1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PatternMatch.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/Verifier.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 #include <cassert> 65 #include <cstdint> 66 #include <iterator> 67 #include <map> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 using namespace llvm::PatternMatch; 73 using ProfileCount = Function::ProfileCount; 74 75 #define DEBUG_TYPE "code-extractor" 76 77 // Provide a command-line option to aggregate function arguments into a struct 78 // for functions produced by the code extractor. This is useful when converting 79 // extracted functions to pthread-based code, as only one argument (void*) can 80 // be passed in to pthread_create(). 81 static cl::opt<bool> 82 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 83 cl::desc("Aggregate arguments to code-extracted functions")); 84 85 /// Test whether a block is valid for extraction. 86 static bool isBlockValidForExtraction(const BasicBlock &BB, 87 const SetVector<BasicBlock *> &Result, 88 bool AllowVarArgs, bool AllowAlloca) { 89 // taking the address of a basic block moved to another function is illegal 90 if (BB.hasAddressTaken()) 91 return false; 92 93 // don't hoist code that uses another basicblock address, as it's likely to 94 // lead to unexpected behavior, like cross-function jumps 95 SmallPtrSet<User const *, 16> Visited; 96 SmallVector<User const *, 16> ToVisit; 97 98 for (Instruction const &Inst : BB) 99 ToVisit.push_back(&Inst); 100 101 while (!ToVisit.empty()) { 102 User const *Curr = ToVisit.pop_back_val(); 103 if (!Visited.insert(Curr).second) 104 continue; 105 if (isa<BlockAddress const>(Curr)) 106 return false; // even a reference to self is likely to be not compatible 107 108 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 109 continue; 110 111 for (auto const &U : Curr->operands()) { 112 if (auto *UU = dyn_cast<User>(U)) 113 ToVisit.push_back(UU); 114 } 115 } 116 117 // If explicitly requested, allow vastart and alloca. For invoke instructions 118 // verify that extraction is valid. 119 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 120 if (isa<AllocaInst>(I)) { 121 if (!AllowAlloca) 122 return false; 123 continue; 124 } 125 126 if (const auto *II = dyn_cast<InvokeInst>(I)) { 127 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 128 // must be a part of the subgraph which is being extracted. 129 if (auto *UBB = II->getUnwindDest()) 130 if (!Result.count(UBB)) 131 return false; 132 continue; 133 } 134 135 // All catch handlers of a catchswitch instruction as well as the unwind 136 // destination must be in the subgraph. 137 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 138 if (auto *UBB = CSI->getUnwindDest()) 139 if (!Result.count(UBB)) 140 return false; 141 for (auto *HBB : CSI->handlers()) 142 if (!Result.count(const_cast<BasicBlock*>(HBB))) 143 return false; 144 continue; 145 } 146 147 // Make sure that entire catch handler is within subgraph. It is sufficient 148 // to check that catch return's block is in the list. 149 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 150 for (const auto *U : CPI->users()) 151 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 152 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 153 return false; 154 continue; 155 } 156 157 // And do similar checks for cleanup handler - the entire handler must be 158 // in subgraph which is going to be extracted. For cleanup return should 159 // additionally check that the unwind destination is also in the subgraph. 160 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 161 for (const auto *U : CPI->users()) 162 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 163 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 164 return false; 165 continue; 166 } 167 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 168 if (auto *UBB = CRI->getUnwindDest()) 169 if (!Result.count(UBB)) 170 return false; 171 continue; 172 } 173 174 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 175 if (const Function *F = CI->getCalledFunction()) { 176 auto IID = F->getIntrinsicID(); 177 if (IID == Intrinsic::vastart) { 178 if (AllowVarArgs) 179 continue; 180 else 181 return false; 182 } 183 184 // Currently, we miscompile outlined copies of eh_typid_for. There are 185 // proposals for fixing this in llvm.org/PR39545. 186 if (IID == Intrinsic::eh_typeid_for) 187 return false; 188 } 189 } 190 } 191 192 return true; 193 } 194 195 /// Build a set of blocks to extract if the input blocks are viable. 196 static SetVector<BasicBlock *> 197 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 198 bool AllowVarArgs, bool AllowAlloca) { 199 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 200 SetVector<BasicBlock *> Result; 201 202 // Loop over the blocks, adding them to our set-vector, and aborting with an 203 // empty set if we encounter invalid blocks. 204 for (BasicBlock *BB : BBs) { 205 // If this block is dead, don't process it. 206 if (DT && !DT->isReachableFromEntry(BB)) 207 continue; 208 209 if (!Result.insert(BB)) 210 llvm_unreachable("Repeated basic blocks in extraction input"); 211 } 212 213 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 214 << '\n'); 215 216 for (auto *BB : Result) { 217 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 218 return {}; 219 220 // Make sure that the first block is not a landing pad. 221 if (BB == Result.front()) { 222 if (BB->isEHPad()) { 223 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 224 return {}; 225 } 226 continue; 227 } 228 229 // All blocks other than the first must not have predecessors outside of 230 // the subgraph which is being extracted. 231 for (auto *PBB : predecessors(BB)) 232 if (!Result.count(PBB)) { 233 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 234 "outside the region except for the first block!\n" 235 << "Problematic source BB: " << BB->getName() << "\n" 236 << "Problematic destination BB: " << PBB->getName() 237 << "\n"); 238 return {}; 239 } 240 } 241 242 return Result; 243 } 244 245 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 246 bool AggregateArgs, BlockFrequencyInfo *BFI, 247 BranchProbabilityInfo *BPI, AssumptionCache *AC, 248 bool AllowVarArgs, bool AllowAlloca, 249 std::string Suffix) 250 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 251 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs), 252 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 253 Suffix(Suffix) {} 254 255 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 256 BlockFrequencyInfo *BFI, 257 BranchProbabilityInfo *BPI, AssumptionCache *AC, 258 std::string Suffix) 259 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 260 BPI(BPI), AC(AC), AllowVarArgs(false), 261 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 262 /* AllowVarArgs */ false, 263 /* AllowAlloca */ false)), 264 Suffix(Suffix) {} 265 266 /// definedInRegion - Return true if the specified value is defined in the 267 /// extracted region. 268 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 269 if (Instruction *I = dyn_cast<Instruction>(V)) 270 if (Blocks.count(I->getParent())) 271 return true; 272 return false; 273 } 274 275 /// definedInCaller - Return true if the specified value is defined in the 276 /// function being code extracted, but not in the region being extracted. 277 /// These values must be passed in as live-ins to the function. 278 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 279 if (isa<Argument>(V)) return true; 280 if (Instruction *I = dyn_cast<Instruction>(V)) 281 if (!Blocks.count(I->getParent())) 282 return true; 283 return false; 284 } 285 286 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 287 BasicBlock *CommonExitBlock = nullptr; 288 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 289 for (auto *Succ : successors(Block)) { 290 // Internal edges, ok. 291 if (Blocks.count(Succ)) 292 continue; 293 if (!CommonExitBlock) { 294 CommonExitBlock = Succ; 295 continue; 296 } 297 if (CommonExitBlock != Succ) 298 return true; 299 } 300 return false; 301 }; 302 303 if (any_of(Blocks, hasNonCommonExitSucc)) 304 return nullptr; 305 306 return CommonExitBlock; 307 } 308 309 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 310 for (BasicBlock &BB : F) { 311 for (Instruction &II : BB.instructionsWithoutDebug()) 312 if (auto *AI = dyn_cast<AllocaInst>(&II)) 313 Allocas.push_back(AI); 314 315 findSideEffectInfoForBlock(BB); 316 } 317 } 318 319 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 320 for (Instruction &II : BB.instructionsWithoutDebug()) { 321 unsigned Opcode = II.getOpcode(); 322 Value *MemAddr = nullptr; 323 switch (Opcode) { 324 case Instruction::Store: 325 case Instruction::Load: { 326 if (Opcode == Instruction::Store) { 327 StoreInst *SI = cast<StoreInst>(&II); 328 MemAddr = SI->getPointerOperand(); 329 } else { 330 LoadInst *LI = cast<LoadInst>(&II); 331 MemAddr = LI->getPointerOperand(); 332 } 333 // Global variable can not be aliased with locals. 