1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/CodeExtractor.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/RegionInfo.h" 22 #include "llvm/Analysis/RegionIterator.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include <algorithm> 38 #include <set> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "code-extractor" 42 43 // Provide a command-line option to aggregate function arguments into a struct 44 // for functions produced by the code extractor. This is useful when converting 45 // extracted functions to pthread-based code, as only one argument (void*) can 46 // be passed in to pthread_create(). 47 static cl::opt<bool> 48 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 49 cl::desc("Aggregate arguments to code-extracted functions")); 50 51 /// \brief Test whether a block is valid for extraction. 52 static bool isBlockValidForExtraction(const BasicBlock &BB) { 53 // Landing pads must be in the function where they were inserted for cleanup. 54 if (BB.isLandingPad()) 55 return false; 56 57 // Don't hoist code containing allocas, invokes, or vastarts. 58 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 59 if (isa<AllocaInst>(I) || isa<InvokeInst>(I)) 60 return false; 61 if (const CallInst *CI = dyn_cast<CallInst>(I)) 62 if (const Function *F = CI->getCalledFunction()) 63 if (F->getIntrinsicID() == Intrinsic::vastart) 64 return false; 65 } 66 67 return true; 68 } 69 70 /// \brief Build a set of blocks to extract if the input blocks are viable. 71 template <typename IteratorT> 72 static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin, 73 IteratorT BBEnd) { 74 SetVector<BasicBlock *> Result; 75 76 assert(BBBegin != BBEnd); 77 78 // Loop over the blocks, adding them to our set-vector, and aborting with an 79 // empty set if we encounter invalid blocks. 80 for (IteratorT I = BBBegin, E = BBEnd; I != E; ++I) { 81 if (!Result.insert(*I)) 82 llvm_unreachable("Repeated basic blocks in extraction input"); 83 84 if (!isBlockValidForExtraction(**I)) { 85 Result.clear(); 86 return Result; 87 } 88 } 89 90 #ifndef NDEBUG 91 for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()), 92 E = Result.end(); 93 I != E; ++I) 94 for (BasicBlock *Pred : predecessors(*I)) 95 assert(Result.count(Pred) && 96 "No blocks in this region may have entries from outside the region" 97 " except for the first block!"); 98 #endif 99 100 return Result; 101 } 102 103 /// \brief Helper to call buildExtractionBlockSet with an ArrayRef. 104 static SetVector<BasicBlock *> 105 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) { 106 return buildExtractionBlockSet(BBs.begin(), BBs.end()); 107 } 108 109 /// \brief Helper to call buildExtractionBlockSet with a RegionNode. 110 static SetVector<BasicBlock *> 111 buildExtractionBlockSet(const RegionNode &RN) { 112 if (!RN.isSubRegion()) 113 // Just a single BasicBlock. 114 return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>()); 115 116 const Region &R = *RN.getNodeAs<Region>(); 117 118 return buildExtractionBlockSet(R.block_begin(), R.block_end()); 119 } 120 121 CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs) 122 : DT(nullptr), AggregateArgs(AggregateArgs||AggregateArgsOpt), 123 Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {} 124 125 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 126 bool AggregateArgs) 127 : DT(DT), AggregateArgs(AggregateArgs||AggregateArgsOpt), 128 Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {} 129 130 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs) 131 : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt), 132 Blocks(buildExtractionBlockSet(L.getBlocks())), NumExitBlocks(~0U) {} 133 134 CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN, 135 bool AggregateArgs) 136 : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt), 137 Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {} 138 139 /// definedInRegion - Return true if the specified value is defined in the 140 /// extracted region. 141 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 142 if (Instruction *I = dyn_cast<Instruction>(V)) 143 if (Blocks.count(I->getParent())) 144 return true; 145 return false; 146 } 147 148 /// definedInCaller - Return true if the specified value is defined in the 149 /// function being code extracted, but not in the region being extracted. 150 /// These values must be passed in as live-ins to the function. 