1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/Module.h" 22 #include "llvm/Pass.h" 23 #include "llvm/Analysis/Dominators.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/Verifier.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Compiler.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include <algorithm> 32 #include <set> 33 using namespace llvm; 34 35 // Provide a command-line option to aggregate function arguments into a struct 36 // for functions produced by the code extrator. This is useful when converting 37 // extracted functions to pthread-based code, as only one argument (void*) can 38 // be passed in to pthread_create(). 39 static cl::opt<bool> 40 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 41 cl::desc("Aggregate arguments to code-extracted functions")); 42 43 namespace { 44 class VISIBILITY_HIDDEN CodeExtractor { 45 typedef std::vector<Value*> Values; 46 std::set<BasicBlock*> BlocksToExtract; 47 DominatorTree* DT; 48 bool AggregateArgs; 49 unsigned NumExitBlocks; 50 const Type *RetTy; 51 public: 52 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false) 53 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} 54 55 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 56 57 bool isEligible(const std::vector<BasicBlock*> &code); 58 59 private: 60 /// definedInRegion - Return true if the specified value is defined in the 61 /// extracted region. 62 bool definedInRegion(Value *V) const { 63 if (Instruction *I = dyn_cast<Instruction>(V)) 64 if (BlocksToExtract.count(I->getParent())) 65 return true; 66 return false; 67 } 68 69 /// definedInCaller - Return true if the specified value is defined in the 70 /// function being code extracted, but not in the region being extracted. 71 /// These values must be passed in as live-ins to the function. 72 bool definedInCaller(Value *V) const { 73 if (isa<Argument>(V)) return true; 74 if (Instruction *I = dyn_cast<Instruction>(V)) 75 if (!BlocksToExtract.count(I->getParent())) 76 return true; 77 return false; 78 } 79 80 void severSplitPHINodes(BasicBlock *&Header); 81 void splitReturnBlocks(); 82 void findInputsOutputs(Values &inputs, Values &outputs); 83 84 Function *constructFunction(const Values &inputs, 85 const Values &outputs, 86 BasicBlock *header, 87 BasicBlock *newRootNode, BasicBlock *newHeader, 88 Function *oldFunction, Module *M); 89 90 void moveCodeToFunction(Function *newFunction); 91 92 void emitCallAndSwitchStatement(Function *newFunction, 93 BasicBlock *newHeader, 94 Values &inputs, 95 Values &outputs); 96 97 }; 98 } 99 100 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 101 /// region, we need to split the entry block of the region so that the PHI node 102 /// is easier to deal with. 103 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 104 bool HasPredsFromRegion = false; 105 unsigned NumPredsOutsideRegion = 0; 106 107 if (Header != &Header->getParent()->getEntryBlock()) { 108 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 109 if (!PN) return; // No PHI nodes. 110 111 // If the header node contains any PHI nodes, check to see if there is more 112 // than one entry from outside the region. If so, we need to sever the 113 // header block into two. 114 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 115 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 116 HasPredsFromRegion = true; 117 else 118 ++NumPredsOutsideRegion; 119 120 // If there is one (or fewer) predecessor from outside the region, we don't 121 // need to do anything special. 122 if (NumPredsOutsideRegion <= 1) return; 123 } 124 125 // Otherwise, we need to split the header block into two pieces: one 126 // containing PHI nodes merging values from outside of the region, and a 127 // second that contains all of the code for the block and merges back any 128 // incoming values from inside of the region. 129 BasicBlock::iterator AfterPHIs = Header->begin(); 130 while (isa<PHINode>(AfterPHIs)) ++AfterPHIs; 131 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 132 Header->getName()+".ce"); 133 134 // We only want to code extract the second block now, and it becomes the new 135 // header of the region. 136 BasicBlock *OldPred = Header; 137 BlocksToExtract.erase(OldPred); 138 BlocksToExtract.insert(NewBB); 139 Header = NewBB; 140 141 // Okay, update dominator sets. The blocks that dominate the new one are the 142 // blocks that dominate TIBB plus the new block itself. 