334 if (isa<Constant>(MemAddr)) 335 break; 336 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 337 if (!isa<AllocaInst>(Base)) { 338 SideEffectingBlocks.insert(&BB); 339 return; 340 } 341 BaseMemAddrs[&BB].insert(Base); 342 break; 343 } 344 default: { 345 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 346 if (IntrInst) { 347 if (IntrInst->isLifetimeStartOrEnd()) 348 break; 349 SideEffectingBlocks.insert(&BB); 350 return; 351 } 352 // Treat all the other cases conservatively if it has side effects. 353 if (II.mayHaveSideEffects()) { 354 SideEffectingBlocks.insert(&BB); 355 return; 356 } 357 } 358 } 359 } 360 } 361 362 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 363 BasicBlock &BB, AllocaInst *Addr) const { 364 if (SideEffectingBlocks.count(&BB)) 365 return true; 366 auto It = BaseMemAddrs.find(&BB); 367 if (It != BaseMemAddrs.end()) 368 return It->second.count(Addr); 369 return false; 370 } 371 372 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 373 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 374 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 375 Function *Func = (*Blocks.begin())->getParent(); 376 for (BasicBlock &BB : *Func) { 377 if (Blocks.count(&BB)) 378 continue; 379 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 380 return false; 381 } 382 return true; 383 } 384 385 BasicBlock * 386 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 387 BasicBlock *SinglePredFromOutlineRegion = nullptr; 388 assert(!Blocks.count(CommonExitBlock) && 389 "Expect a block outside the region!"); 390 for (auto *Pred : predecessors(CommonExitBlock)) { 391 if (!Blocks.count(Pred)) 392 continue; 393 if (!SinglePredFromOutlineRegion) { 394 SinglePredFromOutlineRegion = Pred; 395 } else if (SinglePredFromOutlineRegion != Pred) { 396 SinglePredFromOutlineRegion = nullptr; 397 break; 398 } 399 } 400 401 if (SinglePredFromOutlineRegion) 402 return SinglePredFromOutlineRegion; 403 404 #ifndef NDEBUG 405 auto getFirstPHI = [](BasicBlock *BB) { 406 BasicBlock::iterator I = BB->begin(); 407 PHINode *FirstPhi = nullptr; 408 while (I != BB->end()) { 409 PHINode *Phi = dyn_cast<PHINode>(I); 410 if (!Phi) 411 break; 412 if (!FirstPhi) { 413 FirstPhi = Phi; 414 break; 415 } 416 } 417 return FirstPhi; 418 }; 419 // If there are any phi nodes, the single pred either exists or has already 420 // be created before code extraction. 421 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 422 #endif 423 424 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 425 CommonExitBlock->getFirstNonPHI()->getIterator()); 426 427 for (BasicBlock *Pred : 428 llvm::make_early_inc_range(predecessors(CommonExitBlock))) { 429 if (Blocks.count(Pred)) 430 continue; 431 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 432 } 433 // Now add the old exit block to the outline region. 434 Blocks.insert(CommonExitBlock); 435 OldTargets.push_back(NewExitBlock); 436 return CommonExitBlock; 437 } 438 439 // Find the pair of life time markers for address 'Addr' that are either 440 // defined inside the outline region or can legally be shrinkwrapped into the 441 // outline region. If there are not other untracked uses of the address, return 442 // the pair of markers if found; otherwise return a pair of nullptr. 443 CodeExtractor::LifetimeMarkerInfo 444 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 445 Instruction *Addr, 446 BasicBlock *ExitBlock) const { 447 LifetimeMarkerInfo Info; 448 449 for (User *U : Addr->users()) { 450 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 451 if (IntrInst) { 452 // We don't model addresses with multiple start/end markers, but the 453 // markers do not need to be in the region. 454 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 455 if (Info.LifeStart) 456 return {}; 457 Info.LifeStart = IntrInst; 458 continue; 459 } 460 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 461 if (Info.LifeEnd) 462 return {}; 463 Info.LifeEnd = IntrInst; 464 continue; 465 } 466 // At this point, permit debug uses outside of the region. 467 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 468 if (isa<DbgInfoIntrinsic>(IntrInst)) 469 continue; 470 } 471 // Find untracked uses of the address, bail. 472 if (!definedInRegion(Blocks, U)) 473 return {}; 474 } 475 476 if (!Info.LifeStart || !Info.LifeEnd) 477 return {}; 478 479 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 480 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 481 // Do legality check. 482 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 483 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 484 return {}; 485 486 // Check to see if we have a place to do hoisting, if not, bail. 487 if (Info.HoistLifeEnd && !ExitBlock) 488 return {}; 489 490 return Info; 491 } 492 493 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 494 ValueSet &SinkCands, ValueSet &HoistCands, 495 BasicBlock *&ExitBlock) const { 496 Function *Func = (*Blocks.begin())->getParent(); 497 ExitBlock = getCommonExitBlock(Blocks); 498 499 auto moveOrIgnoreLifetimeMarkers = 500 [&](const LifetimeMarkerInfo &LMI) -> bool { 501 if (!LMI.LifeStart) 502 return false; 503 if (LMI.SinkLifeStart) { 504 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 505 << "\n"); 506 SinkCands.insert(LMI.LifeStart); 507 } 508 if (LMI.HoistLifeEnd) { 509 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 510 HoistCands.insert(LMI.LifeEnd); 511 } 512 return true; 513 }; 514 515 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 516 // this is much faster than walking all the instructions. 517 for (AllocaInst *AI : CEAC.getAllocas()) { 518 BasicBlock *BB = AI->getParent(); 519 if (Blocks.count(BB)) 520 continue; 521 522 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 523 // check whether it is actually still in the original function. 524 Function *AIFunc = BB->getParent(); 525 if (AIFunc != Func) 526 continue; 527 528 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 529 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 530 if (Moved) { 531 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 532 SinkCands.insert(AI); 533 continue; 534 } 535 536 // Find bitcasts in the outlined region that have lifetime marker users 537 // outside that region. Replace the lifetime marker use with an 538 // outside region bitcast to avoid unnecessary alloca/reload instructions 539 // and extra lifetime markers. 540 SmallVector<Instruction *, 2> LifetimeBitcastUsers; 541 for (User *U : AI->users()) { 542 if (!definedInRegion(Blocks, U)) 543 continue; 544 545 if (U->stripInBoundsConstantOffsets() != AI) 546 continue; 547 548 Instruction *Bitcast = cast<Instruction>(U); 549 for (User *BU : Bitcast->users()) { 550 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU); 551 if (!IntrInst) 552 continue; 553 554 if (!IntrInst->isLifetimeStartOrEnd()) 555 continue; 556 557 if (definedInRegion(Blocks, IntrInst)) 558 continue; 559 560 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast" 561 << *Bitcast << " in out-of-region lifetime marker " 562 << *IntrInst << "\n"); 563 LifetimeBitcastUsers.push_back(IntrInst); 564 } 565 } 566 567 for (Instruction *I : LifetimeBitcastUsers) { 568 Module *M = AIFunc->getParent(); 569 LLVMContext &Ctx = M->getContext(); 570 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); 571 CastInst *CastI = 572 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I); 573 I->replaceUsesOfWith(I->getOperand(1), CastI); 574 } 575 576 // Follow any bitcasts. 