151 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 152 if (isa<Argument>(V)) return true; 153 if (Instruction *I = dyn_cast<Instruction>(V)) 154 if (!Blocks.count(I->getParent())) 155 return true; 156 return false; 157 } 158 159 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, 160 ValueSet &Outputs) const { 161 for (SetVector<BasicBlock *>::const_iterator I = Blocks.begin(), 162 E = Blocks.end(); 163 I != E; ++I) { 164 BasicBlock *BB = *I; 165 166 // If a used value is defined outside the region, it's an input. If an 167 // instruction is used outside the region, it's an output. 168 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); 169 II != IE; ++II) { 170 for (User::op_iterator OI = II->op_begin(), OE = II->op_end(); 171 OI != OE; ++OI) 172 if (definedInCaller(Blocks, *OI)) 173 Inputs.insert(*OI); 174 175 for (User *U : II->users()) 176 if (!definedInRegion(Blocks, U)) { 177 Outputs.insert(II); 178 break; 179 } 180 } 181 } 182 } 183 184 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 185 /// region, we need to split the entry block of the region so that the PHI node 186 /// is easier to deal with. 187 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 188 unsigned NumPredsFromRegion = 0; 189 unsigned NumPredsOutsideRegion = 0; 190 191 if (Header != &Header->getParent()->getEntryBlock()) { 192 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 193 if (!PN) return; // No PHI nodes. 194 195 // If the header node contains any PHI nodes, check to see if there is more 196 // than one entry from outside the region. If so, we need to sever the 197 // header block into two. 198 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 199 if (Blocks.count(PN->getIncomingBlock(i))) 200 ++NumPredsFromRegion; 201 else 202 ++NumPredsOutsideRegion; 203 204 // If there is one (or fewer) predecessor from outside the region, we don't 205 // need to do anything special. 206 if (NumPredsOutsideRegion <= 1) return; 207 } 208 209 // Otherwise, we need to split the header block into two pieces: one 210 // containing PHI nodes merging values from outside of the region, and a 211 // second that contains all of the code for the block and merges back any 212 // incoming values from inside of the region. 213 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI(); 214 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 215 Header->getName()+".ce"); 216 217 // We only want to code extract the second block now, and it becomes the new 218 // header of the region. 219 BasicBlock *OldPred = Header; 220 Blocks.remove(OldPred); 221 Blocks.insert(NewBB); 222 Header = NewBB; 223 224 // Okay, update dominator sets. The blocks that dominate the new one are the 225 // blocks that dominate TIBB plus the new block itself. 226 if (DT) 227 DT->splitBlock(NewBB); 228 229 // Okay, now we need to adjust the PHI nodes and any branches from within the 230 // region to go to the new header block instead of the old header block. 231 if (NumPredsFromRegion) { 232 PHINode *PN = cast<PHINode>(OldPred->begin()); 233 // Loop over all of the predecessors of OldPred that are in the region, 234 // changing them to branch to NewBB instead. 235 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 236 if (Blocks.count(PN->getIncomingBlock(i))) { 237 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 238 TI->replaceUsesOfWith(OldPred, NewBB); 239 } 240 241 // Okay, everything within the region is now branching to the right block, we 242 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 243 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 244 PHINode *PN = cast<PHINode>(AfterPHIs); 245 // Create a new PHI node in the new region, which has an incoming value 246 // from OldPred of PN. 247 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 248 PN->getName()+".ce", NewBB->begin()); 249 NewPN->addIncoming(PN, OldPred); 250 251 // Loop over all of the incoming value in PN, moving them to NewPN if they 252 // are from the extracted region. 253 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 254 if (Blocks.count(PN->getIncomingBlock(i))) { 255 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 256 PN->removeIncomingValue(i); 257 --i; 258 } 259 } 260 } 261 } 262 } 263 264 void CodeExtractor::splitReturnBlocks() { 265 for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end(); 266 I != E; ++I) 267 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) { 268 BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 269 if (DT) { 270 // Old dominates New. New node dominates all other nodes dominated 271 // by Old. 272 DomTreeNode *OldNode = DT->getNode(*I); 273 SmallVector<DomTreeNode*, 8> Children; 274 for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end(); 275 DI != DE; ++DI) 276 