xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision d11beffef4f1117aceb9f2f5532b4a317c30c05a)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/CodeExtractor.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/RegionInfo.h"
22 #include "llvm/Analysis/RegionIterator.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include <algorithm>
38 #include <set>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "code-extractor"
42 
43 // Provide a command-line option to aggregate function arguments into a struct
44 // for functions produced by the code extractor. This is useful when converting
45 // extracted functions to pthread-based code, as only one argument (void*) can
46 // be passed in to pthread_create().
47 static cl::opt<bool>
48 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
49                  cl::desc("Aggregate arguments to code-extracted functions"));
50 
51 /// \brief Test whether a block is valid for extraction.
52 static bool isBlockValidForExtraction(const BasicBlock &BB) {
53   // Landing pads must be in the function where they were inserted for cleanup.
54   if (BB.isLandingPad())
55     return false;
56 
57   // Don't hoist code containing allocas, invokes, or vastarts.
58   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
59     if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
60       return false;
61     if (const CallInst *CI = dyn_cast<CallInst>(I))
62       if (const Function *F = CI->getCalledFunction())
63         if (F->getIntrinsicID() == Intrinsic::vastart)
64           return false;
65   }
66 
67   return true;
68 }
69 
70 /// \brief Build a set of blocks to extract if the input blocks are viable.
71 template <typename IteratorT>
72 static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin,
73                                                        IteratorT BBEnd) {
74   SetVector<BasicBlock *> Result;
75 
76   assert(BBBegin != BBEnd);
77 
78   // Loop over the blocks, adding them to our set-vector, and aborting with an
79   // empty set if we encounter invalid blocks.
80   for (IteratorT I = BBBegin, E = BBEnd; I != E; ++I) {
81     if (!Result.insert(*I))
82       llvm_unreachable("Repeated basic blocks in extraction input");
83 
84     if (!isBlockValidForExtraction(**I)) {
85       Result.clear();
86       return Result;
87     }
88   }
89 
90 #ifndef NDEBUG
91   for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()),
92                                          E = Result.end();
93        I != E; ++I)
94     for (BasicBlock *Pred : predecessors(*I))
95       assert(Result.count(Pred) &&
96              "No blocks in this region may have entries from outside the region"
97              " except for the first block!");
98 #endif
99 
100   return Result;
101 }
102 
103 /// \brief Helper to call buildExtractionBlockSet with an ArrayRef.
104 static SetVector<BasicBlock *>
105 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) {
106   return buildExtractionBlockSet(BBs.begin(), BBs.end());
107 }
108 
109 /// \brief Helper to call buildExtractionBlockSet with a RegionNode.
110 static SetVector<BasicBlock *>
111 buildExtractionBlockSet(const RegionNode &RN) {
112   if (!RN.isSubRegion())
113     // Just a single BasicBlock.
114     return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>());
115 
116   const Region &R = *RN.getNodeAs<Region>();
117 
118   return buildExtractionBlockSet(R.block_begin(), R.block_end());
119 }
120 
121 CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs)
122   : DT(nullptr), AggregateArgs(AggregateArgs||AggregateArgsOpt),
123     Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {}
124 
125 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
126                              bool AggregateArgs)
127   : DT(DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
128     Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {}
129 
130 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs)
131   : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
132     Blocks(buildExtractionBlockSet(L.getBlocks())), NumExitBlocks(~0U) {}
133 
134 CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN,
135                              bool AggregateArgs)
136   : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
137     Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {}
138 
139 /// definedInRegion - Return true if the specified value is defined in the
140 /// extracted region.
141 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
142   if (Instruction *I = dyn_cast<Instruction>(V))
143     if (Blocks.count(I->getParent()))
144       return true;
145   return false;
146 }
147 
148 /// definedInCaller - Return true if the specified value is defined in the
149 /// function being code extracted, but not in the region being extracted.
150 /// These values must be passed in as live-ins to the function.