577 SmallVector<Instruction *, 2> Bitcasts; 578 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 579 for (User *U : AI->users()) { 580 if (U->stripInBoundsConstantOffsets() == AI) { 581 Instruction *Bitcast = cast<Instruction>(U); 582 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 583 if (LMI.LifeStart) { 584 Bitcasts.push_back(Bitcast); 585 BitcastLifetimeInfo.push_back(LMI); 586 continue; 587 } 588 } 589 590 // Found unknown use of AI. 591 if (!definedInRegion(Blocks, U)) { 592 Bitcasts.clear(); 593 break; 594 } 595 } 596 597 // Either no bitcasts reference the alloca or there are unknown uses. 598 if (Bitcasts.empty()) 599 continue; 600 601 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 602 SinkCands.insert(AI); 603 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 604 Instruction *BitcastAddr = Bitcasts[I]; 605 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 606 assert(LMI.LifeStart && 607 "Unsafe to sink bitcast without lifetime markers"); 608 moveOrIgnoreLifetimeMarkers(LMI); 609 if (!definedInRegion(Blocks, BitcastAddr)) { 610 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 611 << "\n"); 612 SinkCands.insert(BitcastAddr); 613 } 614 } 615 } 616 } 617 618 bool CodeExtractor::isEligible() const { 619 if (Blocks.empty()) 620 return false; 621 BasicBlock *Header = *Blocks.begin(); 622 Function *F = Header->getParent(); 623 624 // For functions with varargs, check that varargs handling is only done in the 625 // outlined function, i.e vastart and vaend are only used in outlined blocks. 626 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 627 auto containsVarArgIntrinsic = [](const Instruction &I) { 628 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 629 if (const Function *Callee = CI->getCalledFunction()) 630 return Callee->getIntrinsicID() == Intrinsic::vastart || 631 Callee->getIntrinsicID() == Intrinsic::vaend; 632 return false; 633 }; 634 635 for (auto &BB : *F) { 636 if (Blocks.count(&BB)) 637 continue; 638 if (llvm::any_of(BB, containsVarArgIntrinsic)) 639 return false; 640 } 641 } 642 return true; 643 } 644 645 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 646 const ValueSet &SinkCands) const { 647 for (BasicBlock *BB : Blocks) { 648 // If a used value is defined outside the region, it's an input. If an 649 // instruction is used outside the region, it's an output. 650 for (Instruction &II : *BB) { 651 for (auto &OI : II.operands()) { 652 Value *V = OI; 653 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 654 Inputs.insert(V); 655 } 656 657 for (User *U : II.users()) 658 if (!definedInRegion(Blocks, U)) { 659 Outputs.insert(&II); 660 break; 661 } 662 } 663 } 664 } 665 666 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 667 /// of the region, we need to split the entry block of the region so that the 668 /// PHI node is easier to deal with. 669 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 670 unsigned NumPredsFromRegion = 0; 671 unsigned NumPredsOutsideRegion = 0; 672 673 if (Header != &Header->getParent()->getEntryBlock()) { 674 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 675 if (!PN) return; // No PHI nodes. 676 677 // If the header node contains any PHI nodes, check to see if there is more 678 // than one entry from outside the region. If so, we need to sever the 679 // header block into two. 680 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 681 if (Blocks.count(PN->getIncomingBlock(i))) 682 ++NumPredsFromRegion; 683 else 684 ++NumPredsOutsideRegion; 685 686 // If there is one (or fewer) predecessor from outside the region, we don't 687 // need to do anything special. 688 if (NumPredsOutsideRegion <= 1) return; 689 } 690 691 // Otherwise, we need to split the header block into two pieces: one 692 // containing PHI nodes merging values from outside of the region, and a 693 // second that contains all of the code for the block and merges back any 694 // incoming values from inside of the region. 695 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 696 697 // We only want to code extract the second block now, and it becomes the new 698 // header of the region. 699 BasicBlock *OldPred = Header; 700 Blocks.remove(OldPred); 701 Blocks.insert(NewBB); 702 Header = NewBB; 703 704 // Okay, now we need to adjust the PHI nodes and any branches from within the 705 // region to go to the new header block instead of the old header block. 706 if (NumPredsFromRegion) { 707 PHINode *PN = cast<PHINode>(OldPred->begin()); 708 // Loop over all of the predecessors of OldPred that are in the region, 709 // changing them to branch to NewBB instead. 710 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 711 if (Blocks.count(PN->getIncomingBlock(i))) { 712 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 713 TI->replaceUsesOfWith(OldPred, NewBB); 714 } 715 716 // Okay, everything within the region is now branching to the right block, we 717 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 718 BasicBlock::iterator AfterPHIs; 719 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 720 PHINode *PN = cast<PHINode>(AfterPHIs); 721 // Create a new PHI node in the new region, which has an incoming value 722 // from OldPred of PN. 723 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 724 PN->getName() + ".ce", &NewBB->front()); 725 PN->replaceAllUsesWith(NewPN); 726 NewPN->addIncoming(PN, OldPred); 727 728 // Loop over all of the incoming value in PN, moving them to NewPN if they 729 // are from the extracted region. 730 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 731 if (Blocks.count(PN->getIncomingBlock(i))) { 732 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 733 PN->removeIncomingValue(i); 734 --i; 735 } 736 } 737 } 738 } 739 } 740 741 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 742 /// outlined region, we split these PHIs on two: one with inputs from region 743 /// and other with remaining incoming blocks; then first PHIs are placed in 744 /// outlined region. 745 void CodeExtractor::severSplitPHINodesOfExits( 746 const SmallPtrSetImpl<BasicBlock *> &Exits) { 747 for (BasicBlock *ExitBB : Exits) { 748 BasicBlock *NewBB = nullptr; 749 750 for (PHINode &PN : ExitBB->phis()) { 751 // Find all incoming values from the outlining region. 752 SmallVector<unsigned, 2> IncomingVals; 753 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 754 if (Blocks.count(PN.getIncomingBlock(i))) 755 IncomingVals.push_back(i); 756 757 // Do not process PHI if there is one (or fewer) predecessor from region. 758 // If PHI has exactly one predecessor from region, only this one incoming 759 // will be replaced on codeRepl block, so it should be safe to skip PHI. 760 if (IncomingVals.size() <= 1) 761 continue; 762 763 // Create block for new PHIs and add it to the list of outlined if it 764 // wasn't done before. 765 if (!NewBB) { 766 NewBB = BasicBlock::Create(ExitBB->getContext(), 767 ExitBB->getName() + ".split", 768 ExitBB->getParent(), ExitBB); 769 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB)); 770 for (BasicBlock *PredBB : Preds) 771 if (Blocks.count(PredBB)) 772 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 773 BranchInst::Create(ExitBB, NewBB); 774 Blocks.insert(NewBB); 775 } 776 777 // Split this PHI. 778 PHINode *NewPN = 779 PHINode::Create(PN.getType(), IncomingVals.size(), 780 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 781 for (unsigned i : IncomingVals) 782 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 783 for (unsigned i : reverse(IncomingVals)) 784 PN.removeIncomingValue(i, false); 785 PN.addIncoming(NewPN, NewBB); 786 } 787 } 788 } 789 790 void CodeExtractor::splitReturnBlocks() { 791 for (BasicBlock *Block : Blocks) 792 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 793 BasicBlock *New = 794 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 795 if (DT) { 796 // Old dominates New. New node dominates all other nodes dominated 797 // by Old. 798 DomTreeNode *OldNode = DT->getNode(Block); 799 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 800 OldNode->end()); 801 802 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 803 804 for (DomTreeNode *I : Children) 805 DT->changeImmediateDominator(I, NewNode); 806 } 807 } 808 } 809 810 /// constructFunction - make a function based on inputs and outputs, as follows: 811 /// f(in0, ..., inN, out0, ..., outN) 812 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 813 const ValueSet &outputs, 814 BasicBlock *header, 815 BasicBlock *newRootNode, 816 BasicBlock *newHeader, 817 Function *oldFunction, 818 Module *M) { 819 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 820 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 821 822 // This function returns unsigned, outputs will go back by reference. 