Children.push_back(*DI); 277 278 DomTreeNode *NewNode = DT->addNewBlock(New, *I); 279 280 for (SmallVectorImpl<DomTreeNode *>::iterator I = Children.begin(), 281 E = Children.end(); I != E; ++I) 282 DT->changeImmediateDominator(*I, NewNode); 283 } 284 } 285 } 286 287 /// constructFunction - make a function based on inputs and outputs, as follows: 288 /// f(in0, ..., inN, out0, ..., outN) 289 /// 290 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 291 const ValueSet &outputs, 292 BasicBlock *header, 293 BasicBlock *newRootNode, 294 BasicBlock *newHeader, 295 Function *oldFunction, 296 Module *M) { 297 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 298 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 299 300 // This function returns unsigned, outputs will go back by reference. 301 switch (NumExitBlocks) { 302 case 0: 303 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 304 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 305 default: RetTy = Type::getInt16Ty(header->getContext()); break; 306 } 307 308 std::vector<Type*> paramTy; 309 310 // Add the types of the input values to the function's argument list 311 for (ValueSet::const_iterator i = inputs.begin(), e = inputs.end(); 312 i != e; ++i) { 313 const Value *value = *i; 314 DEBUG(dbgs() << "value used in func: " << *value << "\n"); 315 paramTy.push_back(value->getType()); 316 } 317 318 // Add the types of the output values to the function's argument list. 319 for (ValueSet::const_iterator I = outputs.begin(), E = outputs.end(); 320 I != E; ++I) { 321 DEBUG(dbgs() << "instr used in func: " << **I << "\n"); 322 if (AggregateArgs) 323 paramTy.push_back((*I)->getType()); 324 else 325 paramTy.push_back(PointerType::getUnqual((*I)->getType())); 326 } 327 328 DEBUG(dbgs() << "Function type: " << *RetTy << " f("); 329 for (std::vector<Type*>::iterator i = paramTy.begin(), 330 e = paramTy.end(); i != e; ++i) 331 DEBUG(dbgs() << **i << ", "); 332 DEBUG(dbgs() << ")\n"); 333 334 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 335 PointerType *StructPtr = 336 PointerType::getUnqual(StructType::get(M->getContext(), paramTy)); 337 paramTy.clear(); 338 paramTy.push_back(StructPtr); 339 } 340 FunctionType *funcType = 341 FunctionType::get(RetTy, paramTy, false); 342 343 // Create the new function 344 Function *newFunction = Function::Create(funcType, 345 GlobalValue::InternalLinkage, 346 oldFunction->getName() + "_" + 347 header->getName(), M); 348 // If the old function is no-throw, so is the new one. 349 if (oldFunction->doesNotThrow()) 350 newFunction->setDoesNotThrow(); 351 352 newFunction->getBasicBlockList().push_back(newRootNode); 353 354 // Create an iterator to name all of the arguments we inserted. 355 Function::arg_iterator AI = newFunction->arg_begin(); 356 357 // Rewrite all users of the inputs in the extracted region to use the 358 // arguments (or appropriate addressing into struct) instead. 359 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 360 Value *RewriteVal; 361 if (AggregateArgs) { 362 Value *Idx[2]; 363 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 364 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 365 TerminatorInst *TI = newFunction->begin()->getTerminator(); 366 GetElementPtrInst *GEP = 367 GetElementPtrInst::Create(AI, Idx, "gep_" + inputs[i]->getName(), TI); 368 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 369 } else 370 RewriteVal = AI++; 371 372 std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 373 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 374 use != useE; ++use) 375 if (Instruction* inst = dyn_cast<Instruction>(*use)) 376 if (Blocks.count(inst->getParent())) 377 inst->replaceUsesOfWith(inputs[i], RewriteVal); 378 } 379 380 // Set names for input and output arguments. 381 if (!AggregateArgs) { 382 AI = newFunction->arg_begin(); 383 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 384 AI->setName(inputs[i]->getName()); 385 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 386 AI->setName(outputs[i]->getName()+".out"); 387 } 388 389 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 390 // within the new function. This must be done before we lose track of which 391 // blocks were originally in the code region. 392 std::vector<User*> Users(header->user_begin(), header->user_end()); 393 for (unsigned i = 0, e = Users.size(); i != e; ++i) 394 // The BasicBlock which contains the branch is not in the region 395 // modify the branch target to a new block 396 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 397 if (!Blocks.count(TI->getParent()) && 398 TI->getParent()->getParent() == oldFunction) 399 TI->replaceUsesOfWith(header, newHeader); 400 401 return newFunction; 402 } 403 404 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI 405 /// that uses the value within the basic block, and return the predecessor 406 /// block associated with that use, or return 0 if none is found. 