151 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
152   if (isa<Argument>(V)) return true;
153   if (Instruction *I = dyn_cast<Instruction>(V))
154     if (!Blocks.count(I->getParent()))
155       return true;
156   return false;
157 }
158 
159 void CodeExtractor::findInputsOutputs(ValueSet &Inputs,
160                                       ValueSet &Outputs) const {
161   for (SetVector<BasicBlock *>::const_iterator I = Blocks.begin(),
162                                                E = Blocks.end();
163        I != E; ++I) {
164     BasicBlock *BB = *I;
165 
166     // If a used value is defined outside the region, it's an input.  If an
167     // instruction is used outside the region, it's an output.
168     for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
169          II != IE; ++II) {
170       for (User::op_iterator OI = II->op_begin(), OE = II->op_end();
171            OI != OE; ++OI)
172         if (definedInCaller(Blocks, *OI))
173           Inputs.insert(*OI);
174 
175       for (User *U : II->users())
176         if (!definedInRegion(Blocks, U)) {
177           Outputs.insert(II);
178           break;
179         }
180     }
181   }
182 }
183 
184 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
185 /// region, we need to split the entry block of the region so that the PHI node
186 /// is easier to deal with.
187 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
188   unsigned NumPredsFromRegion = 0;
189   unsigned NumPredsOutsideRegion = 0;
190 
191   if (Header != &Header->getParent()->getEntryBlock()) {
192     PHINode *PN = dyn_cast<PHINode>(Header->begin());
193     if (!PN) return;  // No PHI nodes.
194 
195     // If the header node contains any PHI nodes, check to see if there is more
196     // than one entry from outside the region.  If so, we need to sever the
197     // header block into two.
198     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
199       if (Blocks.count(PN->getIncomingBlock(i)))
200         ++NumPredsFromRegion;
201       else
202         ++NumPredsOutsideRegion;
203 
204     // If there is one (or fewer) predecessor from outside the region, we don't
205     // need to do anything special.
206     if (NumPredsOutsideRegion <= 1) return;
207   }
208 
209   // Otherwise, we need to split the header block into two pieces: one
210   // containing PHI nodes merging values from outside of the region, and a
211   // second that contains all of the code for the block and merges back any
212   // incoming values from inside of the region.
213   BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
214   BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
215                                               Header->getName()+".ce");
216 
217   // We only want to code extract the second block now, and it becomes the new
218   // header of the region.
219   BasicBlock *OldPred = Header;
220   Blocks.remove(OldPred);
221   Blocks.insert(NewBB);
222   Header = NewBB;
223 
224   // Okay, update dominator sets. The blocks that dominate the new one are the
225   // blocks that dominate TIBB plus the new block itself.
226   if (DT)
227     DT->splitBlock(NewBB);
228 
229   // Okay, now we need to adjust the PHI nodes and any branches from within the
230   // region to go to the new header block instead of the old header block.
231   if (NumPredsFromRegion) {
232     PHINode *PN = cast<PHINode>(OldPred->begin());
233     // Loop over all of the predecessors of OldPred that are in the region,
234     // changing them to branch to NewBB instead.
235     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
236       if (Blocks.count(PN->getIncomingBlock(i))) {
237         TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
238         TI->replaceUsesOfWith(OldPred, NewBB);
239       }
240 
241     // Okay, everything within the region is now branching to the right block, we
242     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
243     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
244       PHINode *PN = cast<PHINode>(AfterPHIs);
245       // Create a new PHI node in the new region, which has an incoming value
246       // from OldPred of PN.
247       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
248                                        PN->getName()+".ce", NewBB->begin());
249       NewPN->addIncoming(PN, OldPred);
250 
251       // Loop over all of the incoming value in PN, moving them to NewPN if they
252       // are from the extracted region.
253       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
254         if (Blocks.count(PN->getIncomingBlock(i))) {
255           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
256           PN->removeIncomingValue(i);
257           --i;
258         }
259       }
260     }
261   }
262 }
263 
264 void CodeExtractor::splitReturnBlocks() {
265   for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
266        I != E; ++I)
267     if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
268       BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
269       if (DT) {
270         // Old dominates New. New node dominates all other nodes dominated
271         // by Old.
