1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/Module.h" 22 #include "llvm/Pass.h" 23 #include "llvm/Analysis/Dominators.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/Verifier.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Compiler.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include <algorithm> 32 #include <set> 33 using namespace llvm; 34 35 // Provide a command-line option to aggregate function arguments into a struct 36 // for functions produced by the code extrator. This is useful when converting 37 // extracted functions to pthread-based code, as only one argument (void*) can 38 // be passed in to pthread_create(). 39 static cl::opt<bool> 40 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 41 cl::desc("Aggregate arguments to code-extracted functions")); 42 43 namespace { 44 class VISIBILITY_HIDDEN CodeExtractor { 45 typedef std::vector<Value*> Values; 46 std::set<BasicBlock*> BlocksToExtract; 47 DominatorTree* DT; 48 bool AggregateArgs; 49 unsigned NumExitBlocks; 50 const Type *RetTy; 51 public: 52 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false) 53 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} 54 55 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 56 57 bool isEligible(const std::vector<BasicBlock*> &code); 58 59 private: 60 /// definedInRegion - Return true if the specified value is defined in the 61 /// extracted region. 62 bool definedInRegion(Value *V) const { 63 if (Instruction *I = dyn_cast<Instruction>(V)) 64 if (BlocksToExtract.count(I->getParent())) 65 return true; 66 return false; 67 } 68 69 /// definedInCaller - Return true if the specified value is defined in the 70 /// function being code extracted, but not in the region being extracted. 71 /// These values must be passed in as live-ins to the function. 72 bool definedInCaller(Value *V) const { 73 if (isa<Argument>(V)) return true; 74 if (Instruction *I = dyn_cast<Instruction>(V)) 75 if (!BlocksToExtract.count(I->getParent())) 76 return true; 77 return false; 78 } 79 80 void severSplitPHINodes(BasicBlock *&Header); 81 void splitReturnBlocks(); 82 void findInputsOutputs(Values &inputs, Values &outputs); 83 84 Function *constructFunction(const Values &inputs, 85 const Values &outputs, 86 BasicBlock *header, 87 BasicBlock *newRootNode, BasicBlock *newHeader, 88 Function *oldFunction, Module *M); 89 90 void moveCodeToFunction(Function *newFunction); 91 92 void emitCallAndSwitchStatement(Function *newFunction, 93 BasicBlock *newHeader, 94 Values &inputs, 95 Values &outputs); 96 97 }; 98 } 99 100 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 101 /// region, we need to split the entry block of the region so that the PHI node 102 /// is easier to deal with. 103 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 104 bool HasPredsFromRegion = false; 105 unsigned NumPredsOutsideRegion = 0; 106 107 if (Header != &Header->getParent()->getEntryBlock()) { 108 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 109 if (!PN) return; // No PHI nodes. 110 111 // If the header node contains any PHI nodes, check to see if there is more 112 // than one entry from outside the region. If so, we need to sever the 113 // header block into two. 114 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 115 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 116 HasPredsFromRegion = true; 117 else 118 ++NumPredsOutsideRegion; 119 120 // If there is one (or fewer) predecessor from outside the region, we don't 121 // need to do anything special. 122 if (NumPredsOutsideRegion <= 1) return; 123 } 124 125 // Otherwise, we need to split the header block into two pieces: one 126 // containing PHI nodes merging values from outside of the region, and a 127 // second that contains all of the code for the block and merges back any 128 // incoming values from inside of the region. 129 BasicBlock::iterator AfterPHIs = Header->begin(); 130 while (isa<PHINode>(AfterPHIs)) ++AfterPHIs; 131 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 132 Header->getName()+".ce"); 133 134 // We only want to code extract the second block now, and it becomes the new 135 // header of the region. 136 BasicBlock *OldPred = Header; 137 BlocksToExtract.erase(OldPred); 138 BlocksToExtract.insert(NewBB); 139 Header = NewBB; 140 141 // Okay, update dominator sets. The blocks that dominate the new one are the 142 // blocks that dominate TIBB plus the new block itself. 