1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/Verifier.h" 55 #include "llvm/Support/BlockFrequency.h" 56 #include "llvm/Support/BranchProbability.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <map> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 using namespace llvm::PatternMatch; 72 using ProfileCount = Function::ProfileCount; 73 74 #define DEBUG_TYPE "code-extractor" 75 76 // Provide a command-line option to aggregate function arguments into a struct 77 // for functions produced by the code extractor. This is useful when converting 78 // extracted functions to pthread-based code, as only one argument (void*) can 79 // be passed in to pthread_create(). 80 static cl::opt<bool> 81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 82 cl::desc("Aggregate arguments to code-extracted functions")); 83 84 /// Test whether a block is valid for extraction. 85 static bool isBlockValidForExtraction(const BasicBlock &BB, 86 const SetVector<BasicBlock *> &Result, 87 bool AllowVarArgs, bool AllowAlloca) { 88 // taking the address of a basic block moved to another function is illegal 89 if (BB.hasAddressTaken()) 90 return false; 91 92 // don't hoist code that uses another basicblock address, as it's likely to 93 // lead to unexpected behavior, like cross-function jumps 94 SmallPtrSet<User const *, 16> Visited; 95 SmallVector<User const *, 16> ToVisit; 96 97 for (Instruction const &Inst : BB) 98 ToVisit.push_back(&Inst); 99 100 while (!ToVisit.empty()) { 101 User const *Curr = ToVisit.pop_back_val(); 102 if (!Visited.insert(Curr).second) 103 continue; 104 if (isa<BlockAddress const>(Curr)) 105 return false; // even a reference to self is likely to be not compatible 106 107 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 108 continue; 109 110 for (auto const &U : Curr->operands()) { 111 if (auto *UU = dyn_cast<User>(U)) 112 ToVisit.push_back(UU); 113 } 114 } 115 116 // If explicitly requested, allow vastart and alloca. For invoke instructions 117 // verify that extraction is valid. 118 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 119 if (isa<AllocaInst>(I)) { 120 if (!AllowAlloca) 121 return false; 122 continue; 123 } 124 125 if (const auto *II = dyn_cast<InvokeInst>(I)) { 126 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 127 // must be a part of the subgraph which is being extracted. 128 if (auto *UBB = II->getUnwindDest()) 129 if (!Result.count(UBB)) 130 return false; 131 continue; 132 } 133 134 // All catch handlers of a catchswitch instruction as well as the unwind 135 // destination must be in the subgraph. 136 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 137 if (auto *UBB = CSI->getUnwindDest()) 138 if (!Result.count(UBB)) 139 return false; 140 for (const auto *HBB : CSI->handlers()) 141 if (!Result.count(const_cast<BasicBlock*>(HBB))) 142 return false; 143 continue; 144 } 145 146 // Make sure that entire catch handler is within subgraph. It is sufficient 147 // to check that catch return's block is in the list. 148 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 149 for (const auto *U : CPI->users()) 150 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 151 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 152 return false; 153 continue; 154 } 155 156 // And do similar checks for cleanup handler - the entire handler must be 157 // in subgraph which is going to be extracted. For cleanup return should 158 // additionally check that the unwind destination is also in the subgraph. 159 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 160 for (const auto *U : CPI->users()) 161 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 162 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 163 return false; 164 continue; 165 } 166 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 167 if (auto *UBB = CRI->getUnwindDest()) 168 if (!Result.count(UBB)) 169 return false; 170 continue; 171 } 172 173 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 174 if (const Function *F = CI->getCalledFunction()) { 175 auto IID = F->getIntrinsicID(); 176 if (IID == Intrinsic::vastart) { 177 if (AllowVarArgs) 178 continue; 179 else 180 return false; 181 } 182 183 // Currently, we miscompile outlined copies of eh_typid_for. There are 184 // proposals for fixing this in llvm.org/PR39545. 185 if (IID == Intrinsic::eh_typeid_for) 186 return false; 187 } 188 } 189 } 190 191 return true; 192 } 193 194 /// Build a set of blocks to extract if the input blocks are viable. 195 static SetVector<BasicBlock *> 196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 197 bool AllowVarArgs, bool AllowAlloca) { 198 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 199 SetVector<BasicBlock *> Result; 200 201 // Loop over the blocks, adding them to our set-vector, and aborting with an 202 // empty set if we encounter invalid blocks. 203 for (BasicBlock *BB : BBs) { 204 // If this block is dead, don't process it. 205 if (DT && !DT->isReachableFromEntry(BB)) 206 continue; 207 208 if (!Result.insert(BB)) 209 llvm_unreachable("Repeated basic blocks in extraction input"); 210 } 211 212 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 213 << '\n'); 214 215 for (auto *BB : Result) { 216 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 217 return {}; 218 219 // Make sure that the first block is not a landing pad. 220 if (BB == Result.front()) { 221 if (BB->isEHPad()) { 222 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 223 return {}; 224 } 225 continue; 226 } 227 228 // All blocks other than the first must not have predecessors outside of 229 // the subgraph which is being extracted. 230 for (auto *PBB : predecessors(BB)) 231 if (!Result.count(PBB)) { 232 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 233 "outside the region except for the first block!\n" 234 << "Problematic source BB: " << BB->getName() << "\n" 235 << "Problematic destination BB: " << PBB->getName() 236 << "\n"); 237 return {}; 238 } 239 } 240 241 return Result; 242 } 243 244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 245 bool AggregateArgs, BlockFrequencyInfo *BFI, 246 BranchProbabilityInfo *BPI, AssumptionCache *AC, 247 bool AllowVarArgs, bool AllowAlloca, 248 BasicBlock *AllocationBlock, std::string Suffix) 249 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 250 BPI(BPI), AC(AC), AllocationBlock(AllocationBlock), 251 AllowVarArgs(AllowVarArgs), 252 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 253 Suffix(Suffix) {} 254 255 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 256 BlockFrequencyInfo *BFI, 257 BranchProbabilityInfo *BPI, AssumptionCache *AC, 258 std::string Suffix) 259 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 260 BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false), 261 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 262 /* AllowVarArgs */ false, 263 /* AllowAlloca */ false)), 264 Suffix(Suffix) {} 265 266 /// definedInRegion - Return true if the specified value is defined in the 267 /// extracted region. 268 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 269 if (Instruction *I = dyn_cast<Instruction>(V)) 270 if (Blocks.count(I->getParent())) 271 return true; 272 return false; 273 } 274 275 /// definedInCaller - Return true if the specified value is defined in the 276 /// function being code extracted, but not in the region being extracted. 277 /// These values must be passed in as live-ins to the function. 278 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 279 if (isa<Argument>(V)) return true; 280 if (Instruction *I = dyn_cast<Instruction>(V)) 281 if (!Blocks.count(I->getParent())) 282 return true; 283 return false; 284 } 285 286 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 287 BasicBlock *CommonExitBlock = nullptr; 288 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 289 for (auto *Succ : successors(Block)) { 290 // Internal edges, ok. 291 if (Blocks.count(Succ)) 292 continue; 293 if (!CommonExitBlock) { 294 CommonExitBlock = Succ; 295 continue; 296 } 297 if (CommonExitBlock != Succ) 298 return true; 299 } 300 return false; 301 }; 302 303 if (any_of(Blocks, hasNonCommonExitSucc)) 304 return nullptr; 305 306 return CommonExitBlock; 307 } 308 309 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 310 for (BasicBlock &BB : F) { 311 for (Instruction &II : BB.instructionsWithoutDebug()) 312 if (auto *AI = dyn_cast<AllocaInst>(&II)) 313 Allocas.push_back(AI); 314 315 findSideEffectInfoForBlock(BB); 316 } 317 } 318 319 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 320 for (Instruction &II : BB.instructionsWithoutDebug()) { 321 unsigned Opcode = II.getOpcode(); 322 Value *MemAddr = nullptr; 323 switch (Opcode) { 324 case Instruction::Store: 325 case Instruction::Load: { 326 if (Opcode == Instruction::Store) { 327 StoreInst *SI = cast<StoreInst>(&II); 328 MemAddr = SI->getPointerOperand(); 329 } else { 330 LoadInst *LI = cast<LoadInst>(&II); 331 MemAddr = LI->getPointerOperand(); 332 } 333 // Global variable can not be aliased with locals. 