143 if (DT) 144 DT->splitBlock(NewBB); 145 146 // Okay, now we need to adjust the PHI nodes and any branches from within the 147 // region to go to the new header block instead of the old header block. 148 if (HasPredsFromRegion) { 149 PHINode *PN = cast<PHINode>(OldPred->begin()); 150 // Loop over all of the predecessors of OldPred that are in the region, 151 // changing them to branch to NewBB instead. 152 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 153 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 154 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 155 TI->replaceUsesOfWith(OldPred, NewBB); 156 } 157 158 // Okay, everthing within the region is now branching to the right block, we 159 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 160 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 161 PHINode *PN = cast<PHINode>(AfterPHIs); 162 // Create a new PHI node in the new region, which has an incoming value 163 // from OldPred of PN. 164 PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".ce", 165 NewBB->begin()); 166 NewPN->addIncoming(PN, OldPred); 167 168 // Loop over all of the incoming value in PN, moving them to NewPN if they 169 // are from the extracted region. 170 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 171 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 172 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 173 PN->removeIncomingValue(i); 174 --i; 175 } 176 } 177 } 178 } 179 } 180 181 void CodeExtractor::splitReturnBlocks() { 182 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), 183 E = BlocksToExtract.end(); I != E; ++I) 184 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) 185 (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 186 } 187 188 // findInputsOutputs - Find inputs to, outputs from the code region. 189 // 190 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 191 std::set<BasicBlock*> ExitBlocks; 192 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 193 ce = BlocksToExtract.end(); ci != ce; ++ci) { 194 BasicBlock *BB = *ci; 195 196 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 197 // If a used value is defined outside the region, it's an input. If an 198 // instruction is used outside the region, it's an output. 199 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 200 if (definedInCaller(*O)) 201 inputs.push_back(*O); 202 203 // Consider uses of this instruction (outputs). 204 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 205 UI != E; ++UI) 206 if (!definedInRegion(*UI)) { 207 outputs.push_back(I); 208 break; 209 } 210 } // for: insts 211 212 // Keep track of the exit blocks from the region. 213 TerminatorInst *TI = BB->getTerminator(); 214 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 215 if (!BlocksToExtract.count(TI->getSuccessor(i))) 216 ExitBlocks.insert(TI->getSuccessor(i)); 217 } // for: basic blocks 218 219 NumExitBlocks = ExitBlocks.size(); 220 221 // Eliminate duplicates. 222 std::sort(inputs.begin(), inputs.end()); 223 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end()); 224 std::sort(outputs.begin(), outputs.end()); 225 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end()); 226 } 227 228 /// constructFunction - make a function based on inputs and outputs, as follows: 229 /// f(in0, ..., inN, out0, ..., outN) 230 /// 231 Function *CodeExtractor::constructFunction(const Values &inputs, 232 const Values &outputs, 233 BasicBlock *header, 234 BasicBlock *newRootNode, 235 BasicBlock *newHeader, 236 Function *oldFunction, 237 Module *M) { 238 DOUT << "inputs: " << inputs.size() << "\n"; 239 DOUT << "outputs: " << outputs.size() << "\n"; 240 241 // This function returns unsigned, outputs will go back by reference. 