xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision cf470e52552a7692906a42f657f08bf5790a8dd9)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/FunctionUtils.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/Module.h"
22 #include "llvm/Pass.h"
23 #include "llvm/Analysis/Dominators.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/Verifier.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include <algorithm>
32 #include <set>
33 using namespace llvm;
34 
35 // Provide a command-line option to aggregate function arguments into a struct
36 // for functions produced by the code extrator. This is useful when converting
37 // extracted functions to pthread-based code, as only one argument (void*) can
38 // be passed in to pthread_create().
39 static cl::opt<bool>
40 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
41                  cl::desc("Aggregate arguments to code-extracted functions"));
42 
43 namespace {
44   class VISIBILITY_HIDDEN CodeExtractor {
45     typedef std::vector<Value*> Values;
46     std::set<BasicBlock*> BlocksToExtract;
47     DominatorTree* DT;
48     bool AggregateArgs;
49     unsigned NumExitBlocks;
50     const Type *RetTy;
51   public:
52     CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
53       : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
54 
55     Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
56 
57     bool isEligible(const std::vector<BasicBlock*> &code);
58 
59   private:
60     /// definedInRegion - Return true if the specified value is defined in the
61     /// extracted region.
62     bool definedInRegion(Value *V) const {
63       if (Instruction *I = dyn_cast<Instruction>(V))
64         if (BlocksToExtract.count(I->getParent()))
65           return true;
66       return false;
67     }
68 
69     /// definedInCaller - Return true if the specified value is defined in the
70     /// function being code extracted, but not in the region being extracted.
71     /// These values must be passed in as live-ins to the function.
72     bool definedInCaller(Value *V) const {
73       if (isa<Argument>(V)) return true;
74       if (Instruction *I = dyn_cast<Instruction>(V))
75         if (!BlocksToExtract.count(I->getParent()))
76           return true;
77       return false;
78     }
79 
80     void severSplitPHINodes(BasicBlock *&Header);
81     void splitReturnBlocks();
82     void findInputsOutputs(Values &inputs, Values &outputs);
83 
84     Function *constructFunction(const Values &inputs,
85                                 const Values &outputs,
86                                 BasicBlock *header,
87                                 BasicBlock *newRootNode, BasicBlock *newHeader,
88                                 Function *oldFunction, Module *M);
89 
90     void moveCodeToFunction(Function *newFunction);
91 
92     void emitCallAndSwitchStatement(Function *newFunction,
93                                     BasicBlock *newHeader,
94                                     Values &inputs,
95                                     Values &outputs);
96 
97   };
98 }
99 
100 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
101 /// region, we need to split the entry block of the region so that the PHI node
102 /// is easier to deal with.
103 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
104   bool HasPredsFromRegion = false;
105   unsigned NumPredsOutsideRegion = 0;
106 
107   if (Header != &Header->getParent()->getEntryBlock()) {
108     PHINode *PN = dyn_cast<PHINode>(Header->begin());
109     if (!PN) return;  // No PHI nodes.
110 
111     // If the header node contains any PHI nodes, check to see if there is more
112     // than one entry from outside the region.  If so, we need to sever the
113     // header block into two.
114     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
115       if (BlocksToExtract.count(PN->getIncomingBlock(i)))
116         HasPredsFromRegion = true;
117       else
118         ++NumPredsOutsideRegion;
119 
120     // If there is one (or fewer) predecessor from outside the region, we don't
121     // need to do anything special.
122     if (NumPredsOutsideRegion <= 1) return;
123   }
124 
125   // Otherwise, we need to split the header block into two pieces: one
126   // containing PHI nodes merging values from outside of the region, and a
127   // second that contains all of the code for the block and merges back any
128   // incoming values from inside of the region.
129   BasicBlock::iterator AfterPHIs = Header->begin();
130   while (isa<PHINode>(AfterPHIs)) ++AfterPHIs;
131   BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
132                                               Header->getName()+".ce");
133 
134   // We only want to code extract the second block now, and it becomes the new
135   // header of the region.
136   BasicBlock *OldPred = Header;
137   BlocksToExtract.erase(OldPred);
138   BlocksToExtract.insert(NewBB);
139   Header = NewBB;
140 
141   // Okay, update dominator sets. The blocks that dominate the new one are the
142   // blocks that dominate TIBB plus the new block itself.
