitBlock) &&
389          "Expect a block outside the region!");
390   for (auto *Pred : predecessors(CommonExitBlock)) {
391     if (!Blocks.count(Pred))
392       continue;
393     if (!SinglePredFromOutlineRegion) {
394       SinglePredFromOutlineRegion = Pred;
395     } else if (SinglePredFromOutlineRegion != Pred) {
396       SinglePredFromOutlineRegion = nullptr;
397       break;
398     }
399   }
400 
401   if (SinglePredFromOutlineRegion)
402     return SinglePredFromOutlineRegion;
403 
404 #ifndef NDEBUG
405   auto getFirstPHI = [](BasicBlock *BB) {
406     BasicBlock::iterator I = BB->begin();
407     PHINode *FirstPhi = nullptr;
408     while (I != BB->end()) {
409       PHINode *Phi = dyn_cast<PHINode>(I);
410       if (!Phi)
411         break;
412       if (!FirstPhi) {
413         FirstPhi = Phi;
414         break;
415       }
416     }
417     return FirstPhi;
418   };
419   // If there are any phi nodes, the single pred either exists or has already
420   // be created before code extraction.
421   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
422 #endif
423 
424   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
425       CommonExitBlock->getFirstNonPHI()->getIterator());
426 
427   for (BasicBlock *Pred :
428        llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
429     if (Blocks.count(Pred))
430       continue;
431     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
432   }
433   // Now add the old exit block to the outline region.
434   Blocks.insert(CommonExitBlock);
435   OldTargets.push_back(NewExitBlock);
436   return CommonExitBlock;
437 }
438 
439 // Find the pair of life time markers for address 'Addr' that are either
440 // defined inside the outline region or can legally be shrinkwrapped into the
441 // outline region. If there are not other untracked uses of the address, return
442 // the pair of markers if found; otherwise return a pair of nullptr.
443 CodeExtractor::LifetimeMarkerInfo
444 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
445                                   Instruction *Addr,
446                                   BasicBlock *ExitBlock) const {
447   LifetimeMarkerInfo Info;
448 
449   for (User *U : Addr->users()) {
450     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
451     if (IntrInst) {
452       // We don't model addresses with multiple start/end markers, but the
453       // markers do not need to be in the region.
454       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
455         if (Info.LifeStart)
456           return {};
457         Info.LifeStart = IntrInst;
458         continue;
459       }
460       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
461         if (Info.LifeEnd)
462           return {};
463         Info.LifeEnd = IntrInst;
464         continue;
465       }
466       // At this point, permit debug uses outside of the region.
467       // This is fixed in a later call to fixupDebugInfoPostExtraction().
468       if (isa<DbgInfoIntrinsic>(IntrInst))
469         continue;
470     }
471     // Find untracked uses of the address, bail.
472     if (!definedInRegion(Blocks, U))
473       return {};
474   }
475 
476   if (!Info.LifeStart || !Info.LifeEnd)
477     return {};
478 
479   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
480   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
481   // Do legality check.
482   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
483       !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
484     return {};
485 
486   // Check to see if we have a place to do hoisting, if not, bail.
487   if (Info.HoistLifeEnd && !ExitBlock)
488     return {};
489 
490   return Info;
491 }
492 
493 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
494                                 ValueSet &SinkCands, ValueSet &HoistCands,
495                                 BasicBlock *&ExitBlock) const {
496   Function *Func = (*Blocks.begin())->getParent();
497   ExitBlock = getCommonExitBlock(Blocks);
498 
499   auto moveOrIgnoreLifetimeMarkers =
500       [&](const LifetimeMarkerInfo &LMI) -> bool {
501     if (!LMI.LifeStart)
502       return false;
503     if (LMI.SinkLifeStart) {
504       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
505                         << "\n");
506       SinkCands.insert(LMI.LifeStart);
507     }
508     if (LMI.HoistLifeEnd) {
509       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
510       HoistCands.insert(LMI.LifeEnd);
511     }
512     return true;
513   };
514 
515   // Look up allocas in the original function in CodeExtractorAnalysisCache, as
516   // this is much faster than walking all the instructions.
517   for (AllocaInst *AI : CEAC.getAllocas()) {
518     BasicBlock *BB = AI->getParent();
519     if (Blocks.count(BB))
520       continue;
521 
522     // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
523     // check whether it is actually still in the original function.
524     Function *AIFunc = BB->getParent();
525     if (AIFunc != Func)
526       continue;
527 
528     LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
529     bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
530     if (Moved) {
531       LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
532       SinkCands.insert(AI);
533       continue;
534     }
535 
536     // Find bitcasts in the outlined region that have lifetime marker users
537     // outside that region. Replace the lifetime marker use with an
538     // outside region bitcast to avoid unnecessary alloca/reload instructions
539     // and extra lifetime markers.
540     SmallVector<Instruction *, 2> LifetimeBitcastUsers;
541     for (User *U : AI->users()) {
542       if (!definedInRegion(Blocks, U))
543         continue;
544 
545       if (U->stripInBoundsConstantOffsets() != AI)
546         continue;
547 
548       Instruction *Bitcast = cast<Instruction>(U);
549       for (User *BU : Bitcast->users()) {
550         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
551         if (!IntrInst)
552           continue;
553 
554         if (!IntrInst->isLifetimeStartOrEnd())
555           continue;
556 
557         if (definedInRegion(Blocks, IntrInst))
558           continue;
559 
560         LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
561                           << *Bitcast << " in out-of-region lifetime marker "
562                           << *IntrInst << "\n");
563         LifetimeBitcastUsers.push_back(IntrInst);
564       }
565     }
566 
567     for (Instruction *I : LifetimeBitcastUsers) {
568       Module *M = AIFunc->getParent();
569       LLVMContext &Ctx = M->getContext();
570       auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
571       CastInst *CastI =
572           CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I);
573       I->replaceUsesOfWith(I->getOperand(1), CastI);
574     }
575 
576     // Follow any bitcasts.
577     SmallVector<Instruction *, 2> Bitcasts;
578     SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
579     for (User *U : AI->users()) {
580       if (U->stripInBoundsConstantOffsets() == AI) {
581         Instruction *Bitcast = cast<Instruction>(U);
582         LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
583         if (LMI.LifeStart) {
584           Bitcasts.push_back(Bitcast);
585           BitcastLifetimeInfo.push_back(LMI);
586           continue;
587         }
588       }
589 
590       // Found unknown use of AI.