823 switch (NumExitBlocks) { 824 case 0: 825 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 826 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 827 default: RetTy = Type::getInt16Ty(header->getContext()); break; 828 } 829 830 std::vector<Type *> ParamTy; 831 std::vector<Type *> AggParamTy; 832 ValueSet StructValues; 833 834 // Add the types of the input values to the function's argument list 835 for (Value *value : inputs) { 836 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 837 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) { 838 AggParamTy.push_back(value->getType()); 839 StructValues.insert(value); 840 } else 841 ParamTy.push_back(value->getType()); 842 } 843 844 // Add the types of the output values to the function's argument list. 845 for (Value *output : outputs) { 846 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 847 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 848 AggParamTy.push_back(output->getType()); 849 StructValues.insert(output); 850 } else 851 ParamTy.push_back(PointerType::getUnqual(output->getType())); 852 } 853 854 assert( 855 (ParamTy.size() + AggParamTy.size()) == 856 (inputs.size() + outputs.size()) && 857 "Number of scalar and aggregate params does not match inputs, outputs"); 858 assert((StructValues.empty() || AggregateArgs) && 859 "Expeced StructValues only with AggregateArgs set"); 860 861 // Concatenate scalar and aggregate params in ParamTy. 862 size_t NumScalarParams = ParamTy.size(); 863 StructType *StructTy = nullptr; 864 if (AggregateArgs && !AggParamTy.empty()) { 865 StructTy = StructType::get(M->getContext(), AggParamTy); 866 ParamTy.push_back(PointerType::getUnqual(StructTy)); 867 } 868 869 LLVM_DEBUG({ 870 dbgs() << "Function type: " << *RetTy << " f("; 871 for (Type *i : ParamTy) 872 dbgs() << *i << ", "; 873 dbgs() << ")\n"; 874 }); 875 876 FunctionType *funcType = FunctionType::get( 877 RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg()); 878 879 std::string SuffixToUse = 880 Suffix.empty() 881 ? (header->getName().empty() ? "extracted" : header->getName().str()) 882 : Suffix; 883 // Create the new function 884 Function *newFunction = Function::Create( 885 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 886 oldFunction->getName() + "." + SuffixToUse, M); 887 888 // Inherit all of the target dependent attributes and white-listed 889 // target independent attributes. 890 // (e.g. If the extracted region contains a call to an x86.sse 891 // instruction we need to make sure that the extracted region has the 892 // "target-features" attribute allowing it to be lowered. 893 // FIXME: This should be changed to check to see if a specific 894 // attribute can not be inherited. 895 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) { 896 if (Attr.isStringAttribute()) { 897 if (Attr.getKindAsString() == "thunk") 898 continue; 899 } else 900 switch (Attr.getKindAsEnum()) { 901 // Those attributes cannot be propagated safely. Explicitly list them 902 // here so we get a warning if new attributes are added. 903 case Attribute::AllocSize: 904 case Attribute::ArgMemOnly: 905 case Attribute::Builtin: 906 case Attribute::Convergent: 907 case Attribute::InaccessibleMemOnly: 908 case Attribute::InaccessibleMemOrArgMemOnly: 909 case Attribute::JumpTable: 910 case Attribute::Naked: 911 case Attribute::NoBuiltin: 912 case Attribute::NoMerge: 913 case Attribute::NoReturn: 914 case Attribute::NoSync: 915 case Attribute::ReadNone: 916 case Attribute::ReadOnly: 917 case Attribute::ReturnsTwice: 918 case Attribute::Speculatable: 919 case Attribute::StackAlignment: 920 case Attribute::WillReturn: 921 case Attribute::WriteOnly: 922 continue; 923 // Those attributes should be safe to propagate to the extracted function. 924 case Attribute::AlwaysInline: 925 case Attribute::Cold: 926 case Attribute::DisableSanitizerInstrumentation: 927 case Attribute::Hot: 928 case Attribute::NoRecurse: 929 case Attribute::InlineHint: 930 case Attribute::MinSize: 931 case Attribute::NoCallback: 932 case Attribute::NoDuplicate: 933 case Attribute::NoFree: 934 case Attribute::NoImplicitFloat: 935 case Attribute::NoInline: 936 case Attribute::NonLazyBind: 937 case Attribute::NoRedZone: 938 case Attribute::NoUnwind: 939 case Attribute::NoSanitizeBounds: 940 case Attribute::NoSanitizeCoverage: 941 case Attribute::NullPointerIsValid: 942 case Attribute::OptForFuzzing: 943 case Attribute::OptimizeNone: 944 case Attribute::OptimizeForSize: 945 case Attribute::SafeStack: 946 case Attribute::ShadowCallStack: 947 case Attribute::SanitizeAddress: 948 case Attribute::SanitizeMemory: 949 case Attribute::SanitizeThread: 950 case Attribute::SanitizeHWAddress: 951 case Attribute::SanitizeMemTag: 952 case Attribute::SpeculativeLoadHardening: 953 case Attribute::StackProtect: 954 case Attribute::StackProtectReq: 955 case Attribute::StackProtectStrong: 956 case Attribute::StrictFP: 957 case Attribute::UWTable: 958 case Attribute::VScaleRange: 959 case Attribute::NoCfCheck: 960 case Attribute::MustProgress: 961 case Attribute::NoProfile: 962 break; 963 // These attributes cannot be applied to functions. 964 case Attribute::Alignment: 965 case Attribute::AllocAlign: 966 case Attribute::ByVal: 967 case Attribute::Dereferenceable: 968 case Attribute::DereferenceableOrNull: 969 case Attribute::ElementType: 970 case Attribute::InAlloca: 971 case Attribute::InReg: 972 case Attribute::Nest: 973 case Attribute::NoAlias: 974 case Attribute::NoCapture: 975 case Attribute::NoUndef: 976 case Attribute::NonNull: 977 case Attribute::Preallocated: 978 case Attribute::Returned: 979 case Attribute::SExt: 980 case Attribute::StructRet: 981 case Attribute::SwiftError: 982 case Attribute::SwiftSelf: 983 case Attribute::SwiftAsync: 984 case Attribute::ZExt: 985 case Attribute::ImmArg: 986 case Attribute::ByRef: 987 // These are not really attributes. 988 case Attribute::None: 989 case Attribute::EndAttrKinds: 990 case Attribute::EmptyKey: 991 case Attribute::TombstoneKey: 992 llvm_unreachable("Not a function attribute"); 993 } 994 995 newFunction->addFnAttr(Attr); 996 } 997 newFunction->getBasicBlockList().push_back(newRootNode); 998 999 // Create scalar and aggregate iterators to name all of the arguments we 1000 // inserted. 1001 Function::arg_iterator ScalarAI = newFunction->arg_begin(); 1002 Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams); 1003 1004 // Rewrite all users of the inputs in the extracted region to use the 1005 // arguments (or appropriate addressing into struct) instead. 1006 for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) { 1007 Value *RewriteVal; 1008 if (AggregateArgs && StructValues.contains(inputs[i])) { 1009 Value *Idx[2]; 1010 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 1011 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx); 1012 Instruction *TI = newFunction->begin()->getTerminator(); 1013 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1014 StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI); 1015 RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP, 1016 "loadgep_" + inputs[i]->getName(), TI); 1017 ++aggIdx; 1018 } else 1019 RewriteVal = &*ScalarAI++; 1020 1021 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 1022 for (User *use : Users) 1023 if (Instruction *inst = dyn_cast<Instruction>(use)) 1024 if (Blocks.count(inst->getParent())) 1025 inst->replaceUsesOfWith(inputs[i], RewriteVal); 1026 } 1027 1028 // Set names for input and output arguments. 