143 if (DT) { 144 DomTreeNode *OPNode = DT->getNode(OldPred); 145 DomTreeNode *IDomNode = OPNode->getIDom(); 146 BasicBlock* idom = IDomNode->getBlock(); 147 DT->addNewBlock(NewBB, idom); 148 149 // Additionally, NewBB replaces OldPred as the immediate dominator of blocks 150 Function *F = Header->getParent(); 151 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) 152 if (DT->getIDomBlock(I) == OldPred) { 153 DT->changeImmediateDominator(I, NewBB); 154 } 155 } 156 157 // Okay, now we need to adjust the PHI nodes and any branches from within the 158 // region to go to the new header block instead of the old header block. 159 if (HasPredsFromRegion) { 160 PHINode *PN = cast<PHINode>(OldPred->begin()); 161 // Loop over all of the predecessors of OldPred that are in the region, 162 // changing them to branch to NewBB instead. 163 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 164 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 165 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 166 TI->replaceUsesOfWith(OldPred, NewBB); 167 } 168 169 // Okay, everthing within the region is now branching to the right block, we 170 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 171 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 172 PHINode *PN = cast<PHINode>(AfterPHIs); 173 // Create a new PHI node in the new region, which has an incoming value 174 // from OldPred of PN. 175 PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".ce", 176 NewBB->begin()); 177 NewPN->addIncoming(PN, OldPred); 178 179 // Loop over all of the incoming value in PN, moving them to NewPN if they 180 // are from the extracted region. 181 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 182 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 183 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 184 PN->removeIncomingValue(i); 185 --i; 186 } 187 } 188 } 189 } 190 } 191 192 void CodeExtractor::splitReturnBlocks() { 193 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), 194 E = BlocksToExtract.end(); I != E; ++I) 195 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) 196 (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 197 } 198 199 // findInputsOutputs - Find inputs to, outputs from the code region. 200 // 201 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 202 std::set<BasicBlock*> ExitBlocks; 203 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 204 ce = BlocksToExtract.end(); ci != ce; ++ci) { 205 BasicBlock *BB = *ci; 206 207 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 208 // If a used value is defined outside the region, it's an input. If an 209 // instruction is used outside the region, it's an output. 210 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 211 if (definedInCaller(*O)) 212 inputs.push_back(*O); 213 214 // Consider uses of this instruction (outputs). 215 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 216 UI != E; ++UI) 217 if (!definedInRegion(*UI)) { 218 outputs.push_back(I); 219 break; 220 } 221 } // for: insts 222 223 // Keep track of the exit blocks from the region. 224 TerminatorInst *TI = BB->getTerminator(); 225 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 226 if (!BlocksToExtract.count(TI->getSuccessor(i))) 227 ExitBlocks.insert(TI->getSuccessor(i)); 228 } // for: basic blocks 229 230 NumExitBlocks = ExitBlocks.size(); 231 232 // Eliminate duplicates. 233 std::sort(inputs.begin(), inputs.end()); 234 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end()); 235 std::sort(outputs.begin(), outputs.end()); 236 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end()); 237 } 238 239 /// constructFunction - make a function based on inputs and outputs, as follows: 240 /// f(in0, ..., inN, out0, ..., outN) 241 /// 242 Function *CodeExtractor::constructFunction(const Values &inputs, 243 const Values &outputs, 244 BasicBlock *header, 245 BasicBlock *newRootNode, 246 BasicBlock *newHeader, 247 Function *oldFunction, 248 Module *M) { 249 DOUT << "inputs: " << inputs.size() << "\n"; 250 DOUT << "outputs: " << outputs.size() << "\n"; 251 252 // This function returns unsigned, outputs will go back by reference. 