591       if (!definedInRegion(Blocks, U)) {
592         Bitcasts.clear();
593         break;
594       }
595     }
596 
597     // Either no bitcasts reference the alloca or there are unknown uses.
598     if (Bitcasts.empty())
599       continue;
600 
601     LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
602     SinkCands.insert(AI);
603     for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
604       Instruction *BitcastAddr = Bitcasts[I];
605       const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
606       assert(LMI.LifeStart &&
607              "Unsafe to sink bitcast without lifetime markers");
608       moveOrIgnoreLifetimeMarkers(LMI);
609       if (!definedInRegion(Blocks, BitcastAddr)) {
610         LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
611                           << "\n");
612         SinkCands.insert(BitcastAddr);
613       }
614     }
615   }
616 }
617 
618 bool CodeExtractor::isEligible() const {
619   if (Blocks.empty())
620     return false;
621   BasicBlock *Header = *Blocks.begin();
622   Function *F = Header->getParent();
623 
624   // For functions with varargs, check that varargs handling is only done in the
625   // outlined function, i.e vastart and vaend are only used in outlined blocks.
626   if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
627     auto containsVarArgIntrinsic = [](const Instruction &I) {
628       if (const CallInst *CI = dyn_cast<CallInst>(&I))
629         if (const Function *Callee = CI->getCalledFunction())
630           return Callee->getIntrinsicID() == Intrinsic::vastart ||
631                  Callee->getIntrinsicID() == Intrinsic::vaend;
632       return false;
633     };
634 
635     for (auto &BB : *F) {
636       if (Blocks.count(&BB))
637         continue;
638       if (llvm::any_of(BB, containsVarArgIntrinsic))
639         return false;
640     }
641   }
642   return true;
643 }
644 
645 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
646                                       const ValueSet &SinkCands) const {
647   for (BasicBlock *BB : Blocks) {
648     // If a used value is defined outside the region, it's an input.  If an
649     // instruction is used outside the region, it's an output.
650     for (Instruction &II : *BB) {
651       for (auto &OI : II.operands()) {
652         Value *V = OI;
653         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
654           Inputs.insert(V);
655       }
656 
657       for (User *U : II.users())
658         if (!definedInRegion(Blocks, U)) {
659           Outputs.insert(&II);
660           break;
661         }
662     }
663   }
664 }
665 
666 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
667 /// of the region, we need to split the entry block of the region so that the
668 /// PHI node is easier to deal with.
669 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
670   unsigned NumPredsFromRegion = 0;
671   unsigned NumPredsOutsideRegion = 0;
672 
673   if (Header != &Header->getParent()->getEntryBlock()) {
674     PHINode *PN = dyn_cast<PHINode>(Header->begin());
675     if (!PN) return;  // No PHI nodes.
676 
677     // If the header node contains any PHI nodes, check to see if there is more
678     // than one entry from outside the region.  If so, we need to sever the
679     // header block into two.
680     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
681       if (Blocks.count(PN->getIncomingBlock(i)))
682         ++NumPredsFromRegion;
683       else
684         ++NumPredsOutsideRegion;
685 
686     // If there is one (or fewer) predecessor from outside the region, we don't
687     // need to do anything special.
688     if (NumPredsOutsideRegion <= 1) return;
689   }
690 
691   // Otherwise, we need to split the header block into two pieces: one
692   // containing PHI nodes merging values from outside of the region, and a
693   // second that contains all of the code for the block and merges back any
694   // incoming values from inside of the region.
695   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
696 
697   // We only want to code extract the second block now, and it becomes the new
698   // header of the region.
699   BasicBlock *OldPred = Header;
700   Blocks.remove(OldPred);
701   Blocks.insert(NewBB);
702   Header = NewBB;
703 
704   // Okay, now we need to adjust the PHI nodes and any branches from within the
705   // region to go to the new header block instead of the old header block.
706   if (NumPredsFromRegion) {
707     PHINode *PN = cast<PHINode>(OldPred->begin());
708     // Loop over all of the predecessors of OldPred that are in the region,
709     // changing them to branch to NewBB instead.
710     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
711       if (Blocks.count(PN->getIncomingBlock(i))) {
712         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
713         TI->replaceUsesOfWith(OldPred, NewBB);
714       }
715 
716     // Okay, everything within the region is now branching to the right block, we
717     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
718     BasicBlock::iterator AfterPHIs;
719     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
720       PHINode *PN = cast<PHINode>(AfterPHIs);
721       // Create a new PHI node in the new region, which has an incoming value
722       // from OldPred of PN.
723       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
724                                        PN->getName() + ".ce");
725       NewPN->insertBefore(NewBB->begin());
726       PN->replaceAllUsesWith(NewPN);
727       NewPN->addIncoming(PN, OldPred);
728 
729       // Loop over all of the incoming value in PN, moving them to NewPN if they
730       // are from the extracted region.
731       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
732         if (Blocks.count(PN->getIncomingBlock(i))) {
733           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
734           PN->removeIncomingValue(i);
735           --i;
736         }
737       }
738     }
739   }
740 }
741 
742 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
743 /// outlined region, we split these PHIs on two: one with inputs from region
744 /// and other with remaining incoming blocks; then first PHIs are placed in
745 /// outlined region.
746 void CodeExtractor::severSplitPHINodesOfExits(
747     const SmallPtrSetImpl<BasicBlock *> &Exits) {
748   for (BasicBlock *ExitBB : Exits) {
749     BasicBlock *NewBB = nullptr;
750 
751     for (PHINode &PN : ExitBB->phis()) {
752       // Find all incoming values from the outlining region.
753       SmallVector<unsigned, 2> IncomingVals;
754       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
755         if (Blocks.count(PN.getIncomingBlock(i)))
756           IncomingVals.push_back(i);
757 
758       // Do not process PHI if there is one (or fewer) predecessor from region.
759       // If PHI has exactly one predecessor from region, only this one incoming
760       // will be replaced on codeRepl block, so it should be safe to skip PHI.
761       if (IncomingVals.size() <= 1)
762         continue;
763 
764       // Create block for new PHIs and add it to the list of outlined if it
765       // wasn't done before.
766       if (!NewBB) {
767         NewBB = BasicBlock::Create(ExitBB->getContext(),
768                                    ExitBB->getName() + ".split",
769                                    ExitBB->getParent(), ExitBB);
770         SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
771         for (BasicBlock *PredBB : Preds)
772           if (Blocks.count(PredBB))
773             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
774         BranchInst::Create(ExitBB, NewBB);
775         Blocks.insert(NewBB);
776       }
777 
778       // Split this PHI.