242 switch (NumExitBlocks) { 243 case 0: 244 case 1: RetTy = Type::VoidTy; break; 245 case 2: RetTy = Type::Int1Ty; break; 246 default: RetTy = Type::Int16Ty; break; 247 } 248 249 std::vector<const Type*> paramTy; 250 251 // Add the types of the input values to the function's argument list 252 for (Values::const_iterator i = inputs.begin(), 253 e = inputs.end(); i != e; ++i) { 254 const Value *value = *i; 255 DOUT << "value used in func: " << *value << "\n"; 256 paramTy.push_back(value->getType()); 257 } 258 259 // Add the types of the output values to the function's argument list. 260 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 261 I != E; ++I) { 262 DOUT << "instr used in func: " << **I << "\n"; 263 if (AggregateArgs) 264 paramTy.push_back((*I)->getType()); 265 else 266 paramTy.push_back(PointerType::get((*I)->getType())); 267 } 268 269 DOUT << "Function type: " << *RetTy << " f("; 270 for (std::vector<const Type*>::iterator i = paramTy.begin(), 271 e = paramTy.end(); i != e; ++i) 272 DOUT << **i << ", "; 273 DOUT << ")\n"; 274 275 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 276 PointerType *StructPtr = PointerType::get(StructType::get(paramTy)); 277 paramTy.clear(); 278 paramTy.push_back(StructPtr); 279 } 280 const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false); 281 282 // Create the new function 283 Function *newFunction = new Function(funcType, 284 GlobalValue::InternalLinkage, 285 oldFunction->getName() + "_" + 286 header->getName(), M); 287 newFunction->getBasicBlockList().push_back(newRootNode); 288 289 // Create an iterator to name all of the arguments we inserted. 290 Function::arg_iterator AI = newFunction->arg_begin(); 291 292 // Rewrite all users of the inputs in the extracted region to use the 293 // arguments (or appropriate addressing into struct) instead. 294 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 295 Value *RewriteVal; 296 if (AggregateArgs) { 297 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 298 Value *Idx1 = ConstantInt::get(Type::Int32Ty, i); 299 std::string GEPname = "gep_" + inputs[i]->getName(); 300 TerminatorInst *TI = newFunction->begin()->getTerminator(); 301 GetElementPtrInst *GEP = new GetElementPtrInst(AI, Idx0, Idx1, 302 GEPname, TI); 303 RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); 304 } else 305 RewriteVal = AI++; 306 307 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 308 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 309 use != useE; ++use) 310 if (Instruction* inst = dyn_cast<Instruction>(*use)) 311 if (BlocksToExtract.count(inst->getParent())) 312 inst->replaceUsesOfWith(inputs[i], RewriteVal); 313 } 314 315 // Set names for input and output arguments. 316 if (!AggregateArgs) { 317 AI = newFunction->arg_begin(); 318 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 319 AI->setName(inputs[i]->getName()); 320 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 321 AI->setName(outputs[i]->getName()+".out"); 322 } 323 324 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 325 // within the new function. This must be done before we lose track of which 326 // blocks were originally in the code region. 327 std::vector<User*> Users(header->use_begin(), header->use_end()); 328 for (unsigned i = 0, e = Users.size(); i != e; ++i) 329 // The BasicBlock which contains the branch is not in the region 330 // modify the branch target to a new block 331 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 332 if (!BlocksToExtract.count(TI->getParent()) && 333 TI->getParent()->getParent() == oldFunction) 334 TI->replaceUsesOfWith(header, newHeader); 335 336 return newFunction; 337 } 338 339 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 340 /// the call instruction, splitting any PHI nodes in the header block as 341 /// necessary. 342 void CodeExtractor:: 343 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 344 Values &inputs, Values &outputs) { 345 // Emit a call to the new function, passing in: *pointer to struct (if 346 // aggregating parameters), or plan inputs and allocated memory for outputs 347 std::vector<Value*> params, StructValues, ReloadOutputs; 348 349 // Add inputs as params, or to be filled into the struct 350 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 351 if (AggregateArgs) 352 StructValues.push_back(*i); 353 else 354 params.push_back(*i); 355 356 // Create allocas for the outputs 357 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 358 if (AggregateArgs) { 359 StructValues.push_back(*i); 360 } else { 361 AllocaInst *alloca = 362 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 363 codeReplacer->getParent()->begin()->begin()); 364 ReloadOutputs.push_back(alloca); 365 params.push_back(alloca); 366 } 367 } 368 369 AllocaInst *Struct = 0; 370 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 371 std::vector<const Type*> ArgTypes; 372 for (Values::iterator v = StructValues.begin(), 373 ve = StructValues.end(); v != ve; ++v) 374 ArgTypes.push_back((*v)->getType()); 375 376 // Allocate a struct at the beginning of