334 if (isa<Constant>(MemAddr)) 335 break; 336 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 337 if (!isa<AllocaInst>(Base)) { 338 SideEffectingBlocks.insert(&BB); 339 return; 340 } 341 BaseMemAddrs[&BB].insert(Base); 342 break; 343 } 344 default: { 345 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 346 if (IntrInst) { 347 if (IntrInst->isLifetimeStartOrEnd()) 348 break; 349 SideEffectingBlocks.insert(&BB); 350 return; 351 } 352 // Treat all the other cases conservatively if it has side effects. 353 if (II.mayHaveSideEffects()) { 354 SideEffectingBlocks.insert(&BB); 355 return; 356 } 357 } 358 } 359 } 360 } 361 362 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 363 BasicBlock &BB, AllocaInst *Addr) const { 364 if (SideEffectingBlocks.count(&BB)) 365 return true; 366 auto It = BaseMemAddrs.find(&BB); 367 if (It != BaseMemAddrs.end()) 368 return It->second.count(Addr); 369 return false; 370 } 371 372 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 373 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 374 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 375 Function *Func = (*Blocks.begin())->getParent(); 376 for (BasicBlock &BB : *Func) { 377 if (Blocks.count(&BB)) 378 continue; 379 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 380 return false; 381 } 382 return true; 383 } 384 385 BasicBlock * 386 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 387 BasicBlock *SinglePredFromOutlineRegion = nullptr; 388 assert(!Blocks.count(CommonExitBlock) && 389 "Expect a block outside the region!"); 390 for (auto *Pred : predecessors(CommonExitBlock)) { 391 if (!Blocks.count(Pred)) 392 continue; 393 if (!SinglePredFromOutlineRegion) { 394 SinglePredFromOutlineRegion = Pred; 395 } else if (SinglePredFromOutlineRegion != Pred) { 396 SinglePredFromOutlineRegion = nullptr; 397 break; 398 } 399 } 400 401 if (SinglePredFromOutlineRegion) 402 return SinglePredFromOutlineRegion; 403 404 #ifndef NDEBUG 405 auto getFirstPHI = [](BasicBlock *BB) { 406 BasicBlock::iterator I = BB->begin(); 407 PHINode *FirstPhi = nullptr; 408 while (I != BB->end()) { 409 PHINode *Phi = dyn_cast<PHINode>(I); 410 if (!Phi) 411 break; 412 if (!FirstPhi) { 413 FirstPhi = Phi; 414 break; 415 } 416 } 417 return FirstPhi; 418 }; 419 // If there are any phi nodes, the single pred either exists or has already 420 // be created before code extraction. 421 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 422 #endif 423 424 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 425 CommonExitBlock->getFirstNonPHI()->getIterator()); 426 427 for (BasicBlock *Pred : 428 llvm::make_early_inc_range(predecessors(CommonExitBlock))) { 429 if (Blocks.count(Pred)) 430 continue; 431 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 432 } 433 // Now add the old exit block to the outline region. 434 Blocks.insert(CommonExitBlock); 435 OldTargets.push_back(NewExitBlock); 436 return CommonExitBlock; 437 } 438 439 // Find the pair of life time markers for address 'Addr' that are either 440 // defined inside the outline region or can legally be shrinkwrapped into the 441 // outline region. If there are not other untracked uses of the address, return 442 // the pair of markers if found; otherwise return a pair of nullptr. 443 CodeExtractor::LifetimeMarkerInfo 444 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 445 Instruction *Addr, 446 BasicBlock *ExitBlock) const { 447 LifetimeMarkerInfo Info; 448 449 for (User *U : Addr->users()) { 450 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 451 if (IntrInst) { 452 // We don't model addresses with multiple start/end markers, but the 453 // markers do not need to be in the region. 454 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 455 if (Info.LifeStart) 456 return {}; 457 Info.LifeStart = IntrInst; 458 continue; 459 } 460 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 461 if (Info.LifeEnd) 462 return {}; 463 Info.LifeEnd = IntrInst; 464 continue; 465 } 466 // At this point, permit debug uses outside of the region. 467 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 468 if (isa<DbgInfoIntrinsic>(IntrInst)) 469 continue; 470 } 471 // Find untracked uses of the address, bail. 472 if (!definedInRegion(Blocks, U)) 473 return {}; 474 } 475 476 if (!Info.LifeStart || !Info.LifeEnd) 477 return {}; 478 479 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 480 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 481 // Do legality check. 482 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 483 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 484 return {}; 485 486 // Check to see if we have a place to do hoisting, if not, bail. 487 if (Info.HoistLifeEnd && !ExitBlock) 488 return {}; 489 490 return Info; 491 } 492 493 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 494 ValueSet &SinkCands, ValueSet &HoistCands, 495 BasicBlock *&ExitBlock) const { 496 Function *Func = (*Blocks.begin())->getParent(); 497 ExitBlock = getCommonExitBlock(Blocks); 498 499 auto moveOrIgnoreLifetimeMarkers = 500 [&](const LifetimeMarkerInfo &LMI) -> bool { 501 if (!LMI.LifeStart) 502 return false; 503 if (LMI.SinkLifeStart) { 504 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 505 << "\n"); 506 SinkCands.insert(LMI.LifeStart); 507 } 508 if (LMI.HoistLifeEnd) { 509 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 510 HoistCands.insert(LMI.LifeEnd); 511 } 512 return true; 513 }; 514 515 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 516 // this is much faster than walking all the instructions. 517 for (AllocaInst *AI : CEAC.getAllocas()) { 518 BasicBlock *BB = AI->getParent(); 519 if (Blocks.count(BB)) 520 continue; 521 522 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 523 // check whether it is actually still in the original function. 524 Function *AIFunc = BB->getParent(); 525 if (AIFunc != Func) 526 continue; 527 528 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 529 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 530 if (Moved) { 531 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 532 SinkCands.insert(AI); 533 continue; 534 } 535 536 // Find bitcasts in the outlined region that have lifetime marker users 537 // outside that region. Replace the lifetime marker use with an 538 // outside region bitcast to avoid unnecessary alloca/reload instructions 539 // and extra lifetime markers. 540 SmallVector<Instruction *, 2> LifetimeBitcastUsers; 541 for (User *U : AI->users()) { 542 if (!definedInRegion(Blocks, U)) 543 continue; 544 545 if (U->stripInBoundsConstantOffsets() != AI) 546 continue; 547 548 Instruction *Bitcast = cast<Instruction>(U); 549 for (User *BU : Bitcast->users()) { 550 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU); 551 if (!IntrInst) 552 continue; 553 554 if (!IntrInst->isLifetimeStartOrEnd()) 555 continue; 556 557 if (definedInRegion(Blocks, IntrInst)) 558 continue; 559 560 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast" 561 << *Bitcast << " in out-of-region lifetime marker " 562 << *IntrInst << "\n"); 563 LifetimeBitcastUsers.push_back(IntrInst); 564 } 565 } 566 567 for (Instruction *I : LifetimeBitcastUsers) { 568 Module *M = AIFunc->getParent(); 569 LLVMContext &Ctx = M->getContext(); 570 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); 571 CastInst *CastI = 572 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I); 573 I->replaceUsesOfWith(I->getOperand(1), CastI); 574 } 575 576 // Follow any bitcasts. 