253 switch (NumExitBlocks) { 254 case 0: 255 case 1: RetTy = Type::VoidTy; break; 256 case 2: RetTy = Type::Int1Ty; break; 257 default: RetTy = Type::Int16Ty; break; 258 } 259 260 std::vector<const Type*> paramTy; 261 262 // Add the types of the input values to the function's argument list 263 for (Values::const_iterator i = inputs.begin(), 264 e = inputs.end(); i != e; ++i) { 265 const Value *value = *i; 266 DOUT << "value used in func: " << *value << "\n"; 267 paramTy.push_back(value->getType()); 268 } 269 270 // Add the types of the output values to the function's argument list. 271 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 272 I != E; ++I) { 273 DOUT << "instr used in func: " << **I << "\n"; 274 if (AggregateArgs) 275 paramTy.push_back((*I)->getType()); 276 else 277 paramTy.push_back(PointerType::get((*I)->getType())); 278 } 279 280 DOUT << "Function type: " << *RetTy << " f("; 281 for (std::vector<const Type*>::iterator i = paramTy.begin(), 282 e = paramTy.end(); i != e; ++i) 283 DOUT << **i << ", "; 284 DOUT << ")\n"; 285 286 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 287 PointerType *StructPtr = PointerType::get(StructType::get(paramTy)); 288 paramTy.clear(); 289 paramTy.push_back(StructPtr); 290 } 291 const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false); 292 293 // Create the new function 294 Function *newFunction = new Function(funcType, 295 GlobalValue::InternalLinkage, 296 oldFunction->getName() + "_" + 297 header->getName(), M); 298 newFunction->getBasicBlockList().push_back(newRootNode); 299 300 // Create an iterator to name all of the arguments we inserted. 301 Function::arg_iterator AI = newFunction->arg_begin(); 302 303 // Rewrite all users of the inputs in the extracted region to use the 304 // arguments (or appropriate addressing into struct) instead. 305 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 306 Value *RewriteVal; 307 if (AggregateArgs) { 308 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 309 Value *Idx1 = ConstantInt::get(Type::Int32Ty, i); 310 std::string GEPname = "gep_" + inputs[i]->getName(); 311 TerminatorInst *TI = newFunction->begin()->getTerminator(); 312 GetElementPtrInst *GEP = new GetElementPtrInst(AI, Idx0, Idx1, 313 GEPname, TI); 314 RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); 315 } else 316 RewriteVal = AI++; 317 318 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 319 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 320 use != useE; ++use) 321 if (Instruction* inst = dyn_cast<Instruction>(*use)) 322 if (BlocksToExtract.count(inst->getParent())) 323 inst->replaceUsesOfWith(inputs[i], RewriteVal); 324 } 325 326 // Set names for input and output arguments. 327 if (!AggregateArgs) { 328 AI = newFunction->arg_begin(); 329 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 330 AI->setName(inputs[i]->getName()); 331 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 332 AI->setName(outputs[i]->getName()+".out"); 333 } 334 335 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 336 // within the new function. This must be done before we lose track of which 337 // blocks were originally in the code region. 338 std::vector<User*> Users(header->use_begin(), header->use_end()); 339 for (unsigned i = 0, e = Users.size(); i != e; ++i) 340 // The BasicBlock which contains the branch is not in the region 341 // modify the branch target to a new block 342 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 343 if (!BlocksToExtract.count(TI->getParent()) && 344 TI->getParent()->getParent() == oldFunction) 345 TI->replaceUsesOfWith(header, newHeader); 346 347 return newFunction; 348 } 349 350 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 351 /// the call instruction, splitting any PHI nodes in the header block as 352 /// necessary. 353 void CodeExtractor:: 354 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 355 Values &inputs, Values &outputs) { 356 // Emit a call to the new function, passing in: *pointer to struct (if 357 // aggregating parameters), or plan inputs and allocated memory for outputs 358 std::vector<Value*> params, StructValues, ReloadOutputs; 359 360 // Add inputs as params, or to be filled into the struct 361 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 362 if (AggregateArgs) 363 StructValues.push_back(*i); 364 else 365 params.push_back(*i); 366 367 // Create allocas for the outputs 368 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 369 if (AggregateArgs) { 370 StructValues.push_back(*i); 371 } else { 372 AllocaInst *alloca = 373 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 374 codeReplacer->getParent()->begin()->begin()); 375 ReloadOutputs.push_back(alloca); 376 params.push_back(alloca); 377 } 378 } 379 380 AllocaInst *Struct = 0; 381 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 382 