this function 377 Type *StructArgTy = StructType::get(ArgTypes); 378 Struct = 379 new AllocaInst(StructArgTy, 0, "structArg", 380 codeReplacer->getParent()->begin()->begin()); 381 params.push_back(Struct); 382 383 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 384 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 385 Value *Idx1 = ConstantInt::get(Type::Int32Ty, i); 386 GetElementPtrInst *GEP = 387 new GetElementPtrInst(Struct, Idx0, Idx1, 388 "gep_" + StructValues[i]->getName()); 389 codeReplacer->getInstList().push_back(GEP); 390 StoreInst *SI = new StoreInst(StructValues[i], GEP); 391 codeReplacer->getInstList().push_back(SI); 392 } 393 } 394 395 // Emit the call to the function 396 CallInst *call = new CallInst(newFunction, ¶ms[0], params.size(), 397 NumExitBlocks > 1 ? "targetBlock" : ""); 398 codeReplacer->getInstList().push_back(call); 399 400 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 401 unsigned FirstOut = inputs.size(); 402 if (!AggregateArgs) 403 std::advance(OutputArgBegin, inputs.size()); 404 405 // Reload the outputs passed in by reference 406 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 407 Value *Output = 0; 408 if (AggregateArgs) { 409 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 410 Value *Idx1 = ConstantInt::get(Type::Int32Ty, FirstOut + i); 411 GetElementPtrInst *GEP 412 = new GetElementPtrInst(Struct, Idx0, Idx1, 413 "gep_reload_" + outputs[i]->getName()); 414 codeReplacer->getInstList().push_back(GEP); 415 Output = GEP; 416 } else { 417 Output = ReloadOutputs[i]; 418 } 419 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 420 codeReplacer->getInstList().push_back(load); 421 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 422 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 423 Instruction *inst = cast<Instruction>(Users[u]); 424 if (!BlocksToExtract.count(inst->getParent())) 425 inst->replaceUsesOfWith(outputs[i], load); 426 } 427 } 428 429 // Now we can emit a switch statement using the call as a value. 430 SwitchInst *TheSwitch = 431 new SwitchInst(ConstantInt::getNullValue(Type::Int16Ty), 432 codeReplacer, 0, codeReplacer); 433 434 // Since there may be multiple exits from the original region, make the new 435 // function return an unsigned, switch on that number. This loop iterates 436 // over all of the blocks in the extracted region, updating any terminator 437 // instructions in the to-be-extracted region that branch to blocks that are 438 // not in the region to be extracted. 439 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 440 441 unsigned switchVal = 0; 442 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 443 e = BlocksToExtract.end(); i != e; ++i) { 444 TerminatorInst *TI = (*i)->getTerminator(); 445 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 446 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 447 BasicBlock *OldTarget = TI->getSuccessor(i); 448 // add a new basic block which returns the appropriate value 449 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 450 if (!NewTarget) { 451 // If we don't already have an exit stub for this non-extracted 452 // destination, create one now! 453 NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", 454 newFunction); 455 unsigned SuccNum = switchVal++; 456 457 Value *brVal = 0; 458 switch (NumExitBlocks) { 459 case 0: 460 case 1: break; // No value needed. 461 case 2: // Conditional branch, return a bool 462 brVal = ConstantInt::get(Type::Int1Ty, !SuccNum); 463 break; 464 default: 465 brVal = ConstantInt::get(Type::Int16Ty, SuccNum); 466 break; 467 } 468 469 ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); 470 471 // Update the switch instruction. 472 TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum), 473 OldTarget); 474 475 // Restore values just before we exit 476 Function::arg_iterator OAI = OutputArgBegin; 477 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 478 // For an invoke, the normal destination is the only one that is 479 // dominated by the result of the invocation 480 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 481 482 bool DominatesDef = true; 483 484 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 485 DefBlock = Invoke->getNormalDest(); 486 487 // Make sure we are looking at the original successor block, not 488 // at a newly inserted exit block, which won't be in the dominator 489 // info. 490 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 491 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 492 if (DefBlock == I->second) { 493 DefBlock = I->first; 494 break; 495 } 496 497 // In the extract block case, if the block we are extracting ends 498 // with an invoke instruction, make sure that we don't emit a 499 // store of the invoke value for the unwind block. 