143   if (DT) {
144     DomTreeNode *OPNode = DT->getNode(OldPred);
145     DomTreeNode *IDomNode = OPNode->getIDom();
146     BasicBlock* idom = IDomNode->getBlock();
147     DT->addNewBlock(NewBB, idom);
148 
149     // Additionally, NewBB replaces OldPred as the immediate dominator of blocks
150     Function *F = Header->getParent();
151     for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
152       if (DT->getIDomBlock(I) == OldPred) {
153         DT->changeImmediateDominator(I, NewBB);
154       }
155   }
156 
157   // Okay, now we need to adjust the PHI nodes and any branches from within the
158   // region to go to the new header block instead of the old header block.
159   if (HasPredsFromRegion) {
160     PHINode *PN = cast<PHINode>(OldPred->begin());
161     // Loop over all of the predecessors of OldPred that are in the region,
162     // changing them to branch to NewBB instead.
163     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
164       if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
165         TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
166         TI->replaceUsesOfWith(OldPred, NewBB);
167       }
168 
169     // Okay, everthing within the region is now branching to the right block, we
170     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
171     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
172       PHINode *PN = cast<PHINode>(AfterPHIs);
173       // Create a new PHI node in the new region, which has an incoming value
174       // from OldPred of PN.
175       PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".ce",
176                                    NewBB->begin());
177       NewPN->addIncoming(PN, OldPred);
178 
179       // Loop over all of the incoming value in PN, moving them to NewPN if they
180       // are from the extracted region.
181       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
182         if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
183           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
184           PN->removeIncomingValue(i);
185           --i;
186         }
187       }
188     }
189   }
190 }
191 
192 void CodeExtractor::splitReturnBlocks() {
193   for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(),
194          E = BlocksToExtract.end(); I != E; ++I)
195     if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator()))
196       (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
197 }
198 
199 // findInputsOutputs - Find inputs to, outputs from the code region.
200 //
201 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
202   std::set<BasicBlock*> ExitBlocks;
203   for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
204        ce = BlocksToExtract.end(); ci != ce; ++ci) {
205     BasicBlock *BB = *ci;
206 
207     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
208       // If a used value is defined outside the region, it's an input.  If an
209       // instruction is used outside the region, it's an output.
210       for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
211         if (definedInCaller(*O))
212           inputs.push_back(*O);
213 
214       // Consider uses of this instruction (outputs).
215       for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
216            UI != E; ++UI)
217         if (!definedInRegion(*UI)) {
218           outputs.push_back(I);
219           break;
220         }
221     } // for: insts
222 
223     // Keep track of the exit blocks from the region.
224     TerminatorInst *TI = BB->getTerminator();
225     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
226       if (!BlocksToExtract.count(TI->getSuccessor(i)))
227         ExitBlocks.insert(TI->getSuccessor(i));
228   } // for: basic blocks
229 
230   NumExitBlocks = ExitBlocks.size();
231 
232   // Eliminate duplicates.
233   std::sort(inputs.begin(), inputs.end());
234   inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end());
235   std::sort(outputs.begin(), outputs.end());
236   outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end());
237 }
238 
239 /// constructFunction - make a function based on inputs and outputs, as follows:
240 /// f(in0, ..., inN, out0, ..., outN)
241 ///
242 Function *CodeExtractor::constructFunction(const Values &inputs,
243                                            const Values &outputs,
244                                            BasicBlock *header,
245                                            BasicBlock *newRootNode,
246                                            BasicBlock *newHeader,
247                                            Function *oldFunction,
248                                            Module *M) {
249   DOUT << "inputs: " << inputs.size() << "\n";
250   DOUT << "outputs: " << outputs.size() << "\n";
251 
252   // This function returns unsigned, outputs will go back by reference.
253   switch (NumExitBlocks) {
254   case 0:
255   case 1: RetTy = Type::VoidTy; break;
256   case 2: RetTy = Type::Int1Ty; break;
257   default: RetTy = Type::Int16Ty; break;
258   }
259 
260   std::vector<const Type*> paramTy;
261 
262   // Add the types of the input values to the function's argument list
263   for (Values::const_iterator i = inputs.begin(),
264          e = inputs.end(); i != e; ++i) {
265     const Value *value = *i;
266     DOUT << "value used in func: " << *value << "\n";
267     paramTy.push_back(value->getType());
268   }
269 
270   // Add the types of the output values to the function's argument list.