779       PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(),
780                                        PN.getName() + ".ce");
781       NewPN->insertBefore(NewBB->getFirstNonPHIIt());
782       for (unsigned i : IncomingVals)
783         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
784       for (unsigned i : reverse(IncomingVals))
785         PN.removeIncomingValue(i, false);
786       PN.addIncoming(NewPN, NewBB);
787     }
788   }
789 }
790 
791 void CodeExtractor::splitReturnBlocks() {
792   for (BasicBlock *Block : Blocks)
793     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
794       BasicBlock *New =
795           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
796       if (DT) {
797         // Old dominates New. New node dominates all other nodes dominated
798         // by Old.
799         DomTreeNode *OldNode = DT->getNode(Block);
800         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
801                                                OldNode->end());
802 
803         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
804 
805         for (DomTreeNode *I : Children)
806           DT->changeImmediateDominator(I, NewNode);
807       }
808     }
809 }
810 
811 /// constructFunction - make a function based on inputs and outputs, as follows:
812 /// f(in0, ..., inN, out0, ..., outN)
813 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
814                                            const ValueSet &outputs,
815                                            BasicBlock *header,
816                                            BasicBlock *newRootNode,
817                                            BasicBlock *newHeader,
818                                            Function *oldFunction,
819                                            Module *M) {
820   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
821   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
822 
823   // This function returns unsigned, outputs will go back by reference.
824   switch (NumExitBlocks) {
825   case 0:
826   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
827   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
828   default: RetTy = Type::getInt16Ty(header->getContext()); break;
829   }
830 
831   std::vector<Type *> ParamTy;
832   std::vector<Type *> AggParamTy;
833   ValueSet StructValues;
834   const DataLayout &DL = M->getDataLayout();
835 
836   // Add the types of the input values to the function's argument list
837   for (Value *value : inputs) {
838     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
839     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
840       AggParamTy.push_back(value->getType());
841       StructValues.insert(value);
842     } else
843       ParamTy.push_back(value->getType());
844   }
845 
846   // Add the types of the output values to the function's argument list.
847   for (Value *output : outputs) {
848     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
849     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
850       AggParamTy.push_back(output->getType());
851       StructValues.insert(output);
852     } else
853       ParamTy.push_back(
854           PointerType::get(output->getType(), DL.getAllocaAddrSpace()));
855   }
856 
857   assert(
858       (ParamTy.size() + AggParamTy.size()) ==
859           (inputs.size() + outputs.size()) &&
860       "Number of scalar and aggregate params does not match inputs, outputs");
861   assert((StructValues.empty() || AggregateArgs) &&
862          "Expeced StructValues only with AggregateArgs set");
863 
864   // Concatenate scalar and aggregate params in ParamTy.
865   size_t NumScalarParams = ParamTy.size();
866   StructType *StructTy = nullptr;
867   if (AggregateArgs && !AggParamTy.empty()) {
868     StructTy = StructType::get(M->getContext(), AggParamTy);
869     ParamTy.push_back(PointerType::get(StructTy, DL.getAllocaAddrSpace()));
870   }
871 
872   LLVM_DEBUG({
873     dbgs() << "Function type: " << *RetTy << " f(";
874     for (Type *i : ParamTy)
875       dbgs() << *i << ", ";
876     dbgs() << ")\n";
877   });
878 
879   FunctionType *funcType = FunctionType::get(
880       RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
881 
882   std::string SuffixToUse =
883       Suffix.empty()
884           ? (header->getName().empty() ? "extracted" : header->getName().str())
885           : Suffix;
886   // Create the new function
887   Function *newFunction = Function::Create(
888       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
889       oldFunction->getName() + "." + SuffixToUse, M);
890 
891   // Inherit all of the target dependent attributes and white-listed
892   // target independent attributes.
893   //  (e.g. If the extracted region contains a call to an x86.sse
894   //  instruction we need to make sure that the extracted region has the
895   //  "target-features" attribute allowing it to be lowered.
896   // FIXME: This should be changed to check to see if a specific
897   //           attribute can not be inherited.
898   for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
899     if (Attr.isStringAttribute()) {
900       if (Attr.getKindAsString() == "thunk")
901         continue;
902     } else
903       switch (Attr.getKindAsEnum()) {
904       // Those attributes cannot be propagated safely. Explicitly list them
905       // here so we get a warning if new attributes are added.
906       case Attribute::AllocSize:
907       case Attribute::Builtin:
908       case Attribute::Convergent:
909       case Attribute::JumpTable:
910       case Attribute::Naked:
911       case Attribute::NoBuiltin:
912       case Attribute::NoMerge:
913       case Attribute::NoReturn:
914       case Attribute::NoSync:
915       case Attribute::ReturnsTwice:
916       case Attribute::Speculatable:
917       case Attribute::StackAlignment:
918       case Attribute::WillReturn:
919       case Attribute::AllocKind:
920       case Attribute::PresplitCoroutine:
921       case Attribute::Memory:
922       case Attribute::NoFPClass:
923         continue;
924       // Those attributes should be safe to propagate to the extracted function.
925       case Attribute::AlwaysInline:
926       case Attribute::Cold:
927       case Attribute::DisableSanitizerInstrumentation:
928       case Attribute::FnRetThunkExtern:
929       case Attribute::Hot:
930       case Attribute::NoRecurse:
931       case Attribute::InlineHint:
932       case Attribute::MinSize:
933       case Attribute::NoCallback:
934       case Attribute::NoDuplicate:
935       case Attribute::NoFree:
936       case Attribute::NoImplicitFloat:
937       case Attribute::NoInline:
938       case Attribute::NonLazyBind:
939       case Attribute::NoRedZone:
940       case Attribute::NoUnwind:
941       case Attribute::NoSanitizeBounds:
942       case Attribute::NoSanitizeCoverage:
943       case Attribute::NullPointerIsValid:
944       case Attribute::OptimizeForDebugging:
945       case Attribute::OptForFuzzing:
946       case Attribute::OptimizeNone:
947       case Attribute::OptimizeForSize:
948       case Attribute::SafeStack:
949       case Attribute::ShadowCallStack:
950       case Attribute::SanitizeAddress:
951       case Attribute::SanitizeMemory:
952       case Attribute::SanitizeThread:
953       case Attribute::SanitizeHWAddress:
954       case Attribute::SanitizeMemTag:
955       case Attribute::SpeculativeLoadHardening:
956       case Attribute::StackProtect:
957       case Attribute::StackProtectReq:
958       case Attribute::StackProtectStrong:
959       case Attribute::StrictFP:
960       case Attribute::UWTable:
961       case Attribute::VScaleRange:
962       case Attribute::NoCfCheck:
963       case Attribute::MustProgress:
964       case Attribute::NoProfile:
965       case Attribute::SkipProfile:
966         break;
967       // These attributes cannot be applied to functions.