577 SmallVector<Instruction *, 2> Bitcasts; 578 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 579 for (User *U : AI->users()) { 580 if (U->stripInBoundsConstantOffsets() == AI) { 581 Instruction *Bitcast = cast<Instruction>(U); 582 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 583 if (LMI.LifeStart) { 584 Bitcasts.push_back(Bitcast); 585 BitcastLifetimeInfo.push_back(LMI); 586 continue; 587 } 588 } 589 590 // Found unknown use of AI. 591 if (!definedInRegion(Blocks, U)) { 592 Bitcasts.clear(); 593 break; 594 } 595 } 596 597 // Either no bitcasts reference the alloca or there are unknown uses. 598 if (Bitcasts.empty()) 599 continue; 600 601 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 602 SinkCands.insert(AI); 603 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 604 Instruction *BitcastAddr = Bitcasts[I]; 605 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 606 assert(LMI.LifeStart && 607 "Unsafe to sink bitcast without lifetime markers"); 608 moveOrIgnoreLifetimeMarkers(LMI); 609 if (!definedInRegion(Blocks, BitcastAddr)) { 610 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 611 << "\n"); 612 SinkCands.insert(BitcastAddr); 613 } 614 } 615 } 616 } 617 618 bool CodeExtractor::isEligible() const { 619 if (Blocks.empty()) 620 return false; 621 BasicBlock *Header = *Blocks.begin(); 622 Function *F = Header->getParent(); 623 624 // For functions with varargs, check that varargs handling is only done in the 625 // outlined function, i.e vastart and vaend are only used in outlined blocks. 626 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 627 auto containsVarArgIntrinsic = [](const Instruction &I) { 628 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 629 if (const Function *Callee = CI->getCalledFunction()) 630 return Callee->getIntrinsicID() == Intrinsic::vastart || 631 Callee->getIntrinsicID() == Intrinsic::vaend; 632 return false; 633 }; 634 635 for (auto &BB : *F) { 636 if (Blocks.count(&BB)) 637 continue; 638 if (llvm::any_of(BB, containsVarArgIntrinsic)) 639 return false; 640 } 641 } 642 return true; 643 } 644 645 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 646 const ValueSet &SinkCands) const { 647 for (BasicBlock *BB : Blocks) { 648 // If a used value is defined outside the region, it's an input. If an 649 // instruction is used outside the region, it's an output. 650 for (Instruction &II : *BB) { 651 for (auto &OI : II.operands()) { 652 Value *V = OI; 653 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 654 Inputs.insert(V); 655 } 656 657 for (User *U : II.users()) 658 if (!definedInRegion(Blocks, U)) { 659 Outputs.insert(&II); 660 break; 661 } 662 } 663 } 664 } 665 666 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 667 /// of the region, we need to split the entry block of the region so that the 668 /// PHI node is easier to deal with. 669 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 670 unsigned NumPredsFromRegion = 0; 671 unsigned NumPredsOutsideRegion = 0; 672 673 if (Header != &Header->getParent()->getEntryBlock()) { 674 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 675 if (!PN) return; // No PHI nodes. 676 677 // If the header node contains any PHI nodes, check to see if there is more 678 // than one entry from outside the region. If so, we need to sever the 679 // header block into two. 680 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 681 if (Blocks.count(PN->getIncomingBlock(i))) 682 ++NumPredsFromRegion; 683 else 684 ++NumPredsOutsideRegion; 685 686 // If there is one (or fewer) predecessor from outside the region, we don't 687 // need to do anything special. 688 if (NumPredsOutsideRegion <= 1) return; 689 } 690 691 // Otherwise, we need to split the header block into two pieces: one 692 // containing PHI nodes merging values from outside of the region, and a 693 // second that contains all of the code for the block and merges back any 694 // incoming values from inside of the region. 695 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 696 697 // We only want to code extract the second block now, and it becomes the new 698 // header of the region. 699 BasicBlock *OldPred = Header; 700 Blocks.remove(OldPred); 701 Blocks.insert(NewBB); 702 Header = NewBB; 703 704 // Okay, now we need to adjust the PHI nodes and any branches from within the 705 // region to go to the new header block instead of the old header block. 706 if (NumPredsFromRegion) { 707 PHINode *PN = cast<PHINode>(OldPred->begin()); 708 // Loop over all of the predecessors of OldPred that are in the region, 709 // changing them to branch to NewBB instead. 710 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 711 if (Blocks.count(PN->getIncomingBlock(i))) { 712 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 713 TI->replaceUsesOfWith(OldPred, NewBB); 714 } 715 716 // Okay, everything within the region is now branching to the right block, we 717 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 718 BasicBlock::iterator AfterPHIs; 719 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 720 PHINode *PN = cast<PHINode>(AfterPHIs); 721 // Create a new PHI node in the new region, which has an incoming value 722 // from OldPred of PN. 723 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 724 PN->getName() + ".ce"); 725 NewPN->insertBefore(NewBB->begin()); 726 PN->replaceAllUsesWith(NewPN); 727 NewPN->addIncoming(PN, OldPred); 728 729 // Loop over all of the incoming value in PN, moving them to NewPN if they 730 // are from the extracted region. 731 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 732 if (Blocks.count(PN->getIncomingBlock(i))) { 733 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 734 PN->removeIncomingValue(i); 735 --i; 736 } 737 } 738 } 739 } 740 } 741 742 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 743 /// outlined region, we split these PHIs on two: one with inputs from region 744 /// and other with remaining incoming blocks; then first PHIs are placed in 745 /// outlined region. 746 void CodeExtractor::severSplitPHINodesOfExits( 747 const SmallPtrSetImpl<BasicBlock *> &Exits) { 748 for (BasicBlock *ExitBB : Exits) { 749 BasicBlock *NewBB = nullptr; 750 751 for (PHINode &PN : ExitBB->phis()) { 752 // Find all incoming values from the outlining region. 753 SmallVector<unsigned, 2> IncomingVals; 754 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 755 if (Blocks.count(PN.getIncomingBlock(i))) 756 IncomingVals.push_back(i); 757 758 // Do not process PHI if there is one (or fewer) predecessor from region. 759 // If PHI has exactly one predecessor from region, only this one incoming 760 // will be replaced on codeRepl block, so it should be safe to skip PHI. 761 if (IncomingVals.size() <= 1) 762 continue; 763 764 // Create block for new PHIs and add it to the list of outlined if it 765 // wasn't done before. 766 if (!NewBB) { 767 NewBB = BasicBlock::Create(ExitBB->getContext(), 768 ExitBB->getName() + ".split", 769 ExitBB->getParent(), ExitBB); 770 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB)); 771 for (BasicBlock *PredBB : Preds) 772 if (Blocks.count(PredBB)) 773 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 774 BranchInst::Create(ExitBB, NewBB); 775 Blocks.insert(NewBB); 776 } 777 778 // Split this PHI. 779 PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(), 780 PN.getName() + ".ce"); 781 NewPN->insertBefore(NewBB->getFirstNonPHIIt()); 782 for (unsigned i : IncomingVals) 783 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 784 for (unsigned i : reverse(IncomingVals)) 785 PN.removeIncomingValue(i, false); 786 PN.addIncoming(NewPN, NewBB); 787 } 788 } 789 } 790 791 void CodeExtractor::splitReturnBlocks() { 792 for (BasicBlock *Block : Blocks) 793 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 794 BasicBlock *New = 795 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 796 if (DT) { 797 // Old dominates New. New node dominates all other nodes dominated 798 // by Old. 799 DomTreeNode *OldNode = DT->getNode(Block); 800 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 801 OldNode->end()); 802 803 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 804 805 for (DomTreeNode *I : Children) 806 DT->changeImmediateDominator(I, NewNode); 807 } 808 } 809 } 810 811 /// constructFunction - make a function based on inputs and outputs, as follows: 812 /// f(in0, ..., inN, out0, ..., outN) 813 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 814 const ValueSet &outputs, 815 BasicBlock *header, 816 BasicBlock *newRootNode, 817 BasicBlock *newHeader, 818 Function *oldFunction, 819 Module *M) { 820 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 821 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 822 823 // This function returns unsigned, outputs will go back by reference. 