1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/Pass.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/Verifier.h" 24 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 25 #include "Support/Debug.h" 26 #include "Support/StringExtras.h" 27 #include <algorithm> 28 #include <set> 29 using namespace llvm; 30 31 namespace { 32 33 /// getFunctionArg - Return a pointer to F's ARGNOth argument. 34 /// 35 Argument *getFunctionArg(Function *F, unsigned argno) { 36 Function::aiterator I = F->abegin(); 37 std::advance(I, argno); 38 return I; 39 } 40 41 struct CodeExtractor { 42 typedef std::vector<Value*> Values; 43 typedef std::vector<std::pair<unsigned, unsigned> > PhiValChangesTy; 44 typedef std::map<PHINode*, PhiValChangesTy> PhiVal2ArgTy; 45 PhiVal2ArgTy PhiVal2Arg; 46 std::set<BasicBlock*> BlocksToExtract; 47 public: 48 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 49 50 private: 51 void findInputsOutputs(Values &inputs, Values &outputs, 52 BasicBlock *newHeader, 53 BasicBlock *newRootNode); 54 55 void processPhiNodeInputs(PHINode *Phi, 56 Values &inputs, 57 BasicBlock *newHeader, 58 BasicBlock *newRootNode); 59 60 void rewritePhiNodes(Function *F, BasicBlock *newFuncRoot); 61 62 Function *constructFunction(const Values &inputs, 63 const Values &outputs, 64 BasicBlock *newRootNode, BasicBlock *newHeader, 65 Function *oldFunction, Module *M); 66 67 void moveCodeToFunction(Function *newFunction); 68 69 void emitCallAndSwitchStatement(Function *newFunction, 70 BasicBlock *newHeader, 71 Values &inputs, 72 Values &outputs); 73 74 }; 75 } 76 77 void CodeExtractor::processPhiNodeInputs(PHINode *Phi, 78 Values &inputs, 79 BasicBlock *codeReplacer, 80 BasicBlock *newFuncRoot) { 81 // Separate incoming values and BasicBlocks as internal/external. We ignore 82 // the case where both the value and BasicBlock are internal, because we don't 83 // need to do a thing. 84 std::vector<unsigned> EValEBB; 85 std::vector<unsigned> EValIBB; 86 std::vector<unsigned> IValEBB; 87 88 for (unsigned i = 0, e = Phi->getNumIncomingValues(); i != e; ++i) { 89 Value *phiVal = Phi->getIncomingValue(i); 90 if (Instruction *Inst = dyn_cast<Instruction>(phiVal)) { 91 if (BlocksToExtract.count(Inst->getParent())) { 92 if (!BlocksToExtract.count(Phi->getIncomingBlock(i))) 93 IValEBB.push_back(i); 94 } else { 95 if (BlocksToExtract.count(Phi->getIncomingBlock(i))) 96 EValIBB.push_back(i); 97 else 98 EValEBB.push_back(i); 99 } 100 } else if (Argument *Arg = dyn_cast<Argument>(phiVal)) { 101 // arguments are external 102 if (BlocksToExtract.count(Phi->getIncomingBlock(i))) 103 EValIBB.push_back(i); 104 else 105 EValEBB.push_back(i); 106 } else { 107 // Globals/Constants are internal, but considered `external' if they are 108 // coming from an external block. 109 if (!BlocksToExtract.count(Phi->getIncomingBlock(i))) 110 EValEBB.push_back(i); 111 } 112 } 113 114 // Both value and block are external. Need to group all of these, have an 115 // external phi, pass the result as an argument, and have THIS phi use that 116 // result. 117 if (EValEBB.size() > 0) { 118 if (EValEBB.size() == 1) { 119 // Now if it's coming from the newFuncRoot, it's that funky input 120 unsigned phiIdx = EValEBB[0]; 121 if (!isa<Constant>(Phi->getIncomingValue(phiIdx))) { 122 PhiVal2Arg[Phi].push_back(std::make_pair(phiIdx, inputs.size())); 123 // We can just pass this value in as argument 124 inputs.push_back(Phi->getIncomingValue(phiIdx)); 125 } 126 Phi->setIncomingBlock(phiIdx, newFuncRoot); 127 } else { 128 PHINode *externalPhi = new PHINode(Phi->getType(), "extPhi"); 129 codeReplacer->getInstList().insert(codeReplacer->begin(), externalPhi); 130 for (std::vector<unsigned>::iterator i = EValEBB.begin(), 131 e = EValEBB.end(); i != e; ++i) { 132 externalPhi->addIncoming(Phi->getIncomingValue(*i), 133 Phi->getIncomingBlock(*i)); 134 135 // We make these values invalid instead of deleting them because that 136 // would shift the indices of other values... The fixPhiNodes should 137 // clean these phi nodes up later. 