271   for (Values::const_iterator I = outputs.begin(), E = outputs.end();
272        I != E; ++I) {
273     DOUT << "instr used in func: " << **I << "\n";
274     if (AggregateArgs)
275       paramTy.push_back((*I)->getType());
276     else
277       paramTy.push_back(PointerType::get((*I)->getType()));
278   }
279 
280   DOUT << "Function type: " << *RetTy << " f(";
281   for (std::vector<const Type*>::iterator i = paramTy.begin(),
282          e = paramTy.end(); i != e; ++i)
283     DOUT << **i << ", ";
284   DOUT << ")\n";
285 
286   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
287     PointerType *StructPtr = PointerType::get(StructType::get(paramTy));
288     paramTy.clear();
289     paramTy.push_back(StructPtr);
290   }
291   const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false);
292 
293   // Create the new function
294   Function *newFunction = new Function(funcType,
295                                        GlobalValue::InternalLinkage,
296                                        oldFunction->getName() + "_" +
297                                        header->getName(), M);
298   newFunction->getBasicBlockList().push_back(newRootNode);
299 
300   // Create an iterator to name all of the arguments we inserted.
301   Function::arg_iterator AI = newFunction->arg_begin();
302 
303   // Rewrite all users of the inputs in the extracted region to use the
304   // arguments (or appropriate addressing into struct) instead.
305   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
306     Value *RewriteVal;
307     if (AggregateArgs) {
308       Value *Idx0 = Constant::getNullValue(Type::Int32Ty);
309       Value *Idx1 = ConstantInt::get(Type::Int32Ty, i);
310       std::string GEPname = "gep_" + inputs[i]->getName();
311       TerminatorInst *TI = newFunction->begin()->getTerminator();
312       GetElementPtrInst *GEP = new GetElementPtrInst(AI, Idx0, Idx1,
313                                                      GEPname, TI);
314       RewriteVal = new LoadInst(GEP, "load" + GEPname, TI);
315     } else
316       RewriteVal = AI++;
317 
318     std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
319     for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
320          use != useE; ++use)
321       if (Instruction* inst = dyn_cast<Instruction>(*use))
322         if (BlocksToExtract.count(inst->getParent()))
323           inst->replaceUsesOfWith(inputs[i], RewriteVal);
324   }
325 
326   // Set names for input and output arguments.
327   if (!AggregateArgs) {
328     AI = newFunction->arg_begin();
329     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
330       AI->setName(inputs[i]->getName());
331     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
332       AI->setName(outputs[i]->getName()+".out");
333   }
334 
335   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
336   // within the new function. This must be done before we lose track of which
337   // blocks were originally in the code region.
338   std::vector<User*> Users(header->use_begin(), header->use_end());
339   for (unsigned i = 0, e = Users.size(); i != e; ++i)
340     // The BasicBlock which contains the branch is not in the region
341     // modify the branch target to a new block
342     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
343       if (!BlocksToExtract.count(TI->getParent()) &&
344           TI->getParent()->getParent() == oldFunction)
345         TI->replaceUsesOfWith(header, newHeader);
346 
347   return newFunction;
348 }
349 
350 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
351 /// the call instruction, splitting any PHI nodes in the header block as
352 /// necessary.