500 if (!DT && DefBlock != OldTarget) 501 DominatesDef = false; 502 } 503 504 if (DT) 505 DominatesDef = DT->dominates(DefBlock, OldTarget); 506 507 if (DominatesDef) { 508 if (AggregateArgs) { 509 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 510 Value *Idx1 = ConstantInt::get(Type::Int32Ty,FirstOut+out); 511 GetElementPtrInst *GEP = 512 new GetElementPtrInst(OAI, Idx0, Idx1, 513 "gep_" + outputs[out]->getName(), 514 NTRet); 515 new StoreInst(outputs[out], GEP, NTRet); 516 } else { 517 new StoreInst(outputs[out], OAI, NTRet); 518 } 519 } 520 // Advance output iterator even if we don't emit a store 521 if (!AggregateArgs) ++OAI; 522 } 523 } 524 525 // rewrite the original branch instruction with this new target 526 TI->setSuccessor(i, NewTarget); 527 } 528 } 529 530 // Now that we've done the deed, simplify the switch instruction. 531 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 532 switch (NumExitBlocks) { 533 case 0: 534 // There are no successors (the block containing the switch itself), which 535 // means that previously this was the last part of the function, and hence 536 // this should be rewritten as a `ret' 537 538 // Check if the function should return a value 539 if (OldFnRetTy == Type::VoidTy) { 540 new ReturnInst(0, TheSwitch); // Return void 541 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 542 // return what we have 543 new ReturnInst(TheSwitch->getCondition(), TheSwitch); 544 } else { 545 // Otherwise we must have code extracted an unwind or something, just 546 // return whatever we want. 547 new ReturnInst(Constant::getNullValue(OldFnRetTy), TheSwitch); 548 } 549 550 TheSwitch->getParent()->getInstList().erase(TheSwitch); 551 break; 552 case 1: 553 // Only a single destination, change the switch into an unconditional 554 // branch. 555 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch); 556 TheSwitch->getParent()->getInstList().erase(TheSwitch); 557 break; 558 case 2: 559 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 560 call, TheSwitch); 561 TheSwitch->getParent()->getInstList().erase(TheSwitch); 562 break; 563 default: 564 // Otherwise, make the default destination of the switch instruction be one 565 // of the other successors. 566 TheSwitch->setOperand(0, call); 567 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 568 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 569 break; 570 } 571 } 572 573 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 574 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 575 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 576 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 577 578 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 579 e = BlocksToExtract.end(); i != e; ++i) { 580 // Delete the basic block from the old function, and the list of blocks 581 oldBlocks.remove(*i); 582 583 // Insert this basic block into the new function 584 newBlocks.push_back(*i); 585 } 586 } 587 588 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 589 /// new function. Returns pointer to the new function. 590 /// 591 /// algorithm: 592 /// 593 /// find inputs and outputs for the region 594 /// 595 /// for inputs: add to function as args, map input instr* to arg# 596 /// for outputs: add allocas for scalars, 597 /// add to func as args, map output instr* to arg# 598 /// 599 /// rewrite func to use argument #s instead of instr* 600 /// 601 /// for each scalar output in the function: at every exit, store intermediate 602 /// computed result back into memory. 603 /// 604 Function *CodeExtractor:: 605 ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 606 if (!isEligible(code)) 607 return 0; 608 609 // 1) Find inputs, outputs 610 // 2) Construct new function 611 // * Add allocas for defs, pass as args by reference 612 // * Pass in uses as args 613 // 3) Move code region, add call instr to func 614 // 615 BlocksToExtract.insert(code.begin(), code.end()); 616 617 Values inputs, outputs; 618 619 // Assumption: this is a single-entry code region, and the header is the first 620 // block in the region. 