968       case Attribute::Alignment:
969       case Attribute::AllocatedPointer:
970       case Attribute::AllocAlign:
971       case Attribute::ByVal:
972       case Attribute::Dereferenceable:
973       case Attribute::DereferenceableOrNull:
974       case Attribute::ElementType:
975       case Attribute::InAlloca:
976       case Attribute::InReg:
977       case Attribute::Nest:
978       case Attribute::NoAlias:
979       case Attribute::NoCapture:
980       case Attribute::NoUndef:
981       case Attribute::NonNull:
982       case Attribute::Preallocated:
983       case Attribute::ReadNone:
984       case Attribute::ReadOnly:
985       case Attribute::Returned:
986       case Attribute::SExt:
987       case Attribute::StructRet:
988       case Attribute::SwiftError:
989       case Attribute::SwiftSelf:
990       case Attribute::SwiftAsync:
991       case Attribute::ZExt:
992       case Attribute::ImmArg:
993       case Attribute::ByRef:
994       case Attribute::WriteOnly:
995       //  These are not really attributes.
996       case Attribute::None:
997       case Attribute::EndAttrKinds:
998       case Attribute::EmptyKey:
999       case Attribute::TombstoneKey:
1000         llvm_unreachable("Not a function attribute");
1001       }
1002 
1003     newFunction->addFnAttr(Attr);
1004   }
1005   newFunction->insert(newFunction->end(), newRootNode);
1006 
1007   // Create scalar and aggregate iterators to name all of the arguments we
1008   // inserted.
1009   Function::arg_iterator ScalarAI = newFunction->arg_begin();
1010   Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1011 
1012   // Rewrite all users of the inputs in the extracted region to use the
1013   // arguments (or appropriate addressing into struct) instead.
1014   for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1015     Value *RewriteVal;
1016     if (AggregateArgs && StructValues.contains(inputs[i])) {
1017       Value *Idx[2];
1018       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1019       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1020       Instruction *TI = newFunction->begin()->getTerminator();
1021       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1022           StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1023       RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1024                                 "loadgep_" + inputs[i]->getName(), TI);
1025       ++aggIdx;
1026     } else
1027       RewriteVal = &*ScalarAI++;
1028 
1029     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1030     for (User *use : Users)
1031       if (Instruction *inst = dyn_cast<Instruction>(use))
1032         if (Blocks.count(inst->getParent()))
1033           inst->replaceUsesOfWith(inputs[i], RewriteVal);
1034   }
1035 
1036   // Set names for input and output arguments.
1037   if (NumScalarParams) {
1038     ScalarAI = newFunction->arg_begin();
1039     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
1040       if (!StructValues.contains(inputs[i]))
1041         ScalarAI->setName(inputs[i]->getName());
1042     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
1043       if (!StructValues.contains(outputs[i]))
1044         ScalarAI->setName(outputs[i]->getName() + ".out");
1045   }
1046 
1047   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1048   // within the new function. This must be done before we lose track of which
1049   // blocks were originally in the code region.
1050   std::vector<User *> Users(header->user_begin(), header->user_end());
1051   for (auto &U : Users)
1052     // The BasicBlock which contains the branch is not in the region
1053     // modify the branch target to a new block
1054     if (Instruction *I = dyn_cast<Instruction>(U))
1055       if (I->isTerminator() && I->getFunction() == oldFunction &&
1056           !Blocks.count(I->getParent()))
1057         I->replaceUsesOfWith(header, newHeader);
1058 
1059   return newFunction;
1060 }
1061 
1062 /// Erase lifetime.start markers which reference inputs to the extraction
1063 /// region, and insert the referenced memory into \p LifetimesStart.
1064 ///
1065 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1066 /// of allocas which will be moved from the caller function into the extracted
1067 /// function (\p SunkAllocas).
1068 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1069                                          const SetVector<Value *> &SunkAllocas,
1070                                          SetVector<Value *> &LifetimesStart) {
1071   for (BasicBlock *BB : Blocks) {
1072     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1073       auto *II = dyn_cast<IntrinsicInst>(&I);
1074       if (!II || !II->isLifetimeStartOrEnd())
1075         continue;
1076 
1077       // Get the memory operand of the lifetime marker. If the underlying
1078       // object is a sunk alloca, or is otherwise defined in the extraction
1079       // region, the lifetime marker must not be erased.
1080       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1081       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1082         continue;
1083 
1084       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1085         LifetimesStart.insert(Mem);
1086       II->eraseFromParent();
1087     }
1088   }
1089 }
1090 
1091 /// Insert lifetime start/end markers surrounding the call to the new function
1092 /// for objects defined in the caller.
1093 static void insertLifetimeMarkersSurroundingCall(
1094     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1095     CallInst *TheCall) {
1096   LLVMContext &Ctx = M->getContext();
1097   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1098   Instruction *Term = TheCall->getParent()->getTerminator();
1099 
1100   // Emit lifetime markers for the pointers given in \p Objects. Insert the
1101   // markers before the call if \p InsertBefore, and after the call otherwise.
1102   auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects,
1103                            bool InsertBefore) {
1104     for (Value *Mem : Objects) {
1105       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1106                                             TheCall->getFunction()) &&
1107              "Input memory not defined in original function");
1108 
1109       Function *Func = Intrinsic::getDeclaration(M, MarkerFunc, Mem->getType());
1110       auto Marker = CallInst::Create(Func, {NegativeOne, Mem});
1111       if (InsertBefore)
1112         Marker->insertBefore(TheCall);
1113       else
1114         Marker->insertBefore(Term);
1115     }
1116   };
1117 
1118   if (!LifetimesStart.empty()) {
1119     insertMarkers(Intrinsic::lifetime_start, LifetimesStart,
1120                   /*InsertBefore=*/true);
1121   }
1122 
1123   if (!LifetimesEnd.empty()) {
1124     insertMarkers(Intrinsic::lifetime_end, LifetimesEnd,
1125                   /*InsertBefore=*/false);
1126   }
1127 }
1128 
1129 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1130 /// the call instruction, splitting any PHI nodes in the header block as
1131 /// necessary.