353 void CodeExtractor::
354 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
355                            Values &inputs, Values &outputs) {
356   // Emit a call to the new function, passing in: *pointer to struct (if
357   // aggregating parameters), or plan inputs and allocated memory for outputs
358   std::vector<Value*> params, StructValues, ReloadOutputs;
359 
360   // Add inputs as params, or to be filled into the struct
361   for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
362     if (AggregateArgs)
363       StructValues.push_back(*i);
364     else
365       params.push_back(*i);
366 
367   // Create allocas for the outputs
368   for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
369     if (AggregateArgs) {
370       StructValues.push_back(*i);
371     } else {
372       AllocaInst *alloca =
373         new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
374                        codeReplacer->getParent()->begin()->begin());
375       ReloadOutputs.push_back(alloca);
376       params.push_back(alloca);
377     }
378   }
379 
380   AllocaInst *Struct = 0;
381   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
382     std::vector<const Type*> ArgTypes;
383     for (Values::iterator v = StructValues.begin(),
384            ve = StructValues.end(); v != ve; ++v)
385       ArgTypes.push_back((*v)->getType());
386 
387     // Allocate a struct at the beginning of this function
388     Type *StructArgTy = StructType::get(ArgTypes);
389     Struct =
390       new AllocaInst(StructArgTy, 0, "structArg",
391                      codeReplacer->getParent()->begin()->begin());
392     params.push_back(Struct);
393 
394     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
395       Value *Idx0 = Constant::getNullValue(Type::Int32Ty);
396       Value *Idx1 = ConstantInt::get(Type::Int32Ty, i);
397       GetElementPtrInst *GEP =
398         new GetElementPtrInst(Struct, Idx0, Idx1,
399                               "gep_" + StructValues[i]->getName());
400       codeReplacer->getInstList().push_back(GEP);
401       StoreInst *SI = new StoreInst(StructValues[i], GEP);
402       codeReplacer->getInstList().push_back(SI);
403     }
404   }
405 
406   // Emit the call to the function
407   CallInst *call = new CallInst(newFunction, &params[0], params.size(),
408                                 NumExitBlocks > 1 ? "targetBlock" : "");
409   codeReplacer->getInstList().push_back(call);
410 
411   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
412   unsigned FirstOut = inputs.size();
413   if (!AggregateArgs)
414     std::advance(OutputArgBegin, inputs.size());
415 
416   // Reload the outputs passed in by reference
417   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
418     Value *Output = 0;
419     if (AggregateArgs) {
420       Value *Idx0 = Constant::getNullValue(Type::Int32Ty);
421       Value *Idx1 = ConstantInt::get(Type::Int32Ty, FirstOut + i);
422       GetElementPtrInst *GEP
423         = new GetElementPtrInst(Struct, Idx0, Idx1,
424                                 "gep_reload_" + outputs[i]->getName());
425       codeReplacer->getInstList().push_back(GEP);
426       Output = GEP;
427     } else {
428       Output = ReloadOutputs[i];
429     }
430     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
431     codeReplacer->getInstList().push_back(load);
432     std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
433     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
434       Instruction *inst = cast<Instruction>(Users[u]);
435       if (!BlocksToExtract.count(inst->getParent()))
436         inst->replaceUsesOfWith(outputs[i], load);
437     }
438   }
439 
440   // Now we can emit a switch statement using the call as a value.
441   SwitchInst *TheSwitch =
442     new SwitchInst(ConstantInt::getNullValue(Type::Int16Ty),
443                    codeReplacer, 0, codeReplacer);
444 
445   // Since there may be multiple exits from the original region, make the new
446   // function return an unsigned, switch on that number.  This loop iterates
447   // over all of the blocks in the extracted region, updating any terminator
448   // instructions in the to-be-extracted region that branch to blocks that are
449   // not in the region to be extracted.
450   std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
451 
452   unsigned switchVal = 0;
453   for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
454          e = BlocksToExtract.end(); i != e; ++i) {
455     TerminatorInst *TI = (*i)->getTerminator();
456     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
457       if (!BlocksToExtract.count(TI->getSuccessor(i))) {
458         BasicBlock *OldTarget = TI->getSuccessor(i);
459         // add a new basic block which returns the appropriate value
460         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
461         if (!NewTarget) {
462           // If we don't already have an exit stub for this non-extracted
463           // destination, create one now!
464           NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub",
465                                      newFunction);
466           unsigned SuccNum = switchVal++;
467 
468           Value *brVal = 0;
469           switch (NumExitBlocks) {
470           case 0:
471           case 1: break;  // No value needed.
472           case 2:         // Conditional branch, return a bool
473             brVal = ConstantInt::get(Type::Int1Ty, !SuccNum);
474             break;
475           default:
476             brVal = ConstantInt::get(Type::Int16Ty, SuccNum);
477             break;
478           }
479 
480           ReturnInst *NTRet = new ReturnInst(brVal, NewTarget);
481 
482           // Update the switch instruction.