824 switch (NumExitBlocks) { 825 case 0: 826 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 827 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 828 default: RetTy = Type::getInt16Ty(header->getContext()); break; 829 } 830 831 std::vector<Type *> ParamTy; 832 std::vector<Type *> AggParamTy; 833 ValueSet StructValues; 834 const DataLayout &DL = M->getDataLayout(); 835 836 // Add the types of the input values to the function's argument list 837 for (Value *value : inputs) { 838 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 839 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) { 840 AggParamTy.push_back(value->getType()); 841 StructValues.insert(value); 842 } else 843 ParamTy.push_back(value->getType()); 844 } 845 846 // Add the types of the output values to the function's argument list. 847 for (Value *output : outputs) { 848 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 849 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 850 AggParamTy.push_back(output->getType()); 851 StructValues.insert(output); 852 } else 853 ParamTy.push_back( 854 PointerType::get(output->getType(), DL.getAllocaAddrSpace())); 855 } 856 857 assert( 858 (ParamTy.size() + AggParamTy.size()) == 859 (inputs.size() + outputs.size()) && 860 "Number of scalar and aggregate params does not match inputs, outputs"); 861 assert((StructValues.empty() || AggregateArgs) && 862 "Expeced StructValues only with AggregateArgs set"); 863 864 // Concatenate scalar and aggregate params in ParamTy. 865 size_t NumScalarParams = ParamTy.size(); 866 StructType *StructTy = nullptr; 867 if (AggregateArgs && !AggParamTy.empty()) { 868 StructTy = StructType::get(M->getContext(), AggParamTy); 869 ParamTy.push_back(PointerType::get(StructTy, DL.getAllocaAddrSpace())); 870 } 871 872 LLVM_DEBUG({ 873 dbgs() << "Function type: " << *RetTy << " f("; 874 for (Type *i : ParamTy) 875 dbgs() << *i << ", "; 876 dbgs() << ")\n"; 877 }); 878 879 FunctionType *funcType = FunctionType::get( 880 RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg()); 881 882 std::string SuffixToUse = 883 Suffix.empty() 884 ? (header->getName().empty() ? "extracted" : header->getName().str()) 885 : Suffix; 886 // Create the new function 887 Function *newFunction = Function::Create( 888 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 889 oldFunction->getName() + "." + SuffixToUse, M); 890 891 // Inherit all of the target dependent attributes and white-listed 892 // target independent attributes. 893 // (e.g. If the extracted region contains a call to an x86.sse 894 // instruction we need to make sure that the extracted region has the 895 // "target-features" attribute allowing it to be lowered. 896 // FIXME: This should be changed to check to see if a specific 897 // attribute can not be inherited. 898 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) { 899 if (Attr.isStringAttribute()) { 900 if (Attr.getKindAsString() == "thunk") 901 continue; 902 } else 903 switch (Attr.getKindAsEnum()) { 904 // Those attributes cannot be propagated safely. Explicitly list them 905 // here so we get a warning if new attributes are added. 906 case Attribute::AllocSize: 907 case Attribute::Builtin: 908 case Attribute::Convergent: 909 case Attribute::JumpTable: 910 case Attribute::Naked: 911 case Attribute::NoBuiltin: 912 case Attribute::NoMerge: 913 case Attribute::NoReturn: 914 case Attribute::NoSync: 915 case Attribute::ReturnsTwice: 916 case Attribute::Speculatable: 917 case Attribute::StackAlignment: 918 case Attribute::WillReturn: 919 case Attribute::AllocKind: 920 case Attribute::PresplitCoroutine: 921 case Attribute::Memory: 922 case Attribute::NoFPClass: 923 continue; 924 // Those attributes should be safe to propagate to the extracted function. 925 case Attribute::AlwaysInline: 926 case Attribute::Cold: 927 case Attribute::DisableSanitizerInstrumentation: 928 case Attribute::FnRetThunkExtern: 929 case Attribute::Hot: 930 case Attribute::NoRecurse: 931 case Attribute::InlineHint: 932 case Attribute::MinSize: 933 case Attribute::NoCallback: 934 case Attribute::NoDuplicate: 935 case Attribute::NoFree: 936 case Attribute::NoImplicitFloat: 937 case Attribute::NoInline: 938 case Attribute::NonLazyBind: 939 case Attribute::NoRedZone: 940 case Attribute::NoUnwind: 941 case Attribute::NoSanitizeBounds: 942 case Attribute::NoSanitizeCoverage: 943 case Attribute::NullPointerIsValid: 944 case Attribute::OptimizeForDebugging: 945 case Attribute::OptForFuzzing: 946 case Attribute::OptimizeNone: 947 case Attribute::OptimizeForSize: 948 case Attribute::SafeStack: 949 case Attribute::ShadowCallStack: 950 case Attribute::SanitizeAddress: 951 case Attribute::SanitizeMemory: 952 case Attribute::SanitizeThread: 953 case Attribute::SanitizeHWAddress: 954 case Attribute::SanitizeMemTag: 955 case Attribute::SpeculativeLoadHardening: 956 case Attribute::StackProtect: 957 case Attribute::StackProtectReq: 958 case Attribute::StackProtectStrong: 959 case Attribute::StrictFP: 960 case Attribute::UWTable: 961 case Attribute::VScaleRange: 962 case Attribute::NoCfCheck: 963 case Attribute::MustProgress: 964 case Attribute::NoProfile: 965 case Attribute::SkipProfile: 966 break; 967 // These attributes cannot be applied to functions. 968 case Attribute::Alignment: 969 case Attribute::AllocatedPointer: 970 case Attribute::AllocAlign: 971 case Attribute::ByVal: 972 case Attribute::Dereferenceable: 973 case Attribute::DereferenceableOrNull: 974 case Attribute::ElementType: 975 case Attribute::InAlloca: 976 case Attribute::InReg: 977 case Attribute::Nest: 978 case Attribute::NoAlias: 979 case Attribute::NoCapture: 980 case Attribute::NoUndef: 981 case Attribute::NonNull: 982 case Attribute::Preallocated: 983 case Attribute::ReadNone: 984 case Attribute::ReadOnly: 985 case Attribute::Returned: 986 case Attribute::SExt: 987 case Attribute::StructRet: 988 case Attribute::SwiftError: 989 case Attribute::SwiftSelf: 990 case Attribute::SwiftAsync: 991 case Attribute::ZExt: 992 case Attribute::ImmArg: 993 case Attribute::ByRef: 994 case Attribute::WriteOnly: 995 // These are not really attributes. 996 case Attribute::None: 997 case Attribute::EndAttrKinds: 998 case Attribute::EmptyKey: 999 case Attribute::TombstoneKey: 1000 llvm_unreachable("Not a function attribute"); 1001 } 1002 1003 newFunction->addFnAttr(Attr); 1004 } 1005 newFunction->insert(newFunction->end(), newRootNode); 1006 1007 // Create scalar and aggregate iterators to name all of the arguments we 1008 // inserted. 1009 Function::arg_iterator ScalarAI = newFunction->arg_begin(); 1010 Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams); 1011 1012 // Rewrite all users of the inputs in the extracted region to use the 1013 // arguments (or appropriate addressing into struct) instead. 1014 for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) { 1015 Value *RewriteVal; 1016 if (AggregateArgs && StructValues.contains(inputs[i])) { 1017 Value *Idx[2]; 1018 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 1019 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx); 1020 Instruction *TI = newFunction->begin()->getTerminator(); 1021 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1022 StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI); 1023 RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP, 1024 "loadgep_" + inputs[i]->getName(), TI); 1025 ++aggIdx; 1026 } else 1027 RewriteVal = &*ScalarAI++; 1028 1029 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 1030 for (User *use : Users) 1031 if (Instruction *inst = dyn_cast<Instruction>(use)) 1032 if (Blocks.count(inst->getParent())) 1033 inst->replaceUsesOfWith(inputs[i], RewriteVal); 1034 } 1035 1036 // Set names for input and output arguments. 