1132 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1133                                                     BasicBlock *codeReplacer,
1134                                                     ValueSet &inputs,
1135                                                     ValueSet &outputs) {
1136   // Emit a call to the new function, passing in: *pointer to struct (if
1137   // aggregating parameters), or plan inputs and allocated memory for outputs
1138   std::vector<Value *> params, ReloadOutputs, Reloads;
1139   ValueSet StructValues;
1140 
1141   Module *M = newFunction->getParent();
1142   LLVMContext &Context = M->getContext();
1143   const DataLayout &DL = M->getDataLayout();
1144   CallInst *call = nullptr;
1145 
1146   // Add inputs as params, or to be filled into the struct
1147   unsigned ScalarInputArgNo = 0;
1148   SmallVector<unsigned, 1> SwiftErrorArgs;
1149   for (Value *input : inputs) {
1150     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1151       StructValues.insert(input);
1152     else {
1153       params.push_back(input);
1154       if (input->isSwiftError())
1155         SwiftErrorArgs.push_back(ScalarInputArgNo);
1156     }
1157     ++ScalarInputArgNo;
1158   }
1159 
1160   // Create allocas for the outputs
1161   unsigned ScalarOutputArgNo = 0;
1162   for (Value *output : outputs) {
1163     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1164       StructValues.insert(output);
1165     } else {
1166       AllocaInst *alloca =
1167         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1168                        nullptr, output->getName() + ".loc",
1169                        &codeReplacer->getParent()->front().front());
1170       ReloadOutputs.push_back(alloca);
1171       params.push_back(alloca);
1172       ++ScalarOutputArgNo;
1173     }
1174   }
1175 
1176   StructType *StructArgTy = nullptr;
1177   AllocaInst *Struct = nullptr;
1178   unsigned NumAggregatedInputs = 0;
1179   if (AggregateArgs && !StructValues.empty()) {
1180     std::vector<Type *> ArgTypes;
1181     for (Value *V : StructValues)
1182       ArgTypes.push_back(V->getType());
1183 
1184     // Allocate a struct at the beginning of this function
1185     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1186     Struct = new AllocaInst(
1187         StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg",
1188         AllocationBlock ? &*AllocationBlock->getFirstInsertionPt()
1189                         : &codeReplacer->getParent()->front().front());
1190     params.push_back(Struct);
1191 
1192     // Store aggregated inputs in the struct.
1193     for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1194       if (inputs.contains(StructValues[i])) {
1195         Value *Idx[2];
1196         Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1197         Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1198         GetElementPtrInst *GEP = GetElementPtrInst::Create(
1199             StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1200         GEP->insertInto(codeReplacer, codeReplacer->end());
1201         new StoreInst(StructValues[i], GEP, codeReplacer);
1202         NumAggregatedInputs++;
1203       }
1204     }
1205   }
1206 
1207   // Emit the call to the function
1208   call = CallInst::Create(newFunction, params,
1209                           NumExitBlocks > 1 ? "targetBlock" : "");
1210   // Add debug location to the new call, if the original function has debug
1211   // info. In that case, the terminator of the entry block of the extracted
1212   // function contains the first debug location of the extracted function,
1213   // set in extractCodeRegion.
1214   if (codeReplacer->getParent()->getSubprogram()) {
1215     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1216       call->setDebugLoc(DL);
1217   }
1218   call->insertInto(codeReplacer, codeReplacer->end());
1219 
1220   // Set swifterror parameter attributes.
1221   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1222     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1223     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1224   }
1225 
1226   // Reload the outputs passed in by reference, use the struct if output is in
1227   // the aggregate or reload from the scalar argument.
1228   for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1229                 aggIdx = NumAggregatedInputs;
1230        i != e; ++i) {
1231     Value *Output = nullptr;
1232     if (AggregateArgs && StructValues.contains(outputs[i])) {
1233       Value *Idx[2];
1234       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1235       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1236       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1237           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1238       GEP->insertInto(codeReplacer, codeReplacer->end());
1239       Output = GEP;
1240       ++aggIdx;
1241     } else {
1242       Output = ReloadOutputs[scalarIdx];
1243       ++scalarIdx;
1244     }
1245     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1246                                   outputs[i]->getName() + ".reload",
1247                                   codeReplacer);
1248     Reloads.push_back(load);
1249     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1250     for (User *U : Users) {
1251       Instruction *inst = cast<Instruction>(U);
1252       if (!Blocks.count(inst->getParent()))
1253         inst->replaceUsesOfWith(outputs[i], load);
1254     }
1255   }
1256 
1257   // Now we can emit a switch statement using the call as a value.
1258   SwitchInst *TheSwitch =
1259       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1260                          codeReplacer, 0, codeReplacer);
1261 
1262   // Since there may be multiple exits from the original region, make the new
1263   // function return an unsigned, switch on that number.  This loop iterates
1264   // over all of the blocks in the extracted region, updating any terminator
1265   // instructions in the to-be-extracted region that branch to blocks that are
1266   // not in the region to be extracted.
1267   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1268 
1269   // Iterate over the previously collected targets, and create new blocks inside
1270   // the function to branch to.
1271   unsigned switchVal = 0;
1272   for (BasicBlock *OldTarget : OldTargets) {
1273     if (Blocks.count(OldTarget))
1274       continue;
1275     BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1276     if (NewTarget)
1277       continue;
1278 
1279     // If we don't already have an exit stub for this non-extracted
1280     // destination, create one now!
1281     NewTarget = BasicBlock::Create(Context,
1282                                     OldTarget->getName() + ".exitStub",
1283                                     newFunction);
1284     unsigned SuccNum = switchVal++;
1285 
1286     Value *brVal = nullptr;
1287     assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1288     switch (NumExitBlocks) {
1289     case 0:
1290     case 1: break;  // No value needed.
1291     case 2:         // Conditional branch, return a bool
1292       brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1293       break;
1294     default:
1295       brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1296       break;
1297     }
1298 
1299     ReturnInst::Create(Context, brVal, NewTarget);
1300 
1301     // Update the switch instruction.