272         DomTreeNode *OldNode = DT->getNode(*I);
273         SmallVector<DomTreeNode*, 8> Children;
274         for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
275              DI != DE; ++DI)
276           Children.push_back(*DI);
277 
278         DomTreeNode *NewNode = DT->addNewBlock(New, *I);
279 
280         for (SmallVectorImpl<DomTreeNode *>::iterator I = Children.begin(),
281                E = Children.end(); I != E; ++I)
282           DT->changeImmediateDominator(*I, NewNode);
283       }
284     }
285 }
286 
287 /// constructFunction - make a function based on inputs and outputs, as follows:
288 /// f(in0, ..., inN, out0, ..., outN)
289 ///
290 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
291                                            const ValueSet &outputs,
292                                            BasicBlock *header,
293                                            BasicBlock *newRootNode,
294                                            BasicBlock *newHeader,
295                                            Function *oldFunction,
296                                            Module *M) {
297   DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
298   DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
299 
300   // This function returns unsigned, outputs will go back by reference.
301   switch (NumExitBlocks) {
302   case 0:
303   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
304   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
305   default: RetTy = Type::getInt16Ty(header->getContext()); break;
306   }
307 
308   std::vector<Type*> paramTy;
309 
310   // Add the types of the input values to the function's argument list
311   for (ValueSet::const_iterator i = inputs.begin(), e = inputs.end();
312        i != e; ++i) {
313     const Value *value = *i;
314     DEBUG(dbgs() << "value used in func: " << *value << "\n");
315     paramTy.push_back(value->getType());
316   }
317 
318   // Add the types of the output values to the function's argument list.
319   for (ValueSet::const_iterator I = outputs.begin(), E = outputs.end();
320        I != E; ++I) {
321     DEBUG(dbgs() << "instr used in func: " << **I << "\n");
322     if (AggregateArgs)
323       paramTy.push_back((*I)->getType());
324     else
325       paramTy.push_back(PointerType::getUnqual((*I)->getType()));
326   }
327 
328   DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
329   for (std::vector<Type*>::iterator i = paramTy.begin(),
330          e = paramTy.end(); i != e; ++i)
331     DEBUG(dbgs() << **i << ", ");
332   DEBUG(dbgs() << ")\n");
333 
334   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
335     PointerType *StructPtr =
336            PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
337     paramTy.clear();
338     paramTy.push_back(StructPtr);
339   }
340   FunctionType *funcType =
341                   FunctionType::get(RetTy, paramTy, false);
342 
343   // Create the new function
344   Function *newFunction = Function::Create(funcType,
345                                            GlobalValue::InternalLinkage,
346                                            oldFunction->getName() + "_" +
347                                            header->getName(), M);
348   // If the old function is no-throw, so is the new one.
349   if (oldFunction->doesNotThrow())
350     newFunction->setDoesNotThrow();
351 
352   newFunction->getBasicBlockList().push_back(newRootNode);
353 
354   // Create an iterator to name all of the arguments we inserted.
355   Function::arg_iterator AI = newFunction->arg_begin();
356 
357   // Rewrite all users of the inputs in the extracted region to use the
358   // arguments (or appropriate addressing into struct) instead.
359   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
360     Value *RewriteVal;
361     if (AggregateArgs) {
362       Value *Idx[2];
363       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
364       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
365       TerminatorInst *TI = newFunction->begin()->getTerminator();
366       GetElementPtrInst *GEP =
367         GetElementPtrInst::Create(AI, Idx, "gep_" + inputs[i]->getName(), TI);
368       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
369     } else
370       RewriteVal = AI++;
371 
372     std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end());
373     for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
374          use != useE; ++use)
375       if (Instruction* inst = dyn_cast<Instruction>(*use))
376         if (Blocks.count(inst->getParent()))
377           inst->replaceUsesOfWith(inputs[i], RewriteVal);
378   }
379 
380   // Set names for input and output arguments.
381   if (!AggregateArgs) {
382     AI = newFunction->arg_begin();
383     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
384       AI->setName(inputs[i]->getName());
385     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
386       AI->setName(outputs[i]->getName()+".out");
387   }
388 
389   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
390   // within the new function. This must be done before we lose track of which
391   // blocks were originally in the code region.