407 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) { 408 for (Use &U : Used->uses()) { 409 PHINode *P = dyn_cast<PHINode>(U.getUser()); 410 if (P && P->getParent() == BB) 411 return P->getIncomingBlock(U); 412 } 413 414 return nullptr; 415 } 416 417 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 418 /// the call instruction, splitting any PHI nodes in the header block as 419 /// necessary. 420 void CodeExtractor:: 421 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 422 ValueSet &inputs, ValueSet &outputs) { 423 // Emit a call to the new function, passing in: *pointer to struct (if 424 // aggregating parameters), or plan inputs and allocated memory for outputs 425 std::vector<Value*> params, StructValues, ReloadOutputs, Reloads; 426 427 LLVMContext &Context = newFunction->getContext(); 428 429 // Add inputs as params, or to be filled into the struct 430 for (ValueSet::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 431 if (AggregateArgs) 432 StructValues.push_back(*i); 433 else 434 params.push_back(*i); 435 436 // Create allocas for the outputs 437 for (ValueSet::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 438 if (AggregateArgs) { 439 StructValues.push_back(*i); 440 } else { 441 AllocaInst *alloca = 442 new AllocaInst((*i)->getType(), nullptr, (*i)->getName()+".loc", 443 codeReplacer->getParent()->begin()->begin()); 444 ReloadOutputs.push_back(alloca); 445 params.push_back(alloca); 446 } 447 } 448 449 AllocaInst *Struct = nullptr; 450 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 451 std::vector<Type*> ArgTypes; 452 for (ValueSet::iterator v = StructValues.begin(), 453 ve = StructValues.end(); v != ve; ++v) 454 ArgTypes.push_back((*v)->getType()); 455 456 // Allocate a struct at the beginning of this function 457 Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 458 Struct = 459 new AllocaInst(StructArgTy, nullptr, "structArg", 460 codeReplacer->getParent()->begin()->begin()); 461 params.push_back(Struct); 462 463 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 464 Value *Idx[2]; 465 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 466 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 467 GetElementPtrInst *GEP = 468 GetElementPtrInst::Create(Struct, Idx, 469 "gep_" + StructValues[i]->getName()); 470 codeReplacer->getInstList().push_back(GEP); 471 StoreInst *SI = new StoreInst(StructValues[i], GEP); 472 codeReplacer->getInstList().push_back(SI); 473 } 474 } 475 476 // Emit the call to the function 477 CallInst *call = CallInst::Create(newFunction, params, 478 NumExitBlocks > 1 ? "targetBlock" : ""); 479 codeReplacer->getInstList().push_back(call); 480 481 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 482 unsigned FirstOut = inputs.size(); 483 if (!AggregateArgs) 484 std::advance(OutputArgBegin, inputs.size()); 485 486 // Reload the outputs passed in by reference 487 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 488 Value *Output = nullptr; 489 if (AggregateArgs) { 490 Value *Idx[2]; 491 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 492 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 493 GetElementPtrInst *GEP 494 = GetElementPtrInst::Create(Struct, Idx, 495 "gep_reload_" + outputs[i]->getName()); 496 codeReplacer->getInstList().push_back(GEP); 497 Output = GEP; 498 } else { 499 Output = ReloadOutputs[i]; 500 } 501 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 502 Reloads.push_back(load); 503 codeReplacer->getInstList().push_back(load); 504 std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 505 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 506 Instruction *inst = cast<Instruction>(Users[u]); 507 if (!Blocks.count(inst->getParent())) 508 inst->replaceUsesOfWith(outputs[i], load); 509 } 510 } 511 512 // Now we can emit a switch statement using the call as a value. 513 SwitchInst *TheSwitch = 514 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 515 codeReplacer, 0, codeReplacer); 516 517 // Since there may be multiple exits from the original region, make the new 518 // function return an unsigned, switch on that number. This loop iterates 519 // over all of the blocks in the extracted region, updating any terminator 520 // instructions in the to-be-extracted region that branch to blocks that are 521 // not in the region to be extracted. 