1037 if (NumScalarParams) { 1038 ScalarAI = newFunction->arg_begin(); 1039 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI) 1040 if (!StructValues.contains(inputs[i])) 1041 ScalarAI->setName(inputs[i]->getName()); 1042 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI) 1043 if (!StructValues.contains(outputs[i])) 1044 ScalarAI->setName(outputs[i]->getName() + ".out"); 1045 } 1046 1047 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 1048 // within the new function. This must be done before we lose track of which 1049 // blocks were originally in the code region. 1050 std::vector<User *> Users(header->user_begin(), header->user_end()); 1051 for (auto &U : Users) 1052 // The BasicBlock which contains the branch is not in the region 1053 // modify the branch target to a new block 1054 if (Instruction *I = dyn_cast<Instruction>(U)) 1055 if (I->isTerminator() && I->getFunction() == oldFunction && 1056 !Blocks.count(I->getParent())) 1057 I->replaceUsesOfWith(header, newHeader); 1058 1059 return newFunction; 1060 } 1061 1062 /// Erase lifetime.start markers which reference inputs to the extraction 1063 /// region, and insert the referenced memory into \p LifetimesStart. 1064 /// 1065 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 1066 /// of allocas which will be moved from the caller function into the extracted 1067 /// function (\p SunkAllocas). 1068 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 1069 const SetVector<Value *> &SunkAllocas, 1070 SetVector<Value *> &LifetimesStart) { 1071 for (BasicBlock *BB : Blocks) { 1072 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 1073 auto *II = dyn_cast<IntrinsicInst>(&I); 1074 if (!II || !II->isLifetimeStartOrEnd()) 1075 continue; 1076 1077 // Get the memory operand of the lifetime marker. If the underlying 1078 // object is a sunk alloca, or is otherwise defined in the extraction 1079 // region, the lifetime marker must not be erased. 1080 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1081 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1082 continue; 1083 1084 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1085 LifetimesStart.insert(Mem); 1086 II->eraseFromParent(); 1087 } 1088 } 1089 } 1090 1091 /// Insert lifetime start/end markers surrounding the call to the new function 1092 /// for objects defined in the caller. 1093 static void insertLifetimeMarkersSurroundingCall( 1094 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1095 CallInst *TheCall) { 1096 LLVMContext &Ctx = M->getContext(); 1097 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1098 Instruction *Term = TheCall->getParent()->getTerminator(); 1099 1100 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1101 // markers before the call if \p InsertBefore, and after the call otherwise. 1102 auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects, 1103 bool InsertBefore) { 1104 for (Value *Mem : Objects) { 1105 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1106 TheCall->getFunction()) && 1107 "Input memory not defined in original function"); 1108 1109 Function *Func = Intrinsic::getDeclaration(M, MarkerFunc, Mem->getType()); 1110 auto Marker = CallInst::Create(Func, {NegativeOne, Mem}); 1111 if (InsertBefore) 1112 Marker->insertBefore(TheCall); 1113 else 1114 Marker->insertBefore(Term); 1115 } 1116 }; 1117 1118 if (!LifetimesStart.empty()) { 1119 insertMarkers(Intrinsic::lifetime_start, LifetimesStart, 1120 /*InsertBefore=*/true); 1121 } 1122 1123 if (!LifetimesEnd.empty()) { 1124 insertMarkers(Intrinsic::lifetime_end, LifetimesEnd, 1125 /*InsertBefore=*/false); 1126 } 1127 } 1128 1129 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1130 /// the call instruction, splitting any PHI nodes in the header block as 1131 /// necessary. 1132 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1133 BasicBlock *codeReplacer, 1134 ValueSet &inputs, 1135 ValueSet &outputs) { 1136 // Emit a call to the new function, passing in: *pointer to struct (if 1137 // aggregating parameters), or plan inputs and allocated memory for outputs 1138 std::vector<Value *> params, ReloadOutputs, Reloads; 1139 ValueSet StructValues; 1140 1141 Module *M = newFunction->getParent(); 1142 LLVMContext &Context = M->getContext(); 1143 const DataLayout &DL = M->getDataLayout(); 1144 CallInst *call = nullptr; 1145 1146 // Add inputs as params, or to be filled into the struct 1147 unsigned ScalarInputArgNo = 0; 1148 SmallVector<unsigned, 1> SwiftErrorArgs; 1149 for (Value *input : inputs) { 1150 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input)) 1151 StructValues.insert(input); 1152 else { 1153 params.push_back(input); 1154 if (input->isSwiftError()) 1155 SwiftErrorArgs.push_back(ScalarInputArgNo); 1156 } 1157 ++ScalarInputArgNo; 1158 } 1159 1160 // Create allocas for the outputs 1161 unsigned ScalarOutputArgNo = 0; 1162 for (Value *output : outputs) { 1163 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 1164 StructValues.insert(output); 1165 } else { 1166 AllocaInst *alloca = 1167 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1168 nullptr, output->getName() + ".loc", 1169 &codeReplacer->getParent()->front().front()); 1170 ReloadOutputs.push_back(alloca); 1171 params.push_back(alloca); 1172 ++ScalarOutputArgNo; 1173 } 1174 } 1175 1176 StructType *StructArgTy = nullptr; 1177 AllocaInst *Struct = nullptr; 1178 unsigned NumAggregatedInputs = 0; 1179 if (AggregateArgs && !StructValues.empty()) { 1180 std::vector<Type *> ArgTypes; 1181 for (Value *V : StructValues) 1182 ArgTypes.push_back(V->getType()); 1183 1184 // Allocate a struct at the beginning of this function 1185 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1186 Struct = new AllocaInst( 1187 StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg", 1188 AllocationBlock ? &*AllocationBlock->getFirstInsertionPt() 1189 : &codeReplacer->getParent()->front().front()); 1190 params.push_back(Struct); 1191 1192 // Store aggregated inputs in the struct. 1193 for (unsigned i = 0, e = StructValues.size(); i != e; ++i) { 1194 if (inputs.contains(StructValues[i])) { 1195 Value *Idx[2]; 1196 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1197 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1198 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1199 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1200 GEP->insertInto(codeReplacer, codeReplacer->end()); 1201 new StoreInst(StructValues[i], GEP, codeReplacer); 1202 NumAggregatedInputs++; 1203 } 1204 } 1205 } 1206 1207 // Emit the call to the function 1208 call = CallInst::Create(newFunction, params, 1209 NumExitBlocks > 1 ? "targetBlock" : ""); 1210 // Add debug location to the new call, if the original function has debug 1211 // info. In that case, the terminator of the entry block of the extracted 1212 // function contains the first debug location of the extracted function, 1213 // set in extractCodeRegion. 1214 if (codeReplacer->getParent()->getSubprogram()) { 1215 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1216 call->setDebugLoc(DL); 1217 } 1218 call->insertInto(codeReplacer, codeReplacer->end()); 1219 1220 // Set swifterror parameter attributes. 1221 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1222 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1223 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1224 } 1225 1226 // Reload the outputs passed in by reference, use the struct if output is in 1227 // the aggregate or reload from the scalar argument. 1228 for (unsigned i = 0, e = outputs.size(), scalarIdx = 0, 1229 aggIdx = NumAggregatedInputs; 1230 i != e; ++i) { 1231 Value *Output = nullptr; 1232 if (AggregateArgs && StructValues.contains(outputs[i])) { 1233 Value *Idx[2]; 1234 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1235 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1236 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1237 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1238 GEP->insertInto(codeReplacer, codeReplacer->end()); 1239 Output = GEP; 1240 ++aggIdx; 1241 } else { 1242 Output = ReloadOutputs[scalarIdx]; 1243 ++scalarIdx; 1244 } 1245 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1246 outputs[i]->getName() + ".reload", 1247 codeReplacer); 1248 Reloads.push_back(load); 1249 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1250 for (User *U : Users) { 1251 Instruction *inst = cast<Instruction>(U); 1252 if (!Blocks.count(inst->getParent())) 1253 inst->replaceUsesOfWith(outputs[i], load); 1254 } 1255 } 1256 1257 // Now we can emit a switch statement using the call as a value. 