392   std::vector<User*> Users(header->user_begin(), header->user_end());
393   for (unsigned i = 0, e = Users.size(); i != e; ++i)
394     // The BasicBlock which contains the branch is not in the region
395     // modify the branch target to a new block
396     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
397       if (!Blocks.count(TI->getParent()) &&
398           TI->getParent()->getParent() == oldFunction)
399         TI->replaceUsesOfWith(header, newHeader);
400 
401   return newFunction;
402 }
403 
404 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
405 /// that uses the value within the basic block, and return the predecessor
406 /// block associated with that use, or return 0 if none is found.
407 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
408   for (Use &U : Used->uses()) {
409      PHINode *P = dyn_cast<PHINode>(U.getUser());
410      if (P && P->getParent() == BB)
411        return P->getIncomingBlock(U);
412   }
413 
414   return nullptr;
415 }
416 
417 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
418 /// the call instruction, splitting any PHI nodes in the header block as
419 /// necessary.
420 void CodeExtractor::
421 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
422                            ValueSet &inputs, ValueSet &outputs) {
423   // Emit a call to the new function, passing in: *pointer to struct (if
424   // aggregating parameters), or plan inputs and allocated memory for outputs
425   std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
426 
427   LLVMContext &Context = newFunction->getContext();
428 
429   // Add inputs as params, or to be filled into the struct
430   for (ValueSet::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
431     if (AggregateArgs)
432       StructValues.push_back(*i);
433     else
434       params.push_back(*i);
435 
436   // Create allocas for the outputs
437   for (ValueSet::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
438     if (AggregateArgs) {
439       StructValues.push_back(*i);
440     } else {
441       AllocaInst *alloca =
442         new AllocaInst((*i)->getType(), nullptr, (*i)->getName()+".loc",
443                        codeReplacer->getParent()->begin()->begin());
444       ReloadOutputs.push_back(alloca);
445       params.push_back(alloca);
446     }
447   }
448 
449   AllocaInst *Struct = nullptr;
450   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
451     std::vector<Type*> ArgTypes;
452     for (ValueSet::iterator v = StructValues.begin(),
453            ve = StructValues.end(); v != ve; ++v)
454       ArgTypes.push_back((*v)->getType());
455 
456     // Allocate a struct at the beginning of this function
457     Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
458     Struct =
459       new AllocaInst(StructArgTy, nullptr, "structArg",
460                      codeReplacer->getParent()->begin()->begin());
461     params.push_back(Struct);
462 
463     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
464       Value *Idx[2];
465       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
466       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
467       GetElementPtrInst *GEP =
468         GetElementPtrInst::Create(Struct, Idx,
469                                   "gep_" + StructValues[i]->getName());
470       codeReplacer->getInstList().push_back(GEP);
471       StoreInst *SI = new StoreInst(StructValues[i], GEP);
472       codeReplacer->getInstList().push_back(SI);
473     }
474   }
475 
476   // Emit the call to the function
477   CallInst *call = CallInst::Create(newFunction, params,
478                                     NumExitBlocks > 1 ? "targetBlock" : "");
479   codeReplacer->getInstList().push_back(call);
480 
481   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
482   unsigned FirstOut = inputs.size();
483   if (!AggregateArgs)
484     std::advance(OutputArgBegin, inputs.size());
485 
486   // Reload the outputs passed in by reference
487   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
488     Value *Output = nullptr;
489     if (AggregateArgs) {
490       Value *Idx[2];
491       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
492       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
493       GetElementPtrInst *GEP
494         = GetElementPtrInst::Create(Struct, Idx,
495                                     "gep_reload_" + outputs[i]->getName());
496       codeReplacer->getInstList().push_back(GEP);
497       Output = GEP;
498     } else {
499       Output = ReloadOutputs[i];
500     }
501     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
502     Reloads.push_back(load);
503     codeReplacer->getInstList().push_back(load);
504     std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end());
505     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
506       Instruction *inst = cast<Instruction>(Users[u]);
507       if (!Blocks.count(inst->getParent()))
508         inst->replaceUsesOfWith(outputs[i], load);
509     }
510   }
511 
512   // Now we can emit a switch statement using the call as a value.