522 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 523 524 unsigned switchVal = 0; 525 for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(), 526 e = Blocks.end(); i != e; ++i) { 527 TerminatorInst *TI = (*i)->getTerminator(); 528 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 529 if (!Blocks.count(TI->getSuccessor(i))) { 530 BasicBlock *OldTarget = TI->getSuccessor(i); 531 // add a new basic block which returns the appropriate value 532 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 533 if (!NewTarget) { 534 // If we don't already have an exit stub for this non-extracted 535 // destination, create one now! 536 NewTarget = BasicBlock::Create(Context, 537 OldTarget->getName() + ".exitStub", 538 newFunction); 539 unsigned SuccNum = switchVal++; 540 541 Value *brVal = nullptr; 542 switch (NumExitBlocks) { 543 case 0: 544 case 1: break; // No value needed. 545 case 2: // Conditional branch, return a bool 546 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 547 break; 548 default: 549 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 550 break; 551 } 552 553 ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget); 554 555 // Update the switch instruction. 556 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 557 SuccNum), 558 OldTarget); 559 560 // Restore values just before we exit 561 Function::arg_iterator OAI = OutputArgBegin; 562 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 563 // For an invoke, the normal destination is the only one that is 564 // dominated by the result of the invocation 565 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 566 567 bool DominatesDef = true; 568 569 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 570 DefBlock = Invoke->getNormalDest(); 571 572 // Make sure we are looking at the original successor block, not 573 // at a newly inserted exit block, which won't be in the dominator 574 // info. 575 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 576 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 577 if (DefBlock == I->second) { 578 DefBlock = I->first; 579 break; 580 } 581 582 // In the extract block case, if the block we are extracting ends 583 // with an invoke instruction, make sure that we don't emit a 584 // store of the invoke value for the unwind block. 585 if (!DT && DefBlock != OldTarget) 586 DominatesDef = false; 587 } 588 589 if (DT) { 590 DominatesDef = DT->dominates(DefBlock, OldTarget); 591 592 // If the output value is used by a phi in the target block, 593 // then we need to test for dominance of the phi's predecessor 594 // instead. Unfortunately, this a little complicated since we 595 // have already rewritten uses of the value to uses of the reload. 596 BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out], 597 OldTarget); 598 if (pred && DT && DT->dominates(DefBlock, pred)) 599 DominatesDef = true; 600 } 601 602 if (DominatesDef) { 603 if (AggregateArgs) { 604 Value *Idx[2]; 605 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 606 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), 607 FirstOut+out); 608 GetElementPtrInst *GEP = 609 GetElementPtrInst::Create(OAI, Idx, 610 "gep_" + outputs[out]->getName(), 611 NTRet); 612 new StoreInst(outputs[out], GEP, NTRet); 613 } else { 614 new StoreInst(outputs[out], OAI, NTRet); 615 } 616 } 617 // Advance output iterator even if we don't emit a store 618 if (!AggregateArgs) ++OAI; 619 } 620 } 621 622 // rewrite the original branch instruction with this new target 623 TI->setSuccessor(i, NewTarget); 624 } 625 } 626 627 // Now that we've done the deed, simplify the switch instruction. 628 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 629 switch (NumExitBlocks) { 630 case 0: 631 // There are no successors (the block containing the switch itself), which 632 // means that previously this was the last part of the function, and hence 633 // this should be rewritten as a `ret' 634 635 // Check if the function should return a value 636 if (OldFnRetTy->isVoidTy()) { 637 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 638 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 639 // return what we have 640 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 641 } else { 642 // Otherwise we must have code extracted an unwind or something, just 643 // return whatever we want. 644 ReturnInst::Create(Context, 645 Constant::getNullValue(OldFnRetTy), TheSwitch); 646 } 647 648 TheSwitch->eraseFromParent(); 649 break; 650 case 1: 651 // Only a single destination, change the switch into an unconditional 652 // branch. 