1029 if (NumScalarParams) { 1030 ScalarAI = newFunction->arg_begin(); 1031 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI) 1032 if (!StructValues.contains(inputs[i])) 1033 ScalarAI->setName(inputs[i]->getName()); 1034 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI) 1035 if (!StructValues.contains(outputs[i])) 1036 ScalarAI->setName(outputs[i]->getName() + ".out"); 1037 } 1038 1039 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 1040 // within the new function. This must be done before we lose track of which 1041 // blocks were originally in the code region. 1042 std::vector<User *> Users(header->user_begin(), header->user_end()); 1043 for (auto &U : Users) 1044 // The BasicBlock which contains the branch is not in the region 1045 // modify the branch target to a new block 1046 if (Instruction *I = dyn_cast<Instruction>(U)) 1047 if (I->isTerminator() && I->getFunction() == oldFunction && 1048 !Blocks.count(I->getParent())) 1049 I->replaceUsesOfWith(header, newHeader); 1050 1051 return newFunction; 1052 } 1053 1054 /// Erase lifetime.start markers which reference inputs to the extraction 1055 /// region, and insert the referenced memory into \p LifetimesStart. 1056 /// 1057 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 1058 /// of allocas which will be moved from the caller function into the extracted 1059 /// function (\p SunkAllocas). 1060 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 1061 const SetVector<Value *> &SunkAllocas, 1062 SetVector<Value *> &LifetimesStart) { 1063 for (BasicBlock *BB : Blocks) { 1064 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 1065 auto *II = dyn_cast<IntrinsicInst>(&I); 1066 if (!II || !II->isLifetimeStartOrEnd()) 1067 continue; 1068 1069 // Get the memory operand of the lifetime marker. If the underlying 1070 // object is a sunk alloca, or is otherwise defined in the extraction 1071 // region, the lifetime marker must not be erased. 1072 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1073 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1074 continue; 1075 1076 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1077 LifetimesStart.insert(Mem); 1078 II->eraseFromParent(); 1079 } 1080 } 1081 } 1082 1083 /// Insert lifetime start/end markers surrounding the call to the new function 1084 /// for objects defined in the caller. 1085 static void insertLifetimeMarkersSurroundingCall( 1086 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1087 CallInst *TheCall) { 1088 LLVMContext &Ctx = M->getContext(); 1089 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 1090 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1091 Instruction *Term = TheCall->getParent()->getTerminator(); 1092 1093 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 1094 // needed to satisfy this requirement so they may be reused. 1095 DenseMap<Value *, Value *> Bitcasts; 1096 1097 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1098 // markers before the call if \p InsertBefore, and after the call otherwise. 1099 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 1100 bool InsertBefore) { 1101 for (Value *Mem : Objects) { 1102 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1103 TheCall->getFunction()) && 1104 "Input memory not defined in original function"); 1105 Value *&MemAsI8Ptr = Bitcasts[Mem]; 1106 if (!MemAsI8Ptr) { 1107 if (Mem->getType() == Int8PtrTy) 1108 MemAsI8Ptr = Mem; 1109 else 1110 MemAsI8Ptr = 1111 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 1112 } 1113 1114 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 1115 if (InsertBefore) 1116 Marker->insertBefore(TheCall); 1117 else 1118 Marker->insertBefore(Term); 1119 } 1120 }; 1121 1122 if (!LifetimesStart.empty()) { 1123 auto StartFn = llvm::Intrinsic::getDeclaration( 1124 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 1125 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 1126 } 1127 1128 if (!LifetimesEnd.empty()) { 1129 auto EndFn = llvm::Intrinsic::getDeclaration( 1130 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 1131 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 1132 } 1133 } 1134 1135 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1136 /// the call instruction, splitting any PHI nodes in the header block as 1137 /// necessary. 1138 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1139 BasicBlock *codeReplacer, 1140 ValueSet &inputs, 1141 ValueSet &outputs) { 1142 // Emit a call to the new function, passing in: *pointer to struct (if 1143 // aggregating parameters), or plan inputs and allocated memory for outputs 1144 std::vector<Value *> params, ReloadOutputs, Reloads; 1145 ValueSet StructValues; 1146 1147 Module *M = newFunction->getParent(); 1148 LLVMContext &Context = M->getContext(); 1149 const DataLayout &DL = M->getDataLayout(); 1150 CallInst *call = nullptr; 1151 1152 // Add inputs as params, or to be filled into the struct 1153 unsigned ScalarInputArgNo = 0; 1154 SmallVector<unsigned, 1> SwiftErrorArgs; 1155 for (Value *input : inputs) { 1156 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input)) 1157 StructValues.insert(input); 1158 else { 1159 params.push_back(input); 1160 if (input->isSwiftError()) 1161 SwiftErrorArgs.push_back(ScalarInputArgNo); 1162 } 1163 ++ScalarInputArgNo; 1164 } 1165 1166 // Create allocas for the outputs 1167 unsigned ScalarOutputArgNo = 0; 1168 for (Value *output : outputs) { 1169 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 1170 StructValues.insert(output); 1171 } else { 1172 AllocaInst *alloca = 1173 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1174 nullptr, output->getName() + ".loc", 1175 &codeReplacer->getParent()->front().front()); 1176 ReloadOutputs.push_back(alloca); 1177 params.push_back(alloca); 1178 ++ScalarOutputArgNo; 1179 } 1180 } 1181 1182 StructType *StructArgTy = nullptr; 1183 AllocaInst *Struct = nullptr; 1184 unsigned NumAggregatedInputs = 0; 1185 if (AggregateArgs && !StructValues.empty()) { 1186 std::vector<Type *> ArgTypes; 1187 for (Value *V : StructValues) 1188 ArgTypes.push_back(V->getType()); 1189 1190 // Allocate a struct at the beginning of this function 1191 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1192 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 1193 "structArg", 1194 &codeReplacer->getParent()->front().front()); 1195 params.push_back(Struct); 1196 1197 // Store aggregated inputs in the struct. 1198 for (unsigned i = 0, e = StructValues.size(); i != e; ++i) { 1199 if (inputs.contains(StructValues[i])) { 1200 Value *Idx[2]; 1201 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1202 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1203 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1204 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1205 codeReplacer->getInstList().push_back(GEP); 1206 new StoreInst(StructValues[i], GEP, codeReplacer); 1207 NumAggregatedInputs++; 1208 } 1209 } 1210 } 1211 1212 // Emit the call to the function 1213 call = CallInst::Create(newFunction, params, 1214 NumExitBlocks > 1 ? "targetBlock" : ""); 1215 // Add debug location to the new call, if the original function has debug 1216 // info. In that case, the terminator of the entry block of the extracted 1217 // function contains the first debug location of the extracted function, 1218 // set in extractCodeRegion. 1219 if (codeReplacer->getParent()->getSubprogram()) { 1220 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1221 call->setDebugLoc(DL); 1222 } 1223 codeReplacer->getInstList().push_back(call); 1224 1225 // Set swifterror parameter attributes. 1226 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1227 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1228 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1229 } 1230 1231 // Reload the outputs passed in by reference, use the struct if output is in 1232 // the aggregate or reload from the scalar argument. 