1258 SwitchInst *TheSwitch = 1259 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1260 codeReplacer, 0, codeReplacer); 1261 1262 // Since there may be multiple exits from the original region, make the new 1263 // function return an unsigned, switch on that number. This loop iterates 1264 // over all of the blocks in the extracted region, updating any terminator 1265 // instructions in the to-be-extracted region that branch to blocks that are 1266 // not in the region to be extracted. 1267 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1268 1269 // Iterate over the previously collected targets, and create new blocks inside 1270 // the function to branch to. 1271 unsigned switchVal = 0; 1272 for (BasicBlock *OldTarget : OldTargets) { 1273 if (Blocks.count(OldTarget)) 1274 continue; 1275 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1276 if (NewTarget) 1277 continue; 1278 1279 // If we don't already have an exit stub for this non-extracted 1280 // destination, create one now! 1281 NewTarget = BasicBlock::Create(Context, 1282 OldTarget->getName() + ".exitStub", 1283 newFunction); 1284 unsigned SuccNum = switchVal++; 1285 1286 Value *brVal = nullptr; 1287 assert(NumExitBlocks < 0xffff && "too many exit blocks for switch"); 1288 switch (NumExitBlocks) { 1289 case 0: 1290 case 1: break; // No value needed. 1291 case 2: // Conditional branch, return a bool 1292 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1293 break; 1294 default: 1295 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1296 break; 1297 } 1298 1299 ReturnInst::Create(Context, brVal, NewTarget); 1300 1301 // Update the switch instruction. 1302 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1303 SuccNum), 1304 OldTarget); 1305 } 1306 1307 for (BasicBlock *Block : Blocks) { 1308 Instruction *TI = Block->getTerminator(); 1309 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1310 if (Blocks.count(TI->getSuccessor(i))) 1311 continue; 1312 BasicBlock *OldTarget = TI->getSuccessor(i); 1313 // add a new basic block which returns the appropriate value 1314 BasicBlock *NewTarget = ExitBlockMap[OldTarget]; 1315 assert(NewTarget && "Unknown target block!"); 1316 1317 // rewrite the original branch instruction with this new target 1318 TI->setSuccessor(i, NewTarget); 1319 } 1320 } 1321 1322 // Store the arguments right after the definition of output value. 1323 // This should be proceeded after creating exit stubs to be ensure that invoke 1324 // result restore will be placed in the outlined function. 1325 Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin(); 1326 std::advance(ScalarOutputArgBegin, ScalarInputArgNo); 1327 Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin(); 1328 std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo); 1329 1330 for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e; 1331 ++i) { 1332 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1333 if (!OutI) 1334 continue; 1335 1336 // Find proper insertion point. 1337 BasicBlock::iterator InsertPt; 1338 // In case OutI is an invoke, we insert the store at the beginning in the 1339 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1340 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1341 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1342 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1343 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1344 else 1345 InsertPt = std::next(OutI->getIterator()); 1346 1347 Instruction *InsertBefore = &*InsertPt; 1348 assert((InsertBefore->getFunction() == newFunction || 1349 Blocks.count(InsertBefore->getParent())) && 1350 "InsertPt should be in new function"); 1351 if (AggregateArgs && StructValues.contains(outputs[i])) { 1352 assert(AggOutputArgBegin != newFunction->arg_end() && 1353 "Number of aggregate output arguments should match " 1354 "the number of defined values"); 1355 Value *Idx[2]; 1356 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1357 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1358 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1359 StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(), 1360 InsertBefore); 1361 new StoreInst(outputs[i], GEP, InsertBefore); 1362 ++aggIdx; 1363 // Since there should be only one struct argument aggregating 1364 // all the output values, we shouldn't increment AggOutputArgBegin, which 1365 // always points to the struct argument, in this case. 1366 } else { 1367 assert(ScalarOutputArgBegin != newFunction->arg_end() && 1368 "Number of scalar output arguments should match " 1369 "the number of defined values"); 1370 new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore); 1371 ++ScalarOutputArgBegin; 1372 } 1373 } 1374 1375 // Now that we've done the deed, simplify the switch instruction. 1376 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1377 switch (NumExitBlocks) { 1378 case 0: 1379 // There are no successors (the block containing the switch itself), which 1380 // means that previously this was the last part of the function, and hence 1381 // this should be rewritten as a `ret' 1382 1383 // Check if the function should return a value 1384 if (OldFnRetTy->isVoidTy()) { 1385 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1386 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1387 // return what we have 1388 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1389 } else { 1390 // Otherwise we must have code extracted an unwind or something, just 1391 // return whatever we want. 1392 ReturnInst::Create(Context, 1393 Constant::getNullValue(OldFnRetTy), TheSwitch); 1394 } 1395 1396 TheSwitch->eraseFromParent(); 1397 break; 1398 case 1: 1399 // Only a single destination, change the switch into an unconditional 1400 // branch. 1401 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1402 TheSwitch->eraseFromParent(); 1403 break; 1404 case 2: 1405 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1406 call, TheSwitch); 1407 TheSwitch->eraseFromParent(); 1408 break; 1409 default: 1410 // Otherwise, make the default destination of the switch instruction be one 1411 // of the other successors. 1412 TheSwitch->setCondition(call); 1413 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1414 // Remove redundant case 1415 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1416 break; 1417 } 1418 1419 // Insert lifetime markers around the reloads of any output values. The 1420 // allocas output values are stored in are only in-use in the codeRepl block. 1421 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1422 1423 return call; 1424 } 1425 1426 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1427 auto newFuncIt = newFunction->front().getIterator(); 1428 for (BasicBlock *Block : Blocks) { 1429 // Delete the basic block from the old function, and the list of blocks 1430 Block->removeFromParent(); 1431 1432 // Insert this basic block into the new function 1433 // Insert the original blocks after the entry block created 1434 // for the new function. The entry block may be followed 1435 // by a set of exit blocks at this point, but these exit 1436 // blocks better be placed at the end of the new function. 1437 newFuncIt = newFunction->insert(std::next(newFuncIt), Block); 1438 } 1439 } 1440 1441 void CodeExtractor::calculateNewCallTerminatorWeights( 1442 BasicBlock *CodeReplacer, 1443 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1444 BranchProbabilityInfo *BPI) { 1445 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1446 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1447 1448 // Update the branch weights for the exit block. 1449 Instruction *TI = CodeReplacer->getTerminator(); 1450 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1451 1452 // Block Frequency distribution with dummy node. 1453 Distribution BranchDist; 1454 1455 SmallVector<BranchProbability, 4> EdgeProbabilities( 1456 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1457 1458 // Add each of the frequencies of the successors. 