1302     TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1303                                         SuccNum),
1304                         OldTarget);
1305   }
1306 
1307   for (BasicBlock *Block : Blocks) {
1308     Instruction *TI = Block->getTerminator();
1309     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1310       if (Blocks.count(TI->getSuccessor(i)))
1311         continue;
1312       BasicBlock *OldTarget = TI->getSuccessor(i);
1313       // add a new basic block which returns the appropriate value
1314       BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1315       assert(NewTarget && "Unknown target block!");
1316 
1317       // rewrite the original branch instruction with this new target
1318       TI->setSuccessor(i, NewTarget);
1319    }
1320   }
1321 
1322   // Store the arguments right after the definition of output value.
1323   // This should be proceeded after creating exit stubs to be ensure that invoke
1324   // result restore will be placed in the outlined function.
1325   Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1326   std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1327   Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1328   std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1329 
1330   for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1331        ++i) {
1332     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1333     if (!OutI)
1334       continue;
1335 
1336     // Find proper insertion point.
1337     BasicBlock::iterator InsertPt;
1338     // In case OutI is an invoke, we insert the store at the beginning in the
1339     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1340     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1341       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1342     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1343       InsertPt = Phi->getParent()->getFirstInsertionPt();
1344     else
1345       InsertPt = std::next(OutI->getIterator());
1346 
1347     Instruction *InsertBefore = &*InsertPt;
1348     assert((InsertBefore->getFunction() == newFunction ||
1349             Blocks.count(InsertBefore->getParent())) &&
1350            "InsertPt should be in new function");
1351     if (AggregateArgs && StructValues.contains(outputs[i])) {
1352       assert(AggOutputArgBegin != newFunction->arg_end() &&
1353              "Number of aggregate output arguments should match "
1354              "the number of defined values");
1355       Value *Idx[2];
1356       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1357       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1358       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1359           StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1360           InsertBefore);
1361       new StoreInst(outputs[i], GEP, InsertBefore);
1362       ++aggIdx;
1363       // Since there should be only one struct argument aggregating
1364       // all the output values, we shouldn't increment AggOutputArgBegin, which
1365       // always points to the struct argument, in this case.
1366     } else {
1367       assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1368              "Number of scalar output arguments should match "
1369              "the number of defined values");
1370       new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore);
1371       ++ScalarOutputArgBegin;
1372     }
1373   }
1374 
1375   // Now that we've done the deed, simplify the switch instruction.
1376   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1377   switch (NumExitBlocks) {
1378   case 0:
1379     // There are no successors (the block containing the switch itself), which
1380     // means that previously this was the last part of the function, and hence
1381     // this should be rewritten as a `ret'
1382 
1383     // Check if the function should return a value
1384     if (OldFnRetTy->isVoidTy()) {
1385       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1386     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1387       // return what we have
1388       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1389     } else {
1390       // Otherwise we must have code extracted an unwind or something, just
1391       // return whatever we want.
1392       ReturnInst::Create(Context,
1393                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1394     }
1395 
1396     TheSwitch->eraseFromParent();
1397     break;
1398   case 1:
1399     // Only a single destination, change the switch into an unconditional
1400     // branch.
1401     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1402     TheSwitch->eraseFromParent();
1403     break;
1404   case 2:
1405     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1406                        call, TheSwitch);
1407     TheSwitch->eraseFromParent();
1408     break;
1409   default:
1410     // Otherwise, make the default destination of the switch instruction be one
1411     // of the other successors.
1412     TheSwitch->setCondition(call);
1413     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1414     // Remove redundant case
1415     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1416     break;
1417   }
1418 
1419   // Insert lifetime markers around the reloads of any output values. The
1420   // allocas output values are stored in are only in-use in the codeRepl block.
1421   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1422 
1423   return call;
1424 }
1425 
1426 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1427   auto newFuncIt = newFunction->front().getIterator();
1428   for (BasicBlock *Block : Blocks) {
1429     // Delete the basic block from the old function, and the list of blocks
1430     Block->removeFromParent();
1431 
1432     // Insert this basic block into the new function
1433     // Insert the original blocks after the entry block created
1434     // for the new function. The entry block may be followed
1435     // by a set of exit blocks at this point, but these exit
1436     // blocks better be placed at the end of the new function.
1437     newFuncIt = newFunction->insert(std::next(newFuncIt), Block);
1438   }
1439 }
1440 
1441 void CodeExtractor::calculateNewCallTerminatorWeights(
1442     BasicBlock *CodeReplacer,
1443     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1444     BranchProbabilityInfo *BPI) {
1445   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1446   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1447 
1448   // Update the branch weights for the exit block.
1449   Instruction *TI = CodeReplacer->getTerminator();
1450   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1451 
1452   // Block Frequency distribution with dummy node.
1453   Distribution BranchDist;
1454 
1455   SmallVector<BranchProbability, 4> EdgeProbabilities(
1456       TI->getNumSuccessors(), BranchProbability::getUnknown());
1457 
1458   // Add each of the frequencies of the successors.
1459   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1460     BlockNode ExitNode(i);
1461     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1462     if (ExitFreq != 0)
1463       BranchDist.addExit(ExitNode, ExitFreq);
1464     else
1465       EdgeProbabilities[i] = BranchProbability::getZero();
1466   }
1467 
1468   // Check for no total weight.
1469   if (BranchDist.Total == 0) {
1470     BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1471     return;
1472   }
1473 
1474   // Normalize the distribution so that they can fit in unsigned.
1475   BranchDist.normalize();
1476 
1477   // Create normalized branch weights and set the metadata.
1478   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1479     const auto &Weight = BranchDist.Weights[I];
1480 
1481     // Get the weight and update the current BFI.
1482     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1483     BranchProbability BP(Weight.Amount, BranchDist.Total);
1484     EdgeProbabilities[Weight.TargetNode.Index] = BP;
1485   }
1486   BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1487   TI->setMetadata(
1488       LLVMContext::MD_prof,
1489       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1490 }
1491 
1492 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1493 /// \p F.
1494 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1495   for (Instruction &I : instructions(F)) {
1496     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1497     findDbgUsers(DbgUsers, &I);
1498     for (DbgVariableIntrinsic *DVI : DbgUsers)
1499       if (DVI->getFunction() != &F)
1500         DVI->eraseFromParent();
1501   }
1502 }
1503 
1504 /// Fix up the debug info in the old and new functions by pointing line
1505 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1506 /// intrinsics which point to values outside of the new function.
1507 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1508                                          CallInst &TheCall) {
1509   DISubprogram *OldSP = OldFunc.getSubprogram();
1510   LLVMContext &Ctx = OldFunc.getContext();
1511 
1512   if (!OldSP) {
1513     // Erase any debug info the new function contains.
1514     stripDebugInfo(NewFunc);
1515     // Make sure the old function doesn't contain any non-local metadata refs.