std::vector<const Type*> ArgTypes; 383 for (Values::iterator v = StructValues.begin(), 384 ve = StructValues.end(); v != ve; ++v) 385 ArgTypes.push_back((*v)->getType()); 386 387 // Allocate a struct at the beginning of this function 388 Type *StructArgTy = StructType::get(ArgTypes); 389 Struct = 390 new AllocaInst(StructArgTy, 0, "structArg", 391 codeReplacer->getParent()->begin()->begin()); 392 params.push_back(Struct); 393 394 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 395 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 396 Value *Idx1 = ConstantInt::get(Type::Int32Ty, i); 397 GetElementPtrInst *GEP = 398 new GetElementPtrInst(Struct, Idx0, Idx1, 399 "gep_" + StructValues[i]->getName()); 400 codeReplacer->getInstList().push_back(GEP); 401 StoreInst *SI = new StoreInst(StructValues[i], GEP); 402 codeReplacer->getInstList().push_back(SI); 403 } 404 } 405 406 // Emit the call to the function 407 CallInst *call = new CallInst(newFunction, ¶ms[0], params.size(), 408 NumExitBlocks > 1 ? "targetBlock" : ""); 409 codeReplacer->getInstList().push_back(call); 410 411 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 412 unsigned FirstOut = inputs.size(); 413 if (!AggregateArgs) 414 std::advance(OutputArgBegin, inputs.size()); 415 416 // Reload the outputs passed in by reference 417 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 418 Value *Output = 0; 419 if (AggregateArgs) { 420 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 421 Value *Idx1 = ConstantInt::get(Type::Int32Ty, FirstOut + i); 422 GetElementPtrInst *GEP 423 = new GetElementPtrInst(Struct, Idx0, Idx1, 424 "gep_reload_" + outputs[i]->getName()); 425 codeReplacer->getInstList().push_back(GEP); 426 Output = GEP; 427 } else { 428 Output = ReloadOutputs[i]; 429 } 430 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 431 codeReplacer->getInstList().push_back(load); 432 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 433 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 434 Instruction *inst = cast<Instruction>(Users[u]); 435 if (!BlocksToExtract.count(inst->getParent())) 436 inst->replaceUsesOfWith(outputs[i], load); 437 } 438 } 439 440 // Now we can emit a switch statement using the call as a value. 441 SwitchInst *TheSwitch = 442 new SwitchInst(ConstantInt::getNullValue(Type::Int16Ty), 443 codeReplacer, 0, codeReplacer); 444 445 // Since there may be multiple exits from the original region, make the new 446 // function return an unsigned, switch on that number. This loop iterates 447 // over all of the blocks in the extracted region, updating any terminator 448 // instructions in the to-be-extracted region that branch to blocks that are 449 // not in the region to be extracted. 450 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 451 452 unsigned switchVal = 0; 453 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 454 e = BlocksToExtract.end(); i != e; ++i) { 455 TerminatorInst *TI = (*i)->getTerminator(); 456 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 457 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 458 BasicBlock *OldTarget = TI->getSuccessor(i); 459 // add a new basic block which returns the appropriate value 460 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 461 if (!NewTarget) { 462 // If we don't already have an exit stub for this non-extracted 463 // destination, create one now! 464 NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", 465 newFunction); 466 unsigned SuccNum = switchVal++; 467 468 Value *brVal = 0; 469 switch (NumExitBlocks) { 470 case 0: 471 case 1: break; // No value needed. 472 case 2: // Conditional branch, return a bool 473 brVal = ConstantInt::get(Type::Int1Ty, !SuccNum); 474 break; 475 default: 476 brVal = ConstantInt::get(Type::Int16Ty, SuccNum); 477 break; 478 } 479 480 ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); 481 482 // Update the switch instruction. 483 TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum), 484 OldTarget); 485 486 // Restore values just before we exit 487 Function::arg_iterator OAI = OutputArgBegin; 488 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 489 // For an invoke, the normal destination is the only one that is 490 // dominated by the result of the invocation 491 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 492 493 bool DominatesDef = true; 494 495 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 496 DefBlock = Invoke->getNormalDest(); 497 498 // Make sure we are looking at the original successor block, not 499 // at a newly inserted exit block, which won't be in the dominator 500 // info. 501 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 502 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 503 if (DefBlock == I->second) { 504 DefBlock = I->first; 505 break; 506 } 507 508 // In the extract block case, if the block we are extracting ends 509 // with an invoke instruction, make sure that we don't emit a 510 // store of the invoke value for the unwind block. 