1459 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1460 BlockNode ExitNode(i); 1461 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1462 if (ExitFreq != 0) 1463 BranchDist.addExit(ExitNode, ExitFreq); 1464 else 1465 EdgeProbabilities[i] = BranchProbability::getZero(); 1466 } 1467 1468 // Check for no total weight. 1469 if (BranchDist.Total == 0) { 1470 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1471 return; 1472 } 1473 1474 // Normalize the distribution so that they can fit in unsigned. 1475 BranchDist.normalize(); 1476 1477 // Create normalized branch weights and set the metadata. 1478 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1479 const auto &Weight = BranchDist.Weights[I]; 1480 1481 // Get the weight and update the current BFI. 1482 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1483 BranchProbability BP(Weight.Amount, BranchDist.Total); 1484 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1485 } 1486 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1487 TI->setMetadata( 1488 LLVMContext::MD_prof, 1489 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1490 } 1491 1492 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1493 /// \p F. 1494 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1495 for (Instruction &I : instructions(F)) { 1496 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1497 findDbgUsers(DbgUsers, &I); 1498 for (DbgVariableIntrinsic *DVI : DbgUsers) 1499 if (DVI->getFunction() != &F) 1500 DVI->eraseFromParent(); 1501 } 1502 } 1503 1504 /// Fix up the debug info in the old and new functions by pointing line 1505 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1506 /// intrinsics which point to values outside of the new function. 1507 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1508 CallInst &TheCall) { 1509 DISubprogram *OldSP = OldFunc.getSubprogram(); 1510 LLVMContext &Ctx = OldFunc.getContext(); 1511 1512 if (!OldSP) { 1513 // Erase any debug info the new function contains. 1514 stripDebugInfo(NewFunc); 1515 // Make sure the old function doesn't contain any non-local metadata refs. 1516 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1517 return; 1518 } 1519 1520 // Create a subprogram for the new function. Leave out a description of the 1521 // function arguments, as the parameters don't correspond to anything at the 1522 // source level. 1523 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1524 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, 1525 OldSP->getUnit()); 1526 auto SPType = 1527 DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt)); 1528 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1529 DISubprogram::SPFlagOptimized | 1530 DISubprogram::SPFlagLocalToUnit; 1531 auto NewSP = DIB.createFunction( 1532 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1533 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1534 NewFunc.setSubprogram(NewSP); 1535 1536 // Debug intrinsics in the new function need to be updated in one of two 1537 // ways: 1538 // 1) They need to be deleted, because they describe a value in the old 1539 // function. 1540 // 2) They need to point to fresh metadata, e.g. because they currently 1541 // point to a variable in the wrong scope. 1542 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1543 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1544 DenseMap<const MDNode *, MDNode *> Cache; 1545 for (Instruction &I : instructions(NewFunc)) { 1546 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1547 if (!DII) 1548 continue; 1549 1550 // Point the intrinsic to a fresh label within the new function if the 1551 // intrinsic was not inlined from some other function. 1552 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1553 if (DLI->getDebugLoc().getInlinedAt()) 1554 continue; 1555 DILabel *OldLabel = DLI->getLabel(); 1556 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1557 if (!NewLabel) { 1558 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram( 1559 *OldLabel->getScope(), *NewSP, Ctx, Cache); 1560 NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(), 1561 OldLabel->getFile(), OldLabel->getLine()); 1562 } 1563 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); 1564 continue; 1565 } 1566 1567 auto IsInvalidLocation = [&NewFunc](Value *Location) { 1568 // Location is invalid if it isn't a constant or an instruction, or is an 1569 // instruction but isn't in the new function. 1570 if (!Location || 1571 (!isa<Constant>(Location) && !isa<Instruction>(Location))) 1572 return true; 1573 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1574 return LocationInst && LocationInst->getFunction() != &NewFunc; 1575 }; 1576 1577 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1578 // If any of the used locations are invalid, delete the intrinsic. 1579 if (any_of(DVI->location_ops(), IsInvalidLocation)) { 1580 DebugIntrinsicsToDelete.push_back(DVI); 1581 continue; 1582 } 1583 // DbgAssign intrinsics have an extra Value argument: 1584 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 1585 DAI && IsInvalidLocation(DAI->getAddress())) { 1586 DebugIntrinsicsToDelete.push_back(DVI); 1587 continue; 1588 } 1589 // If the variable was in the scope of the old function, i.e. it was not 1590 // inlined, point the intrinsic to a fresh variable within the new function. 1591 if (!DVI->getDebugLoc().getInlinedAt()) { 1592 DILocalVariable *OldVar = DVI->getVariable(); 1593 DINode *&NewVar = RemappedMetadata[OldVar]; 1594 if (!NewVar) { 1595 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram( 1596 *OldVar->getScope(), *NewSP, Ctx, Cache); 1597 NewVar = DIB.createAutoVariable( 1598 NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1599 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1600 OldVar->getAlignInBits()); 1601 } 1602 DVI->setVariable(cast<DILocalVariable>(NewVar)); 1603 } 1604 } 1605 1606 for (auto *DII : DebugIntrinsicsToDelete) 1607 DII->eraseFromParent(); 1608 DIB.finalizeSubprogram(NewSP); 1609 1610 // Fix up the scope information attached to the line locations in the new 1611 // function. 1612 for (Instruction &I : instructions(NewFunc)) { 1613 if (const DebugLoc &DL = I.getDebugLoc()) 1614 I.setDebugLoc( 1615 DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache)); 1616 1617 // Loop info metadata may contain line locations. Fix them up. 1618 auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * { 1619 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1620 return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache); 1621 return MD; 1622 }; 1623 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1624 } 1625 if (!TheCall.getDebugLoc()) 1626 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP)); 1627 1628 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1629 } 1630 1631 Function * 1632 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1633 ValueSet Inputs, Outputs; 1634 return extractCodeRegion(CEAC, Inputs, Outputs); 1635 } 1636 1637 Function * 1638 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC, 1639 ValueSet &inputs, ValueSet &outputs) { 1640 if (!isEligible()) 1641 return nullptr; 1642 1643 // Assumption: this is a single-entry code region, and the header is the first 1644 // block in the region. 1645 BasicBlock *header = *Blocks.begin(); 1646 Function *oldFunction = header->getParent(); 1647 1648 // Calculate the entry frequency of the new function before we change the root 1649 // block. 1650 BlockFrequency EntryFreq; 1651 if (BFI) { 1652 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1653 for (BasicBlock *Pred : predecessors(header)) { 1654 if (Blocks.count(Pred)) 1655 continue; 1656 EntryFreq += 1657 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1658 } 1659 } 1660 1661 // Remove @llvm.assume calls that will be moved to the new function from the 1662 // old function's assumption cache. 1663 for (BasicBlock *Block : Blocks) { 1664 for (Instruction &I : llvm::make_early_inc_range(*Block)) { 1665 if (auto *AI = dyn_cast<AssumeInst>(&I)) { 1666 if (AC) 1667 AC->unregisterAssumption(AI); 1668 AI->eraseFromParent(); 1669 } 1670 } 1671 } 1672 1673 // If we have any return instructions in the region, split those blocks so 1674 // that the return is not in the region. 