1516     eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1517     return;
1518   }
1519 
1520   // Create a subprogram for the new function. Leave out a description of the
1521   // function arguments, as the parameters don't correspond to anything at the
1522   // source level.
1523   assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1524   DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1525                 OldSP->getUnit());
1526   auto SPType =
1527       DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt));
1528   DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1529                                     DISubprogram::SPFlagOptimized |
1530                                     DISubprogram::SPFlagLocalToUnit;
1531   auto NewSP = DIB.createFunction(
1532       OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1533       /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1534   NewFunc.setSubprogram(NewSP);
1535 
1536   // Debug intrinsics in the new function need to be updated in one of two
1537   // ways:
1538   //  1) They need to be deleted, because they describe a value in the old
1539   //     function.
1540   //  2) They need to point to fresh metadata, e.g. because they currently
1541   //     point to a variable in the wrong scope.
1542   SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1543   SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1544   DenseMap<const MDNode *, MDNode *> Cache;
1545   for (Instruction &I : instructions(NewFunc)) {
1546     auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1547     if (!DII)
1548       continue;
1549 
1550     // Point the intrinsic to a fresh label within the new function if the
1551     // intrinsic was not inlined from some other function.
1552     if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1553       if (DLI->getDebugLoc().getInlinedAt())
1554         continue;
1555       DILabel *OldLabel = DLI->getLabel();
1556       DINode *&NewLabel = RemappedMetadata[OldLabel];
1557       if (!NewLabel) {
1558         DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1559             *OldLabel->getScope(), *NewSP, Ctx, Cache);
1560         NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(),
1561                                 OldLabel->getFile(), OldLabel->getLine());
1562       }
1563       DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1564       continue;
1565     }
1566 
1567     auto IsInvalidLocation = [&NewFunc](Value *Location) {
1568       // Location is invalid if it isn't a constant or an instruction, or is an
1569       // instruction but isn't in the new function.
1570       if (!Location ||
1571           (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1572         return true;
1573       Instruction *LocationInst = dyn_cast<Instruction>(Location);
1574       return LocationInst && LocationInst->getFunction() != &NewFunc;
1575     };
1576 
1577     auto *DVI = cast<DbgVariableIntrinsic>(DII);
1578     // If any of the used locations are invalid, delete the intrinsic.
1579     if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1580       DebugIntrinsicsToDelete.push_back(DVI);
1581       continue;
1582     }
1583     // DbgAssign intrinsics have an extra Value argument:
1584     if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
1585         DAI && IsInvalidLocation(DAI->getAddress())) {
1586       DebugIntrinsicsToDelete.push_back(DVI);
1587       continue;
1588     }
1589     // If the variable was in the scope of the old function, i.e. it was not
1590     // inlined, point the intrinsic to a fresh variable within the new function.
1591     if (!DVI->getDebugLoc().getInlinedAt()) {
1592       DILocalVariable *OldVar = DVI->getVariable();
1593       DINode *&NewVar = RemappedMetadata[OldVar];
1594       if (!NewVar) {
1595         DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1596             *OldVar->getScope(), *NewSP, Ctx, Cache);
1597         NewVar = DIB.createAutoVariable(
1598             NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1599             OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1600             OldVar->getAlignInBits());
1601       }
1602       DVI->setVariable(cast<DILocalVariable>(NewVar));
1603     }
1604   }
1605 
1606   for (auto *DII : DebugIntrinsicsToDelete)
1607     DII->eraseFromParent();
1608   DIB.finalizeSubprogram(NewSP);
1609 
1610   // Fix up the scope information attached to the line locations in the new
1611   // function.
1612   for (Instruction &I : instructions(NewFunc)) {
1613     if (const DebugLoc &DL = I.getDebugLoc())
1614       I.setDebugLoc(
1615           DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache));
1616 
1617     // Loop info metadata may contain line locations. Fix them up.
1618     auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * {
1619       if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1620         return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache);
1621       return MD;
1622     };
1623     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1624   }
1625   if (!TheCall.getDebugLoc())
1626     TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1627 
1628   eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1629 }
1630 
1631 Function *
1632 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1633   ValueSet Inputs, Outputs;
1634   return extractCodeRegion(CEAC, Inputs, Outputs);
1635 }
1636 
1637 Function *
1638 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1639                                  ValueSet &inputs, ValueSet &outputs) {
1640   if (!isEligible())
1641     return nullptr;
1642 
1643   // Assumption: this is a single-entry code region, and the header is the first
1644   // block in the region.
1645   BasicBlock *header = *Blocks.begin();
1646   Function *oldFunction = header->getParent();
1647 
1648   // Calculate the entry frequency of the new function before we change the root
1649   //   block.
1650   BlockFrequency EntryFreq;
1651   if (BFI) {
1652     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1653     for (BasicBlock *Pred : predecessors(header)) {
1654       if (Blocks.count(Pred))
1655         continue;
1656       EntryFreq +=
1657           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1658     }
1659   }
1660 
1661   // Remove @llvm.assume calls that will be moved to the new function from the
1662   // old function's assumption cache.
1663   for (BasicBlock *Block : Blocks) {
1664     for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1665       if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1666         if (AC)
1667           AC->unregisterAssumption(AI);
1668         AI->eraseFromParent();
1669       }
1670     }
1671   }
1672 
1673   // If we have any return instructions in the region, split those blocks so
1674   // that the return is not in the region.
1675   splitReturnBlocks();
1676 
1677   // Calculate the exit blocks for the extracted region and the total exit
1678   // weights for each of those blocks.
1679   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1680   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1681   for (BasicBlock *Block : Blocks) {
1682     for (BasicBlock *Succ : successors(Block)) {
1683       if (!Blocks.count(Succ)) {
1684         // Update the branch weight for this successor.
1685         if (BFI) {
1686           BlockFrequency &BF = ExitWeights[Succ];
1687           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1688         }
1689         ExitBlocks.insert(Succ);
1690       }
1691     }
1692   }
1693   NumExitBlocks = ExitBlocks.size();
1694 
1695   for (BasicBlock *Block : Blocks) {
1696     Instruction *TI = Block->getTerminator();
1697     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1698       if (Blocks.count(TI->getSuccessor(i)))
1699         continue;
1700       BasicBlock *OldTarget = TI->getSuccessor(i);
1701       OldTargets.push_back(OldTarget);
1702     }
1703   }
1704 
1705   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1706   severSplitPHINodesOfEntry(header);
1707   severSplitPHINodesOfExits(ExitBlocks);
1708 
1709   // This takes place of the original loop
1710   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1711                                                 "codeRepl", oldFunction,
1712                                                 header);
1713 
1714   // The new function needs a root node because other nodes can branch to the
1715   // head of the region, but the entry node of a function cannot have preds.