1233 for (unsigned i = 0, e = outputs.size(), scalarIdx = 0, 1234 aggIdx = NumAggregatedInputs; 1235 i != e; ++i) { 1236 Value *Output = nullptr; 1237 if (AggregateArgs && StructValues.contains(outputs[i])) { 1238 Value *Idx[2]; 1239 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1240 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1241 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1242 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1243 codeReplacer->getInstList().push_back(GEP); 1244 Output = GEP; 1245 ++aggIdx; 1246 } else { 1247 Output = ReloadOutputs[scalarIdx]; 1248 ++scalarIdx; 1249 } 1250 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1251 outputs[i]->getName() + ".reload", 1252 codeReplacer); 1253 Reloads.push_back(load); 1254 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1255 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1256 Instruction *inst = cast<Instruction>(Users[u]); 1257 if (!Blocks.count(inst->getParent())) 1258 inst->replaceUsesOfWith(outputs[i], load); 1259 } 1260 } 1261 1262 // Now we can emit a switch statement using the call as a value. 1263 SwitchInst *TheSwitch = 1264 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1265 codeReplacer, 0, codeReplacer); 1266 1267 // Since there may be multiple exits from the original region, make the new 1268 // function return an unsigned, switch on that number. This loop iterates 1269 // over all of the blocks in the extracted region, updating any terminator 1270 // instructions in the to-be-extracted region that branch to blocks that are 1271 // not in the region to be extracted. 1272 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1273 1274 // Iterate over the previously collected targets, and create new blocks inside 1275 // the function to branch to. 1276 unsigned switchVal = 0; 1277 for (BasicBlock *OldTarget : OldTargets) { 1278 if (Blocks.count(OldTarget)) 1279 continue; 1280 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1281 if (NewTarget) 1282 continue; 1283 1284 // If we don't already have an exit stub for this non-extracted 1285 // destination, create one now! 1286 NewTarget = BasicBlock::Create(Context, 1287 OldTarget->getName() + ".exitStub", 1288 newFunction); 1289 unsigned SuccNum = switchVal++; 1290 1291 Value *brVal = nullptr; 1292 assert(NumExitBlocks < 0xffff && "too many exit blocks for switch"); 1293 switch (NumExitBlocks) { 1294 case 0: 1295 case 1: break; // No value needed. 1296 case 2: // Conditional branch, return a bool 1297 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1298 break; 1299 default: 1300 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1301 break; 1302 } 1303 1304 ReturnInst::Create(Context, brVal, NewTarget); 1305 1306 // Update the switch instruction. 1307 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1308 SuccNum), 1309 OldTarget); 1310 } 1311 1312 for (BasicBlock *Block : Blocks) { 1313 Instruction *TI = Block->getTerminator(); 1314 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1315 if (Blocks.count(TI->getSuccessor(i))) 1316 continue; 1317 BasicBlock *OldTarget = TI->getSuccessor(i); 1318 // add a new basic block which returns the appropriate value 1319 BasicBlock *NewTarget = ExitBlockMap[OldTarget]; 1320 assert(NewTarget && "Unknown target block!"); 1321 1322 // rewrite the original branch instruction with this new target 1323 TI->setSuccessor(i, NewTarget); 1324 } 1325 } 1326 1327 // Store the arguments right after the definition of output value. 1328 // This should be proceeded after creating exit stubs to be ensure that invoke 1329 // result restore will be placed in the outlined function. 1330 Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin(); 1331 std::advance(ScalarOutputArgBegin, ScalarInputArgNo); 1332 Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin(); 1333 std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo); 1334 1335 for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e; 1336 ++i) { 1337 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1338 if (!OutI) 1339 continue; 1340 1341 // Find proper insertion point. 1342 BasicBlock::iterator InsertPt; 1343 // In case OutI is an invoke, we insert the store at the beginning in the 1344 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1345 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1346 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1347 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1348 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1349 else 1350 InsertPt = std::next(OutI->getIterator()); 1351 1352 Instruction *InsertBefore = &*InsertPt; 1353 assert((InsertBefore->getFunction() == newFunction || 1354 Blocks.count(InsertBefore->getParent())) && 1355 "InsertPt should be in new function"); 1356 if (AggregateArgs && StructValues.contains(outputs[i])) { 1357 assert(AggOutputArgBegin != newFunction->arg_end() && 1358 "Number of aggregate output arguments should match " 1359 "the number of defined values"); 1360 Value *Idx[2]; 1361 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1362 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1363 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1364 StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(), 1365 InsertBefore); 1366 new StoreInst(outputs[i], GEP, InsertBefore); 1367 ++aggIdx; 1368 // Since there should be only one struct argument aggregating 1369 // all the output values, we shouldn't increment AggOutputArgBegin, which 1370 // always points to the struct argument, in this case. 1371 } else { 1372 assert(ScalarOutputArgBegin != newFunction->arg_end() && 1373 "Number of scalar output arguments should match " 1374 "the number of defined values"); 1375 new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore); 1376 ++ScalarOutputArgBegin; 1377 } 1378 } 1379 1380 // Now that we've done the deed, simplify the switch instruction. 1381 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1382 switch (NumExitBlocks) { 1383 case 0: 1384 // There are no successors (the block containing the switch itself), which 1385 // means that previously this was the last part of the function, and hence 1386 // this should be rewritten as a `ret' 1387 1388 // Check if the function should return a value 1389 if (OldFnRetTy->isVoidTy()) { 1390 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1391 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1392 // return what we have 1393 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1394 } else { 1395 // Otherwise we must have code extracted an unwind or something, just 1396 // return whatever we want. 1397 ReturnInst::Create(Context, 1398 Constant::getNullValue(OldFnRetTy), TheSwitch); 1399 } 1400 1401 TheSwitch->eraseFromParent(); 1402 break; 1403 case 1: 1404 // Only a single destination, change the switch into an unconditional 1405 // branch. 1406 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1407 TheSwitch->eraseFromParent(); 1408 break; 1409 case 2: 1410 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1411 call, TheSwitch); 1412 TheSwitch->eraseFromParent(); 1413 break; 1414 default: 1415 // Otherwise, make the default destination of the switch instruction be one 1416 // of the other successors. 1417 TheSwitch->setCondition(call); 1418 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1419 // Remove redundant case 1420 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1421 break; 1422 } 1423 1424 // Insert lifetime markers around the reloads of any output values. The 1425 // allocas output values are stored in are only in-use in the codeRepl block. 1426 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1427 1428 return call; 1429 } 1430 1431 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1432 Function *oldFunc = (*Blocks.begin())->getParent(); 1433 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1434 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1435 1436 auto newFuncIt = newFunction->front().getIterator(); 1437 for (BasicBlock *Block : Blocks) { 1438 // Delete the basic block from the old function, and the list of blocks 1439 oldBlocks.remove(Block); 1440 1441 // Insert this basic block into the new function 1442 // Insert the original blocks after the entry block created 1443 // for the new function. The entry block may be followed 1444 // by a set of exit blocks at this point, but these exit 1445 // blocks better be placed at the end of the new function. 