511 if (!DT && DefBlock != OldTarget) 512 DominatesDef = false; 513 } 514 515 if (DT) 516 DominatesDef = DT->dominates(DefBlock, OldTarget); 517 518 if (DominatesDef) { 519 if (AggregateArgs) { 520 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 521 Value *Idx1 = ConstantInt::get(Type::Int32Ty,FirstOut+out); 522 GetElementPtrInst *GEP = 523 new GetElementPtrInst(OAI, Idx0, Idx1, 524 "gep_" + outputs[out]->getName(), 525 NTRet); 526 new StoreInst(outputs[out], GEP, NTRet); 527 } else { 528 new StoreInst(outputs[out], OAI, NTRet); 529 } 530 } 531 // Advance output iterator even if we don't emit a store 532 if (!AggregateArgs) ++OAI; 533 } 534 } 535 536 // rewrite the original branch instruction with this new target 537 TI->setSuccessor(i, NewTarget); 538 } 539 } 540 541 // Now that we've done the deed, simplify the switch instruction. 542 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 543 switch (NumExitBlocks) { 544 case 0: 545 // There are no successors (the block containing the switch itself), which 546 // means that previously this was the last part of the function, and hence 547 // this should be rewritten as a `ret' 548 549 // Check if the function should return a value 550 if (OldFnRetTy == Type::VoidTy) { 551 new ReturnInst(0, TheSwitch); // Return void 552 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 553 // return what we have 554 new ReturnInst(TheSwitch->getCondition(), TheSwitch); 555 } else { 556 // Otherwise we must have code extracted an unwind or something, just 557 // return whatever we want. 558 new ReturnInst(Constant::getNullValue(OldFnRetTy), TheSwitch); 559 } 560 561 TheSwitch->getParent()->getInstList().erase(TheSwitch); 562 break; 563 case 1: 564 // Only a single destination, change the switch into an unconditional 565 // branch. 566 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch); 567 TheSwitch->getParent()->getInstList().erase(TheSwitch); 568 break; 569 case 2: 570 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 571 call, TheSwitch); 572 TheSwitch->getParent()->getInstList().erase(TheSwitch); 573 break; 574 default: 575 // Otherwise, make the default destination of the switch instruction be one 576 // of the other successors. 577 TheSwitch->setOperand(0, call); 578 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 579 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 580 break; 581 } 582 } 583 584 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 585 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 586 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 587 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 588 589 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 590 e = BlocksToExtract.end(); i != e; ++i) { 591 // Delete the basic block from the old function, and the list of blocks 592 oldBlocks.remove(*i); 593 594 // Insert this basic block into the new function 595 newBlocks.push_back(*i); 596 } 597 } 598 599 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 600 /// new function. Returns pointer to the new function. 601 /// 602 /// algorithm: 603 /// 604 /// find inputs and outputs for the region 605 /// 606 /// for inputs: add to function as args, map input instr* to arg# 607 /// for outputs: add allocas for scalars, 608 /// add to func as args, map output instr* to arg# 609 /// 610 /// rewrite func to use argument #s instead of instr* 611 /// 612 /// for each scalar output in the function: at every exit, store intermediate 613 /// computed result back into memory. 614 /// 615 Function *CodeExtractor:: 616 ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 617 if (!isEligible(code)) 618 return 0; 619 620 // 1) Find inputs, outputs 621 // 2) Construct new function 622 // * Add allocas for defs, pass as args by reference 623 // * Pass in uses as args 624 // 3) Move code region, add call instr to func 625 // 626 BlocksToExtract.insert(code.begin(), code.end()); 627 628 Values inputs, outputs; 629 630 // Assumption: this is a single-entry code region, and the header is the first 631 // block in the region. 