513   SwitchInst *TheSwitch =
514       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
515                          codeReplacer, 0, codeReplacer);
516 
517   // Since there may be multiple exits from the original region, make the new
518   // function return an unsigned, switch on that number.  This loop iterates
519   // over all of the blocks in the extracted region, updating any terminator
520   // instructions in the to-be-extracted region that branch to blocks that are
521   // not in the region to be extracted.
522   std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
523 
524   unsigned switchVal = 0;
525   for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
526          e = Blocks.end(); i != e; ++i) {
527     TerminatorInst *TI = (*i)->getTerminator();
528     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
529       if (!Blocks.count(TI->getSuccessor(i))) {
530         BasicBlock *OldTarget = TI->getSuccessor(i);
531         // add a new basic block which returns the appropriate value
532         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
533         if (!NewTarget) {
534           // If we don't already have an exit stub for this non-extracted
535           // destination, create one now!
536           NewTarget = BasicBlock::Create(Context,
537                                          OldTarget->getName() + ".exitStub",
538                                          newFunction);
539           unsigned SuccNum = switchVal++;
540 
541           Value *brVal = nullptr;
542           switch (NumExitBlocks) {
543           case 0:
544           case 1: break;  // No value needed.
545           case 2:         // Conditional branch, return a bool
546             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
547             break;
548           default:
549             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
550             break;
551           }
552 
553           ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
554 
555           // Update the switch instruction.
556           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
557                                               SuccNum),
558                              OldTarget);
559 
560           // Restore values just before we exit
561           Function::arg_iterator OAI = OutputArgBegin;
562           for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
563             // For an invoke, the normal destination is the only one that is
564             // dominated by the result of the invocation
565             BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
566 
567             bool DominatesDef = true;
568 
569             if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
570               DefBlock = Invoke->getNormalDest();
571 
572               // Make sure we are looking at the original successor block, not
573               // at a newly inserted exit block, which won't be in the dominator
574               // info.
575               for (std::map<BasicBlock*, BasicBlock*>::iterator I =
576                      ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
577                 if (DefBlock == I->second) {
578                   DefBlock = I->first;
579                   break;
580                 }
581 
582               // In the extract block case, if the block we are extracting ends
583               // with an invoke instruction, make sure that we don't emit a
584               // store of the invoke value for the unwind block.
585               if (!DT && DefBlock != OldTarget)
586                 DominatesDef = false;
587             }
588 
589             if (DT) {
590               DominatesDef = DT->dominates(DefBlock, OldTarget);
591 
592               // If the output value is used by a phi in the target block,
593               // then we need to test for dominance of the phi's predecessor
594               // instead.  Unfortunately, this a little complicated since we
595               // have already rewritten uses of the value to uses of the reload.
596               BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
597                                                           OldTarget);
598               if (pred && DT && DT->dominates(DefBlock, pred))
599                 DominatesDef = true;
600             }
601 
602             if (DominatesDef) {
603               if (AggregateArgs) {
604                 Value *Idx[2];
605                 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
606                 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
607                                           FirstOut+out);
608                 GetElementPtrInst *GEP =
609                   GetElementPtrInst::Create(OAI, Idx,
610                                             "gep_" + outputs[out]->getName(),
611                                             NTRet);
612                 new StoreInst(outputs[out], GEP, NTRet);
613               } else {
614                 new StoreInst(outputs[out], OAI, NTRet);
615               }
616             }
617             // Advance output iterator even if we don't emit a store
618             if (!AggregateArgs) ++OAI;
619           }
620         }
621 
622         // rewrite the original branch instruction with this new target
623         TI->setSuccessor(i, NewTarget);
624       }
625   }
626 
627   // Now that we've done the deed, simplify the switch instruction.
628   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
629   switch (NumExitBlocks) {
630   case 0:
631     // There are no successors (the block containing the switch itself), which
632     // means that previously this was the last part of the function, and hence
633     // this should be rewritten as a `ret'
634 
635     // Check if the function should return a value
636     if (OldFnRetTy->isVoidTy()) {
637       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
638     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
639       // return what we have
640       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
641     } else {
642       // Otherwise we must have code extracted an unwind or something, just
643       // return whatever we want.