1446 newFuncIt = newBlocks.insertAfter(newFuncIt, Block); 1447 } 1448 } 1449 1450 void CodeExtractor::calculateNewCallTerminatorWeights( 1451 BasicBlock *CodeReplacer, 1452 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1453 BranchProbabilityInfo *BPI) { 1454 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1455 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1456 1457 // Update the branch weights for the exit block. 1458 Instruction *TI = CodeReplacer->getTerminator(); 1459 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1460 1461 // Block Frequency distribution with dummy node. 1462 Distribution BranchDist; 1463 1464 SmallVector<BranchProbability, 4> EdgeProbabilities( 1465 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1466 1467 // Add each of the frequencies of the successors. 1468 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1469 BlockNode ExitNode(i); 1470 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1471 if (ExitFreq != 0) 1472 BranchDist.addExit(ExitNode, ExitFreq); 1473 else 1474 EdgeProbabilities[i] = BranchProbability::getZero(); 1475 } 1476 1477 // Check for no total weight. 1478 if (BranchDist.Total == 0) { 1479 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1480 return; 1481 } 1482 1483 // Normalize the distribution so that they can fit in unsigned. 1484 BranchDist.normalize(); 1485 1486 // Create normalized branch weights and set the metadata. 1487 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1488 const auto &Weight = BranchDist.Weights[I]; 1489 1490 // Get the weight and update the current BFI. 1491 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1492 BranchProbability BP(Weight.Amount, BranchDist.Total); 1493 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1494 } 1495 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1496 TI->setMetadata( 1497 LLVMContext::MD_prof, 1498 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1499 } 1500 1501 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1502 /// \p F. 1503 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1504 for (Instruction &I : instructions(F)) { 1505 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1506 findDbgUsers(DbgUsers, &I); 1507 for (DbgVariableIntrinsic *DVI : DbgUsers) 1508 if (DVI->getFunction() != &F) 1509 DVI->eraseFromParent(); 1510 } 1511 } 1512 1513 /// Fix up the debug info in the old and new functions by pointing line 1514 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1515 /// intrinsics which point to values outside of the new function. 1516 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1517 CallInst &TheCall) { 1518 DISubprogram *OldSP = OldFunc.getSubprogram(); 1519 LLVMContext &Ctx = OldFunc.getContext(); 1520 1521 if (!OldSP) { 1522 // Erase any debug info the new function contains. 1523 stripDebugInfo(NewFunc); 1524 // Make sure the old function doesn't contain any non-local metadata refs. 1525 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1526 return; 1527 } 1528 1529 // Create a subprogram for the new function. Leave out a description of the 1530 // function arguments, as the parameters don't correspond to anything at the 1531 // source level. 1532 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1533 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, 1534 OldSP->getUnit()); 1535 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 1536 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1537 DISubprogram::SPFlagOptimized | 1538 DISubprogram::SPFlagLocalToUnit; 1539 auto NewSP = DIB.createFunction( 1540 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1541 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1542 NewFunc.setSubprogram(NewSP); 1543 1544 // Debug intrinsics in the new function need to be updated in one of two 1545 // ways: 1546 // 1) They need to be deleted, because they describe a value in the old 1547 // function. 1548 // 2) They need to point to fresh metadata, e.g. because they currently 1549 // point to a variable in the wrong scope. 1550 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1551 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1552 for (Instruction &I : instructions(NewFunc)) { 1553 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1554 if (!DII) 1555 continue; 1556 1557 // Point the intrinsic to a fresh label within the new function. 1558 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1559 DILabel *OldLabel = DLI->getLabel(); 1560 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1561 if (!NewLabel) 1562 NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(), 1563 OldLabel->getFile(), OldLabel->getLine()); 1564 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); 1565 continue; 1566 } 1567 1568 auto IsInvalidLocation = [&NewFunc](Value *Location) { 1569 // Location is invalid if it isn't a constant or an instruction, or is an 1570 // instruction but isn't in the new function. 1571 if (!Location || 1572 (!isa<Constant>(Location) && !isa<Instruction>(Location))) 1573 return true; 1574 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1575 return LocationInst && LocationInst->getFunction() != &NewFunc; 1576 }; 1577 1578 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1579 // If any of the used locations are invalid, delete the intrinsic. 1580 if (any_of(DVI->location_ops(), IsInvalidLocation)) { 1581 DebugIntrinsicsToDelete.push_back(DVI); 1582 continue; 1583 } 1584 1585 // Point the intrinsic to a fresh variable within the new function. 1586 DILocalVariable *OldVar = DVI->getVariable(); 1587 DINode *&NewVar = RemappedMetadata[OldVar]; 1588 if (!NewVar) 1589 NewVar = DIB.createAutoVariable( 1590 NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1591 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1592 OldVar->getAlignInBits()); 1593 DVI->setVariable(cast<DILocalVariable>(NewVar)); 1594 } 1595 for (auto *DII : DebugIntrinsicsToDelete) 1596 DII->eraseFromParent(); 1597 DIB.finalizeSubprogram(NewSP); 1598 1599 // Fix up the scope information attached to the line locations in the new 1600 // function. 1601 for (Instruction &I : instructions(NewFunc)) { 1602 if (const DebugLoc &DL = I.getDebugLoc()) 1603 I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP)); 1604 1605 // Loop info metadata may contain line locations. Fix them up. 1606 auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * { 1607 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1608 return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP, 1609 nullptr); 1610 return MD; 1611 }; 1612 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1613 } 1614 if (!TheCall.getDebugLoc()) 1615 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP)); 1616 1617 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1618 } 1619 1620 Function * 1621 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1622 ValueSet Inputs, Outputs; 1623 return extractCodeRegion(CEAC, Inputs, Outputs); 1624 } 1625 1626 Function * 1627 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC, 1628 ValueSet &inputs, ValueSet &outputs) { 1629 if (!isEligible()) 1630 return nullptr; 1631 1632 // Assumption: this is a single-entry code region, and the header is the first 1633 // block in the region. 1634 BasicBlock *header = *Blocks.begin(); 1635 Function *oldFunction = header->getParent(); 1636 1637 // Calculate the entry frequency of the new function before we change the root 1638 // block. 1639 BlockFrequency EntryFreq; 1640 if (BFI) { 1641 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1642 for (BasicBlock *Pred : predecessors(header)) { 1643 if (Blocks.count(Pred)) 1644 continue; 1645 EntryFreq += 1646 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1647 } 1648 } 1649 1650 // Remove @llvm.assume calls that will be moved to the new function from the 1651 // old function's assumption cache. 1652 for (BasicBlock *Block : Blocks) { 1653 for (Instruction &I : llvm::make_early_inc_range(*Block)) { 1654 if (auto *AI = dyn_cast<AssumeInst>(&I)) { 1655 if (AC) 1656 AC->unregisterAssumption(AI); 1657 AI->eraseFromParent(); 1658 } 1659 } 1660 } 1661 1662 // If we have any return instructions in the region, split those blocks so 1663 // that the return is not in the region. 1664 splitReturnBlocks(); 1665 1666 // Calculate the exit blocks for the extracted region and the total exit 1667 // weights for each of those blocks. 