632 BasicBlock *header = code[0]; 633 634 for (unsigned i = 1, e = code.size(); i != e; ++i) 635 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 636 PI != E; ++PI) 637 assert(BlocksToExtract.count(*PI) && 638 "No blocks in this region may have entries from outside the region" 639 " except for the first block!"); 640 641 // If we have to split PHI nodes or the entry block, do so now. 642 severSplitPHINodes(header); 643 644 // If we have any return instructions in the region, split those blocks so 645 // that the return is not in the region. 646 splitReturnBlocks(); 647 648 Function *oldFunction = header->getParent(); 649 650 // This takes place of the original loop 651 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction, header); 652 653 // The new function needs a root node because other nodes can branch to the 654 // head of the region, but the entry node of a function cannot have preds. 655 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 656 newFuncRoot->getInstList().push_back(new BranchInst(header)); 657 658 // Find inputs to, outputs from the code region. 659 findInputsOutputs(inputs, outputs); 660 661 // Construct new function based on inputs/outputs & add allocas for all defs. 662 Function *newFunction = constructFunction(inputs, outputs, header, 663 newFuncRoot, 664 codeReplacer, oldFunction, 665 oldFunction->getParent()); 666 667 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 668 669 moveCodeToFunction(newFunction); 670 671 // Loop over all of the PHI nodes in the header block, and change any 672 // references to the old incoming edge to be the new incoming edge. 673 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 674 PHINode *PN = cast<PHINode>(I); 675 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 676 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 677 PN->setIncomingBlock(i, newFuncRoot); 678 } 679 680 // Look at all successors of the codeReplacer block. If any of these blocks 681 // had PHI nodes in them, we need to update the "from" block to be the code 682 // replacer, not the original block in the extracted region. 683 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 684 succ_end(codeReplacer)); 685 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 686 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 687 PHINode *PN = cast<PHINode>(I); 688 std::set<BasicBlock*> ProcessedPreds; 689 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 690 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 691 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 692 PN->setIncomingBlock(i, codeReplacer); 693 else { 694 // There were multiple entries in the PHI for this block, now there 695 // is only one, so remove the duplicated entries. 696 PN->removeIncomingValue(i, false); 697 --i; --e; 698 } 699 } 700 701 //cerr << "NEW FUNCTION: " << *newFunction; 702 // verifyFunction(*newFunction); 703 704 // cerr << "OLD FUNCTION: " << *oldFunction; 705 // verifyFunction(*oldFunction); 706 707 DEBUG(if (verifyFunction(*newFunction)) abort()); 708 return newFunction; 709 } 710 711 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 712 // Deny code region if it contains allocas or vastarts. 713 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 714 BB != e; ++BB) 715 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 716 I != Ie; ++I) 717 if (isa<AllocaInst>(*I)) 718 return false; 719 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 720 if (const Function *F = CI->getCalledFunction()) 721 if (F->getIntrinsicID() == Intrinsic::vastart) 722 return false; 723 return true; 724 } 725 726 727 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 728 /// function 729 /// 730 Function* llvm::ExtractCodeRegion(DominatorTree &DT, 731 const std::vector<BasicBlock*> &code, 732 bool AggregateArgs) { 733 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code); 734 } 735 736 /// ExtractBasicBlock - slurp a natural loop into a brand new function 737 /// 738 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) { 739 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 740 } 741 742 /// ExtractBasicBlock - slurp a basic block into a brand new function 743 /// 744 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 745 std::vector<BasicBlock*> Blocks; 746 Blocks.push_back(BB); 747 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 748 } 749