621 BasicBlock *header = code[0]; 622 623 for (unsigned i = 1, e = code.size(); i != e; ++i) 624 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 625 PI != E; ++PI) 626 assert(BlocksToExtract.count(*PI) && 627 "No blocks in this region may have entries from outside the region" 628 " except for the first block!"); 629 630 // If we have to split PHI nodes or the entry block, do so now. 631 severSplitPHINodes(header); 632 633 // If we have any return instructions in the region, split those blocks so 634 // that the return is not in the region. 635 splitReturnBlocks(); 636 637 Function *oldFunction = header->getParent(); 638 639 // This takes place of the original loop 640 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction, header); 641 642 // The new function needs a root node because other nodes can branch to the 643 // head of the region, but the entry node of a function cannot have preds. 644 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 645 newFuncRoot->getInstList().push_back(new BranchInst(header)); 646 647 // Find inputs to, outputs from the code region. 648 findInputsOutputs(inputs, outputs); 649 650 // Construct new function based on inputs/outputs & add allocas for all defs. 651 Function *newFunction = constructFunction(inputs, outputs, header, 652 newFuncRoot, 653 codeReplacer, oldFunction, 654 oldFunction->getParent()); 655 656 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 657 658 moveCodeToFunction(newFunction); 659 660 // Loop over all of the PHI nodes in the header block, and change any 661 // references to the old incoming edge to be the new incoming edge. 662 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 663 PHINode *PN = cast<PHINode>(I); 664 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 665 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 666 PN->setIncomingBlock(i, newFuncRoot); 667 } 668 669 // Look at all successors of the codeReplacer block. If any of these blocks 670 // had PHI nodes in them, we need to update the "from" block to be the code 671 // replacer, not the original block in the extracted region. 672 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 673 succ_end(codeReplacer)); 674 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 675 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 676 PHINode *PN = cast<PHINode>(I); 677 std::set<BasicBlock*> ProcessedPreds; 678 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 679 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 680 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 681 PN->setIncomingBlock(i, codeReplacer); 682 else { 683 // There were multiple entries in the PHI for this block, now there 684 // is only one, so remove the duplicated entries. 685 PN->removeIncomingValue(i, false); 686 --i; --e; 687 } 688 } 689 690 //cerr << "NEW FUNCTION: " << *newFunction; 691 // verifyFunction(*newFunction); 692 693 // cerr << "OLD FUNCTION: " << *oldFunction; 694 // verifyFunction(*oldFunction); 695 696 DEBUG(if (verifyFunction(*newFunction)) abort()); 697 return newFunction; 698 } 699 700 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 701 // Deny code region if it contains allocas or vastarts. 702 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 703 BB != e; ++BB) 704 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 705 I != Ie; ++I) 706 if (isa<AllocaInst>(*I)) 707 return false; 708 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 709 if (const Function *F = CI->getCalledFunction()) 710 if (F->getIntrinsicID() == Intrinsic::vastart) 711 return false; 712 return true; 713 } 714 715 716 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 717 /// function 718 /// 719 Function* llvm::ExtractCodeRegion(DominatorTree &DT, 720 const std::vector<BasicBlock*> &code, 721 bool AggregateArgs) { 722 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code); 723 } 724 725 /// ExtractBasicBlock - slurp a natural loop into a brand new function 726 /// 727 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) { 728 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 729 } 730 731 /// ExtractBasicBlock - slurp a basic block into a brand new function 732 /// 733 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 734 std::vector<BasicBlock*> Blocks; 735 Blocks.push_back(BB); 736 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 737 } 738