1668 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1669 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1670 for (BasicBlock *Block : Blocks) { 1671 for (BasicBlock *Succ : successors(Block)) { 1672 if (!Blocks.count(Succ)) { 1673 // Update the branch weight for this successor. 1674 if (BFI) { 1675 BlockFrequency &BF = ExitWeights[Succ]; 1676 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ); 1677 } 1678 ExitBlocks.insert(Succ); 1679 } 1680 } 1681 } 1682 NumExitBlocks = ExitBlocks.size(); 1683 1684 for (BasicBlock *Block : Blocks) { 1685 Instruction *TI = Block->getTerminator(); 1686 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1687 if (Blocks.count(TI->getSuccessor(i))) 1688 continue; 1689 BasicBlock *OldTarget = TI->getSuccessor(i); 1690 OldTargets.push_back(OldTarget); 1691 } 1692 } 1693 1694 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1695 severSplitPHINodesOfEntry(header); 1696 severSplitPHINodesOfExits(ExitBlocks); 1697 1698 // This takes place of the original loop 1699 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1700 "codeRepl", oldFunction, 1701 header); 1702 1703 // The new function needs a root node because other nodes can branch to the 1704 // head of the region, but the entry node of a function cannot have preds. 1705 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1706 "newFuncRoot"); 1707 auto *BranchI = BranchInst::Create(header); 1708 // If the original function has debug info, we have to add a debug location 1709 // to the new branch instruction from the artificial entry block. 1710 // We use the debug location of the first instruction in the extracted 1711 // blocks, as there is no other equivalent line in the source code. 1712 if (oldFunction->getSubprogram()) { 1713 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1714 return any_of(*BB, [&BranchI](const Instruction &I) { 1715 if (!I.getDebugLoc()) 1716 return false; 1717 BranchI->setDebugLoc(I.getDebugLoc()); 1718 return true; 1719 }); 1720 }); 1721 } 1722 newFuncRoot->getInstList().push_back(BranchI); 1723 1724 ValueSet SinkingCands, HoistingCands; 1725 BasicBlock *CommonExit = nullptr; 1726 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1727 assert(HoistingCands.empty() || CommonExit); 1728 1729 // Find inputs to, outputs from the code region. 1730 findInputsOutputs(inputs, outputs, SinkingCands); 1731 1732 // Now sink all instructions which only have non-phi uses inside the region. 1733 // Group the allocas at the start of the block, so that any bitcast uses of 1734 // the allocas are well-defined. 1735 AllocaInst *FirstSunkAlloca = nullptr; 1736 for (auto *II : SinkingCands) { 1737 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1738 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1739 if (!FirstSunkAlloca) 1740 FirstSunkAlloca = AI; 1741 } 1742 } 1743 assert((SinkingCands.empty() || FirstSunkAlloca) && 1744 "Did not expect a sink candidate without any allocas"); 1745 for (auto *II : SinkingCands) { 1746 if (!isa<AllocaInst>(II)) { 1747 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1748 } 1749 } 1750 1751 if (!HoistingCands.empty()) { 1752 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1753 Instruction *TI = HoistToBlock->getTerminator(); 1754 for (auto *II : HoistingCands) 1755 cast<Instruction>(II)->moveBefore(TI); 1756 } 1757 1758 // Collect objects which are inputs to the extraction region and also 1759 // referenced by lifetime start markers within it. The effects of these 1760 // markers must be replicated in the calling function to prevent the stack 1761 // coloring pass from merging slots which store input objects. 1762 ValueSet LifetimesStart; 1763 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1764 1765 // Construct new function based on inputs/outputs & add allocas for all defs. 1766 Function *newFunction = 1767 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1768 oldFunction, oldFunction->getParent()); 1769 1770 // Update the entry count of the function. 1771 if (BFI) { 1772 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1773 if (Count.hasValue()) 1774 newFunction->setEntryCount( 1775 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1776 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1777 } 1778 1779 CallInst *TheCall = 1780 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1781 1782 moveCodeToFunction(newFunction); 1783 1784 // Replicate the effects of any lifetime start/end markers which referenced 1785 // input objects in the extraction region by placing markers around the call. 1786 insertLifetimeMarkersSurroundingCall( 1787 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1788 1789 // Propagate personality info to the new function if there is one. 1790 if (oldFunction->hasPersonalityFn()) 1791 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1792 1793 // Update the branch weights for the exit block. 1794 if (BFI && NumExitBlocks > 1) 1795 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1796 1797 // Loop over all of the PHI nodes in the header and exit blocks, and change 1798 // any references to the old incoming edge to be the new incoming edge. 1799 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1800 PHINode *PN = cast<PHINode>(I); 1801 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1802 if (!Blocks.count(PN->getIncomingBlock(i))) 1803 PN->setIncomingBlock(i, newFuncRoot); 1804 } 1805 1806 for (BasicBlock *ExitBB : ExitBlocks) 1807 for (PHINode &PN : ExitBB->phis()) { 1808 Value *IncomingCodeReplacerVal = nullptr; 1809 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1810 // Ignore incoming values from outside of the extracted region. 1811 if (!Blocks.count(PN.getIncomingBlock(i))) 1812 continue; 1813 1814 // Ensure that there is only one incoming value from codeReplacer. 1815 if (!IncomingCodeReplacerVal) { 1816 PN.setIncomingBlock(i, codeReplacer); 1817 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1818 } else 1819 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1820 "PHI has two incompatbile incoming values from codeRepl"); 1821 } 1822 } 1823 1824 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1825 1826 // Mark the new function `noreturn` if applicable. Terminators which resume 1827 // exception propagation are treated as returning instructions. This is to 1828 // avoid inserting traps after calls to outlined functions which unwind. 1829 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1830 const Instruction *Term = BB.getTerminator(); 1831 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1832 }); 1833 if (doesNotReturn) 1834 newFunction->setDoesNotReturn(); 1835 1836 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1837 newFunction->dump(); 1838 report_fatal_error("verification of newFunction failed!"); 1839 }); 1840 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1841 report_fatal_error("verification of oldFunction failed!")); 1842 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1843 report_fatal_error("Stale Asumption cache for old Function!")); 1844 return newFunction; 1845 } 1846 1847 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1848 const Function &NewFunc, 1849 AssumptionCache *AC) { 1850 for (auto AssumeVH : AC->assumptions()) { 1851 auto *I = dyn_cast_or_null<CallInst>(AssumeVH); 1852 if (!I) 1853 continue; 1854 1855 // There shouldn't be any llvm.assume intrinsics in the new function. 1856 if (I->getFunction() != &OldFunc) 1857 return true; 1858 1859 // There shouldn't be any stale affected values in the assumption cache 1860 // that were previously in the old function, but that have now been moved 1861 // to the new function. 1862 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1863 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1864 if (!AffectedCI) 1865 continue; 1866 if (AffectedCI->getFunction() != &OldFunc) 1867 return true; 1868 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); 1869 if (AssumedInst->getFunction() != &OldFunc) 1870 return true; 1871 } 1872 } 1873 return false; 1874 } 1875 1876 void CodeExtractor::excludeArgFromAggregate(Value *Arg) { 1877 ExcludeArgsFromAggregate.insert(Arg); 1878 } 1879