483           TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum),
484                              OldTarget);
485 
486           // Restore values just before we exit
487           Function::arg_iterator OAI = OutputArgBegin;
488           for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
489             // For an invoke, the normal destination is the only one that is
490             // dominated by the result of the invocation
491             BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
492 
493             bool DominatesDef = true;
494 
495             if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
496               DefBlock = Invoke->getNormalDest();
497 
498               // Make sure we are looking at the original successor block, not
499               // at a newly inserted exit block, which won't be in the dominator
500               // info.
501               for (std::map<BasicBlock*, BasicBlock*>::iterator I =
502                      ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
503                 if (DefBlock == I->second) {
504                   DefBlock = I->first;
505                   break;
506                 }
507 
508               // In the extract block case, if the block we are extracting ends
509               // with an invoke instruction, make sure that we don't emit a
510               // store of the invoke value for the unwind block.
511               if (!DT && DefBlock != OldTarget)
512                 DominatesDef = false;
513             }
514 
515             if (DT)
516               DominatesDef = DT->dominates(DefBlock, OldTarget);
517 
518             if (DominatesDef) {
519               if (AggregateArgs) {
520                 Value *Idx0 = Constant::getNullValue(Type::Int32Ty);
521                 Value *Idx1 = ConstantInt::get(Type::Int32Ty,FirstOut+out);
522                 GetElementPtrInst *GEP =
523                   new GetElementPtrInst(OAI, Idx0, Idx1,
524                                         "gep_" + outputs[out]->getName(),
525                                         NTRet);
526                 new StoreInst(outputs[out], GEP, NTRet);
527               } else {
528                 new StoreInst(outputs[out], OAI, NTRet);
529               }
530             }
531             // Advance output iterator even if we don't emit a store
532             if (!AggregateArgs) ++OAI;
533           }
534         }
535 
536         // rewrite the original branch instruction with this new target
537         TI->setSuccessor(i, NewTarget);
538       }
539   }
540 
541   // Now that we've done the deed, simplify the switch instruction.
542   const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
543   switch (NumExitBlocks) {
544   case 0:
545     // There are no successors (the block containing the switch itself), which
546     // means that previously this was the last part of the function, and hence
547     // this should be rewritten as a `ret'
548 
549     // Check if the function should return a value
550     if (OldFnRetTy == Type::VoidTy) {
551       new ReturnInst(0, TheSwitch);  // Return void
552     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
553       // return what we have
554       new ReturnInst(TheSwitch->getCondition(), TheSwitch);
555     } else {
556       // Otherwise we must have code extracted an unwind or something, just
557       // return whatever we want.
558       new ReturnInst(Constant::getNullValue(OldFnRetTy), TheSwitch);
559     }
560 
561     TheSwitch->getParent()->getInstList().erase(TheSwitch);
562     break;
563   case 1:
564     // Only a single destination, change the switch into an unconditional
565     // branch.
566     new BranchInst(TheSwitch->getSuccessor(1), TheSwitch);
567     TheSwitch->getParent()->getInstList().erase(TheSwitch);
568     break;
569   case 2:
570     new BranchInst(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
571                    call, TheSwitch);
572     TheSwitch->getParent()->getInstList().erase(TheSwitch);
573     break;
574   default:
575     // Otherwise, make the default destination of the switch instruction be one
576     // of the other successors.
577     TheSwitch->setOperand(0, call);
578     TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
579     TheSwitch->removeCase(NumExitBlocks);  // Remove redundant case
580     break;
581   }
582 }
583 
584 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
585   Function *oldFunc = (*BlocksToExtract.begin())->getParent();
586   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
587   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
588 
589   for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
590          e = BlocksToExtract.end(); i != e; ++i) {
591     // Delete the basic block from the old function, and the list of blocks
592     oldBlocks.remove(*i);
593 
594     // Insert this basic block into the new function
595     newBlocks.push_back(*i);
596   }
597 }
598 
599 /// ExtractRegion - Removes a loop from a function, replaces it with a call to
600 /// new function. Returns pointer to the new function.
601 ///
602 /// algorithm:
603 ///
604 /// find inputs and outputs for the region
605 ///
606 /// for inputs: add to function as args, map input instr* to arg#
607 /// for outputs: add allocas for scalars,
608 ///             add to func as args, map output instr* to arg#
609 ///
610 /// rewrite func to use argument #s instead of instr*
611 ///
612 /// for each scalar output in the function: at every exit, store intermediate
613 /// computed result back into memory.