1675 splitReturnBlocks(); 1676 1677 // Calculate the exit blocks for the extracted region and the total exit 1678 // weights for each of those blocks. 1679 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1680 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1681 for (BasicBlock *Block : Blocks) { 1682 for (BasicBlock *Succ : successors(Block)) { 1683 if (!Blocks.count(Succ)) { 1684 // Update the branch weight for this successor. 1685 if (BFI) { 1686 BlockFrequency &BF = ExitWeights[Succ]; 1687 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ); 1688 } 1689 ExitBlocks.insert(Succ); 1690 } 1691 } 1692 } 1693 NumExitBlocks = ExitBlocks.size(); 1694 1695 for (BasicBlock *Block : Blocks) { 1696 Instruction *TI = Block->getTerminator(); 1697 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1698 if (Blocks.count(TI->getSuccessor(i))) 1699 continue; 1700 BasicBlock *OldTarget = TI->getSuccessor(i); 1701 OldTargets.push_back(OldTarget); 1702 } 1703 } 1704 1705 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1706 severSplitPHINodesOfEntry(header); 1707 severSplitPHINodesOfExits(ExitBlocks); 1708 1709 // This takes place of the original loop 1710 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1711 "codeRepl", oldFunction, 1712 header); 1713 1714 // The new function needs a root node because other nodes can branch to the 1715 // head of the region, but the entry node of a function cannot have preds. 1716 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1717 "newFuncRoot"); 1718 auto *BranchI = BranchInst::Create(header); 1719 // If the original function has debug info, we have to add a debug location 1720 // to the new branch instruction from the artificial entry block. 1721 // We use the debug location of the first instruction in the extracted 1722 // blocks, as there is no other equivalent line in the source code. 1723 if (oldFunction->getSubprogram()) { 1724 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1725 return any_of(*BB, [&BranchI](const Instruction &I) { 1726 if (!I.getDebugLoc()) 1727 return false; 1728 BranchI->setDebugLoc(I.getDebugLoc()); 1729 return true; 1730 }); 1731 }); 1732 } 1733 BranchI->insertInto(newFuncRoot, newFuncRoot->end()); 1734 1735 ValueSet SinkingCands, HoistingCands; 1736 BasicBlock *CommonExit = nullptr; 1737 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1738 assert(HoistingCands.empty() || CommonExit); 1739 1740 // Find inputs to, outputs from the code region. 1741 findInputsOutputs(inputs, outputs, SinkingCands); 1742 1743 // Now sink all instructions which only have non-phi uses inside the region. 1744 // Group the allocas at the start of the block, so that any bitcast uses of 1745 // the allocas are well-defined. 1746 AllocaInst *FirstSunkAlloca = nullptr; 1747 for (auto *II : SinkingCands) { 1748 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1749 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1750 if (!FirstSunkAlloca) 1751 FirstSunkAlloca = AI; 1752 } 1753 } 1754 assert((SinkingCands.empty() || FirstSunkAlloca) && 1755 "Did not expect a sink candidate without any allocas"); 1756 for (auto *II : SinkingCands) { 1757 if (!isa<AllocaInst>(II)) { 1758 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1759 } 1760 } 1761 1762 if (!HoistingCands.empty()) { 1763 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1764 Instruction *TI = HoistToBlock->getTerminator(); 1765 for (auto *II : HoistingCands) 1766 cast<Instruction>(II)->moveBefore(TI); 1767 } 1768 1769 // Collect objects which are inputs to the extraction region and also 1770 // referenced by lifetime start markers within it. The effects of these 1771 // markers must be replicated in the calling function to prevent the stack 1772 // coloring pass from merging slots which store input objects. 1773 ValueSet LifetimesStart; 1774 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1775 1776 // Construct new function based on inputs/outputs & add allocas for all defs. 1777 Function *newFunction = 1778 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1779 oldFunction, oldFunction->getParent()); 1780 1781 // Update the entry count of the function. 1782 if (BFI) { 1783 auto Count = BFI->getProfileCountFromFreq(EntryFreq); 1784 if (Count) 1785 newFunction->setEntryCount( 1786 ProfileCount(*Count, Function::PCT_Real)); // FIXME 1787 BFI->setBlockFreq(codeReplacer, EntryFreq); 1788 } 1789 1790 CallInst *TheCall = 1791 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1792 1793 moveCodeToFunction(newFunction); 1794 1795 // Replicate the effects of any lifetime start/end markers which referenced 1796 // input objects in the extraction region by placing markers around the call. 1797 insertLifetimeMarkersSurroundingCall( 1798 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1799 1800 // Propagate personality info to the new function if there is one. 1801 if (oldFunction->hasPersonalityFn()) 1802 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1803 1804 // Update the branch weights for the exit block. 1805 if (BFI && NumExitBlocks > 1) 1806 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1807 1808 // Loop over all of the PHI nodes in the header and exit blocks, and change 1809 // any references to the old incoming edge to be the new incoming edge. 1810 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1811 PHINode *PN = cast<PHINode>(I); 1812 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1813 if (!Blocks.count(PN->getIncomingBlock(i))) 1814 PN->setIncomingBlock(i, newFuncRoot); 1815 } 1816 1817 for (BasicBlock *ExitBB : ExitBlocks) 1818 for (PHINode &PN : ExitBB->phis()) { 1819 Value *IncomingCodeReplacerVal = nullptr; 1820 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1821 // Ignore incoming values from outside of the extracted region. 1822 if (!Blocks.count(PN.getIncomingBlock(i))) 1823 continue; 1824 1825 // Ensure that there is only one incoming value from codeReplacer. 1826 if (!IncomingCodeReplacerVal) { 1827 PN.setIncomingBlock(i, codeReplacer); 1828 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1829 } else 1830 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1831 "PHI has two incompatbile incoming values from codeRepl"); 1832 } 1833 } 1834 1835 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1836 1837 // Mark the new function `noreturn` if applicable. Terminators which resume 1838 // exception propagation are treated as returning instructions. This is to 1839 // avoid inserting traps after calls to outlined functions which unwind. 1840 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1841 const Instruction *Term = BB.getTerminator(); 1842 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1843 }); 1844 if (doesNotReturn) 1845 newFunction->setDoesNotReturn(); 1846 1847 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1848 newFunction->dump(); 1849 report_fatal_error("verification of newFunction failed!"); 1850 }); 1851 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1852 report_fatal_error("verification of oldFunction failed!")); 1853 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1854 report_fatal_error("Stale Asumption cache for old Function!")); 1855 return newFunction; 1856 } 1857 1858 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1859 const Function &NewFunc, 1860 AssumptionCache *AC) { 1861 for (auto AssumeVH : AC->assumptions()) { 1862 auto *I = dyn_cast_or_null<CallInst>(AssumeVH); 1863 if (!I) 1864 continue; 1865 1866 // There shouldn't be any llvm.assume intrinsics in the new function. 1867 if (I->getFunction() != &OldFunc) 1868 return true; 1869 1870 // There shouldn't be any stale affected values in the assumption cache 1871 // that were previously in the old function, but that have now been moved 1872 // to the new function. 1873 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1874 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1875 if (!AffectedCI) 1876 continue; 1877 if (AffectedCI->getFunction() != &OldFunc) 1878 return true; 1879 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); 1880 if (AssumedInst->getFunction() != &OldFunc) 1881 return true; 1882 } 1883 } 1884 return false; 1885 } 1886 1887 void CodeExtractor::excludeArgFromAggregate(Value *Arg) { 1888 ExcludeArgsFromAggregate.insert(Arg); 1889 } 1890