644       ReturnInst::Create(Context,
645                          Constant::getNullValue(OldFnRetTy), TheSwitch);
646     }
647 
648     TheSwitch->eraseFromParent();
649     break;
650   case 1:
651     // Only a single destination, change the switch into an unconditional
652     // branch.
653     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
654     TheSwitch->eraseFromParent();
655     break;
656   case 2:
657     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
658                        call, TheSwitch);
659     TheSwitch->eraseFromParent();
660     break;
661   default:
662     // Otherwise, make the default destination of the switch instruction be one
663     // of the other successors.
664     TheSwitch->setCondition(call);
665     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
666     // Remove redundant case
667     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
668     break;
669   }
670 }
671 
672 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
673   Function *oldFunc = (*Blocks.begin())->getParent();
674   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
675   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
676 
677   for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
678          e = Blocks.end(); i != e; ++i) {
679     // Delete the basic block from the old function, and the list of blocks
680     oldBlocks.remove(*i);
681 
682     // Insert this basic block into the new function
683     newBlocks.push_back(*i);
684   }
685 }
686 
687 Function *CodeExtractor::extractCodeRegion() {
688   if (!isEligible())
689     return nullptr;
690 
691   ValueSet inputs, outputs;
692 
693   // Assumption: this is a single-entry code region, and the header is the first
694   // block in the region.
695   BasicBlock *header = *Blocks.begin();
696 
697   // If we have to split PHI nodes or the entry block, do so now.
698   severSplitPHINodes(header);
699 
700   // If we have any return instructions in the region, split those blocks so
701   // that the return is not in the region.
702   splitReturnBlocks();
703 
704   Function *oldFunction = header->getParent();
705 
706   // This takes place of the original loop
707   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
708                                                 "codeRepl", oldFunction,
709                                                 header);
710 
711   // The new function needs a root node because other nodes can branch to the
712   // head of the region, but the entry node of a function cannot have preds.
713   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
714                                                "newFuncRoot");
715   newFuncRoot->getInstList().push_back(BranchInst::Create(header));
716 
717   // Find inputs to, outputs from the code region.
718   findInputsOutputs(inputs, outputs);
719 
720   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
721   for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
722        I != E; ++I)
723     for (BasicBlock *Succ : successors(*I))
724       if (!Blocks.count(Succ))
725         ExitBlocks.insert(Succ);
726   NumExitBlocks = ExitBlocks.size();
727 
728   // Construct new function based on inputs/outputs & add allocas for all defs.
729   Function *newFunction = constructFunction(inputs, outputs, header,
730                                             newFuncRoot,
731                                             codeReplacer, oldFunction,
732                                             oldFunction->getParent());
733 
734   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
735 
736   moveCodeToFunction(newFunction);
737 
738   // Loop over all of the PHI nodes in the header block, and change any
739   // references to the old incoming edge to be the new incoming edge.
740   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
741     PHINode *PN = cast<PHINode>(I);
742     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
743       if (!Blocks.count(PN->getIncomingBlock(i)))
744         PN->setIncomingBlock(i, newFuncRoot);
745   }
746 
747   // Look at all successors of the codeReplacer block.  If any of these blocks
748   // had PHI nodes in them, we need to update the "from" block to be the code
749   // replacer, not the original block in the extracted region.
750   std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
751                                  succ_end(codeReplacer));
752   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
753     for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
754       PHINode *PN = cast<PHINode>(I);
755       std::set<BasicBlock*> ProcessedPreds;
756       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
757         if (Blocks.count(PN->getIncomingBlock(i))) {
758           if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
759             PN->setIncomingBlock(i, codeReplacer);
760           else {
761             // There were multiple entries in the PHI for this block, now there
762             // is only one, so remove the duplicated entries.
763             PN->removeIncomingValue(i, false);
764             --i; --e;
765           }
766         }
767     }
768 
769   //cerr << "NEW FUNCTION: " << *newFunction;
770   //  verifyFunction(*newFunction);
771 
772   //  cerr << "OLD FUNCTION: " << *oldFunction;
773   //  verifyFunction(*oldFunction);
774 
775   DEBUG(if (verifyFunction(*newFunction))
776         report_fatal_error("verifyFunction failed!"));
777   return newFunction;
778 }
779