614 ///
615 Function *CodeExtractor::
616 ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
617   if (!isEligible(code))
618     return 0;
619 
620   // 1) Find inputs, outputs
621   // 2) Construct new function
622   //  * Add allocas for defs, pass as args by reference
623   //  * Pass in uses as args
624   // 3) Move code region, add call instr to func
625   //
626   BlocksToExtract.insert(code.begin(), code.end());
627 
628   Values inputs, outputs;
629 
630   // Assumption: this is a single-entry code region, and the header is the first
631   // block in the region.
632   BasicBlock *header = code[0];
633 
634   for (unsigned i = 1, e = code.size(); i != e; ++i)
635     for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
636          PI != E; ++PI)
637       assert(BlocksToExtract.count(*PI) &&
638              "No blocks in this region may have entries from outside the region"
639              " except for the first block!");
640 
641   // If we have to split PHI nodes or the entry block, do so now.
642   severSplitPHINodes(header);
643 
644   // If we have any return instructions in the region, split those blocks so
645   // that the return is not in the region.
646   splitReturnBlocks();
647 
648   Function *oldFunction = header->getParent();
649 
650   // This takes place of the original loop
651   BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction, header);
652 
653   // The new function needs a root node because other nodes can branch to the
654   // head of the region, but the entry node of a function cannot have preds.
655   BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot");
656   newFuncRoot->getInstList().push_back(new BranchInst(header));
657 
658   // Find inputs to, outputs from the code region.
659   findInputsOutputs(inputs, outputs);
660 
661   // Construct new function based on inputs/outputs & add allocas for all defs.
662   Function *newFunction = constructFunction(inputs, outputs, header,
663                                             newFuncRoot,
664                                             codeReplacer, oldFunction,
665                                             oldFunction->getParent());
666 
667   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
668 
669   moveCodeToFunction(newFunction);
670 
671   // Loop over all of the PHI nodes in the header block, and change any
672   // references to the old incoming edge to be the new incoming edge.
673   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
674     PHINode *PN = cast<PHINode>(I);
675     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
676       if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
677         PN->setIncomingBlock(i, newFuncRoot);
678   }
679 
680   // Look at all successors of the codeReplacer block.  If any of these blocks
681   // had PHI nodes in them, we need to update the "from" block to be the code
682   // replacer, not the original block in the extracted region.
683   std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
684                                  succ_end(codeReplacer));
685   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
686     for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
687       PHINode *PN = cast<PHINode>(I);
688       std::set<BasicBlock*> ProcessedPreds;
689       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
690         if (BlocksToExtract.count(PN->getIncomingBlock(i)))
691           if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
692             PN->setIncomingBlock(i, codeReplacer);
693           else {
694             // There were multiple entries in the PHI for this block, now there
695             // is only one, so remove the duplicated entries.
696             PN->removeIncomingValue(i, false);
697             --i; --e;
698           }
699     }
700 
701   //cerr << "NEW FUNCTION: " << *newFunction;
702   //  verifyFunction(*newFunction);
703 
704   //  cerr << "OLD FUNCTION: " << *oldFunction;
705   //  verifyFunction(*oldFunction);
706 
707   DEBUG(if (verifyFunction(*newFunction)) abort());
708   return newFunction;
709 }
710 
711 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
712   // Deny code region if it contains allocas or vastarts.
713   for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
714        BB != e; ++BB)
715     for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
716          I != Ie; ++I)
717       if (isa<AllocaInst>(*I))
718         return false;
719       else if (const CallInst *CI = dyn_cast<CallInst>(I))
720         if (const Function *F = CI->getCalledFunction())
721           if (F->getIntrinsicID() == Intrinsic::vastart)
722             return false;
723   return true;
724 }
725 
726 
727 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
728 /// function
729 ///
730 Function* llvm::ExtractCodeRegion(DominatorTree &DT,
731                                   const std::vector<BasicBlock*> &code,
732                                   bool AggregateArgs) {
733   return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code);
734 }
735 
736 /// ExtractBasicBlock - slurp a natural loop into a brand new function
737 ///
738 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) {
739   return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks());
740 }
741 
742 /// ExtractBasicBlock - slurp a basic block into a brand new function
743 ///
744 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
745   std::vector<BasicBlock*> Blocks;
746   Blocks.push_back(BB);
747   return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks);
748 }
749