653 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 654 TheSwitch->eraseFromParent(); 655 break; 656 case 2: 657 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 658 call, TheSwitch); 659 TheSwitch->eraseFromParent(); 660 break; 661 default: 662 // Otherwise, make the default destination of the switch instruction be one 663 // of the other successors. 664 TheSwitch->setCondition(call); 665 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 666 // Remove redundant case 667 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 668 break; 669 } 670 } 671 672 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 673 Function *oldFunc = (*Blocks.begin())->getParent(); 674 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 675 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 676 677 for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(), 678 e = Blocks.end(); i != e; ++i) { 679 // Delete the basic block from the old function, and the list of blocks 680 oldBlocks.remove(*i); 681 682 // Insert this basic block into the new function 683 newBlocks.push_back(*i); 684 } 685 } 686 687 Function *CodeExtractor::extractCodeRegion() { 688 if (!isEligible()) 689 return nullptr; 690 691 ValueSet inputs, outputs; 692 693 // Assumption: this is a single-entry code region, and the header is the first 694 // block in the region. 695 BasicBlock *header = *Blocks.begin(); 696 697 // If we have to split PHI nodes or the entry block, do so now. 698 severSplitPHINodes(header); 699 700 // If we have any return instructions in the region, split those blocks so 701 // that the return is not in the region. 702 splitReturnBlocks(); 703 704 Function *oldFunction = header->getParent(); 705 706 // This takes place of the original loop 707 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 708 "codeRepl", oldFunction, 709 header); 710 711 // The new function needs a root node because other nodes can branch to the 712 // head of the region, but the entry node of a function cannot have preds. 713 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 714 "newFuncRoot"); 715 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 716 717 // Find inputs to, outputs from the code region. 718 findInputsOutputs(inputs, outputs); 719 720 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 721 for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end(); 722 I != E; ++I) 723 for (BasicBlock *Succ : successors(*I)) 724 if (!Blocks.count(Succ)) 725 ExitBlocks.insert(Succ); 726 NumExitBlocks = ExitBlocks.size(); 727 728 // Construct new function based on inputs/outputs & add allocas for all defs. 729 Function *newFunction = constructFunction(inputs, outputs, header, 730 newFuncRoot, 731 codeReplacer, oldFunction, 732 oldFunction->getParent()); 733 734 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 735 736 moveCodeToFunction(newFunction); 737 738 // Loop over all of the PHI nodes in the header block, and change any 739 // references to the old incoming edge to be the new incoming edge. 740 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 741 PHINode *PN = cast<PHINode>(I); 742 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 743 if (!Blocks.count(PN->getIncomingBlock(i))) 744 PN->setIncomingBlock(i, newFuncRoot); 745 } 746 747 // Look at all successors of the codeReplacer block. If any of these blocks 748 // had PHI nodes in them, we need to update the "from" block to be the code 749 // replacer, not the original block in the extracted region. 750 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 751 succ_end(codeReplacer)); 752 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 753 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 754 PHINode *PN = cast<PHINode>(I); 755 std::set<BasicBlock*> ProcessedPreds; 756 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 757 if (Blocks.count(PN->getIncomingBlock(i))) { 758 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 759 PN->setIncomingBlock(i, codeReplacer); 760 else { 761 // There were multiple entries in the PHI for this block, now there 762 // is only one, so remove the duplicated entries. 763 PN->removeIncomingValue(i, false); 764 --i; --e; 765 } 766 } 767 } 768 769 //cerr << "NEW FUNCTION: " << *newFunction; 770 // verifyFunction(*newFunction); 771 772 // cerr << "OLD FUNCTION: " << *oldFunction; 773 // verifyFunction(*oldFunction); 774 775 DEBUG(if (verifyFunction(*newFunction)) 776 report_fatal_error("verifyFunction failed!")); 777 return newFunction; 778 } 779