1716   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1717                                                "newFuncRoot");
1718   auto *BranchI = BranchInst::Create(header);
1719   // If the original function has debug info, we have to add a debug location
1720   // to the new branch instruction from the artificial entry block.
1721   // We use the debug location of the first instruction in the extracted
1722   // blocks, as there is no other equivalent line in the source code.
1723   if (oldFunction->getSubprogram()) {
1724     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1725       return any_of(*BB, [&BranchI](const Instruction &I) {
1726         if (!I.getDebugLoc())
1727           return false;
1728         BranchI->setDebugLoc(I.getDebugLoc());
1729         return true;
1730       });
1731     });
1732   }
1733   BranchI->insertInto(newFuncRoot, newFuncRoot->end());
1734 
1735   ValueSet SinkingCands, HoistingCands;
1736   BasicBlock *CommonExit = nullptr;
1737   findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1738   assert(HoistingCands.empty() || CommonExit);
1739 
1740   // Find inputs to, outputs from the code region.
1741   findInputsOutputs(inputs, outputs, SinkingCands);
1742 
1743   // Now sink all instructions which only have non-phi uses inside the region.
1744   // Group the allocas at the start of the block, so that any bitcast uses of
1745   // the allocas are well-defined.
1746   AllocaInst *FirstSunkAlloca = nullptr;
1747   for (auto *II : SinkingCands) {
1748     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1749       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1750       if (!FirstSunkAlloca)
1751         FirstSunkAlloca = AI;
1752     }
1753   }
1754   assert((SinkingCands.empty() || FirstSunkAlloca) &&
1755          "Did not expect a sink candidate without any allocas");
1756   for (auto *II : SinkingCands) {
1757     if (!isa<AllocaInst>(II)) {
1758       cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1759     }
1760   }
1761 
1762   if (!HoistingCands.empty()) {
1763     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1764     Instruction *TI = HoistToBlock->getTerminator();
1765     for (auto *II : HoistingCands)
1766       cast<Instruction>(II)->moveBefore(TI);
1767   }
1768 
1769   // Collect objects which are inputs to the extraction region and also
1770   // referenced by lifetime start markers within it. The effects of these
1771   // markers must be replicated in the calling function to prevent the stack
1772   // coloring pass from merging slots which store input objects.
1773   ValueSet LifetimesStart;
1774   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1775 
1776   // Construct new function based on inputs/outputs & add allocas for all defs.
1777   Function *newFunction =
1778       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1779                         oldFunction, oldFunction->getParent());
1780 
1781   // Update the entry count of the function.
1782   if (BFI) {
1783     auto Count = BFI->getProfileCountFromFreq(EntryFreq);
1784     if (Count)
1785       newFunction->setEntryCount(
1786           ProfileCount(*Count, Function::PCT_Real)); // FIXME
1787     BFI->setBlockFreq(codeReplacer, EntryFreq);
1788   }
1789 
1790   CallInst *TheCall =
1791       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1792 
1793   moveCodeToFunction(newFunction);
1794 
1795   // Replicate the effects of any lifetime start/end markers which referenced
1796   // input objects in the extraction region by placing markers around the call.
1797   insertLifetimeMarkersSurroundingCall(
1798       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1799 
1800   // Propagate personality info to the new function if there is one.
1801   if (oldFunction->hasPersonalityFn())
1802     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1803 
1804   // Update the branch weights for the exit block.
1805   if (BFI && NumExitBlocks > 1)
1806     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1807 
1808   // Loop over all of the PHI nodes in the header and exit blocks, and change
1809   // any references to the old incoming edge to be the new incoming edge.
1810   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1811     PHINode *PN = cast<PHINode>(I);
1812     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1813       if (!Blocks.count(PN->getIncomingBlock(i)))
1814         PN->setIncomingBlock(i, newFuncRoot);
1815   }
1816 
1817   for (BasicBlock *ExitBB : ExitBlocks)
1818     for (PHINode &PN : ExitBB->phis()) {
1819       Value *IncomingCodeReplacerVal = nullptr;
1820       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1821         // Ignore incoming values from outside of the extracted region.
1822         if (!Blocks.count(PN.getIncomingBlock(i)))
1823           continue;
1824 
1825         // Ensure that there is only one incoming value from codeReplacer.
1826         if (!IncomingCodeReplacerVal) {
1827           PN.setIncomingBlock(i, codeReplacer);
1828           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1829         } else
1830           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1831                  "PHI has two incompatbile incoming values from codeRepl");
1832       }
1833     }
1834 
1835   fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1836 
1837   // Mark the new function `noreturn` if applicable. Terminators which resume
1838   // exception propagation are treated as returning instructions. This is to
1839   // avoid inserting traps after calls to outlined functions which unwind.
1840   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1841     const Instruction *Term = BB.getTerminator();
1842     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1843   });
1844   if (doesNotReturn)
1845     newFunction->setDoesNotReturn();
1846 
1847   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1848     newFunction->dump();
1849     report_fatal_error("verification of newFunction failed!");
1850   });
1851   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1852              report_fatal_error("verification of oldFunction failed!"));
1853   LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1854                  report_fatal_error("Stale Asumption cache for old Function!"));
1855   return newFunction;
1856 }
1857 
1858 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1859                                           const Function &NewFunc,
1860                                           AssumptionCache *AC) {
1861   for (auto AssumeVH : AC->assumptions()) {
1862     auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1863     if (!I)
1864       continue;
1865 
1866     // There shouldn't be any llvm.assume intrinsics in the new function.
1867     if (I->getFunction() != &OldFunc)
1868       return true;
1869 
1870     // There shouldn't be any stale affected values in the assumption cache
1871     // that were previously in the old function, but that have now been moved
1872     // to the new function.
1873     for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1874       auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1875       if (!AffectedCI)
1876         continue;
1877       if (AffectedCI->getFunction() != &OldFunc)
1878         return true;
1879       auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1880       if (AssumedInst->getFunction() != &OldFunc)
1881         return true;
1882     }
1883   }
1884   return false;
1885 }
1886 
1887 void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1888   ExcludeArgsFromAggregate.insert(Arg);
1889 }
1890