138 Phi->setIncomingValue(*i, 0); 139 Phi->setIncomingBlock(*i, 0); 140 } 141 PhiVal2Arg[Phi].push_back(std::make_pair(Phi->getNumIncomingValues(), 142 inputs.size())); 143 // We can just pass this value in as argument 144 inputs.push_back(externalPhi); 145 } 146 } 147 148 // When the value is external, but block internal... just pass it in as 149 // argument, no change to phi node 150 for (std::vector<unsigned>::iterator i = EValIBB.begin(), 151 e = EValIBB.end(); i != e; ++i) { 152 // rewrite the phi input node to be an argument 153 PhiVal2Arg[Phi].push_back(std::make_pair(*i, inputs.size())); 154 inputs.push_back(Phi->getIncomingValue(*i)); 155 } 156 157 // Value internal, block external this can happen if we are extracting a part 158 // of a loop. 159 for (std::vector<unsigned>::iterator i = IValEBB.begin(), 160 e = IValEBB.end(); i != e; ++i) { 161 assert(0 && "Cannot (YET) handle internal values via external blocks"); 162 } 163 } 164 165 166 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs, 167 BasicBlock *newHeader, 168 BasicBlock *newRootNode) { 169 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 170 ce = BlocksToExtract.end(); ci != ce; ++ci) { 171 BasicBlock *BB = *ci; 172 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 173 // If a used value is defined outside the region, it's an input. If an 174 // instruction is used outside the region, it's an output. 175 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 176 processPhiNodeInputs(Phi, inputs, newHeader, newRootNode); 177 } else { 178 // All other instructions go through the generic input finder 179 // Loop over the operands of each instruction (inputs) 180 for (User::op_iterator op = I->op_begin(), opE = I->op_end(); 181 op != opE; ++op) 182 if (Instruction *opI = dyn_cast<Instruction>(*op)) { 183 // Check if definition of this operand is within the loop 184 if (!BlocksToExtract.count(opI->getParent())) 185 inputs.push_back(opI); 186 } else if (isa<Argument>(*op)) { 187 inputs.push_back(*op); 188 } 189 } 190 191 // Consider uses of this instruction (outputs) 192 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 193 UI != E; ++UI) 194 if (!BlocksToExtract.count(cast<Instruction>(*UI)->getParent())) 195 outputs.push_back(*UI); 196 } // for: insts 197 } // for: basic blocks 198 } 199 200 void CodeExtractor::rewritePhiNodes(Function *F, 201 BasicBlock *newFuncRoot) { 202 // Write any changes that were saved before: use function arguments as inputs 203 for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end(); 204 i != e; ++i) { 205 PHINode *phi = i->first; 206 PhiValChangesTy &values = i->second; 207 for (unsigned cIdx = 0, ce = values.size(); cIdx != ce; ++cIdx) 208 { 209 unsigned phiValueIdx = values[cIdx].first, argNum = values[cIdx].second; 210 if (phiValueIdx < phi->getNumIncomingValues()) 211 phi->setIncomingValue(phiValueIdx, getFunctionArg(F, argNum)); 212 else 213 phi->addIncoming(getFunctionArg(F, argNum), newFuncRoot); 214 } 215 } 216 217 // Delete any invalid Phi node inputs that were marked as NULL previously 218 for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end(); 219 i != e; ++i) { 220 PHINode *phi = i->first; 221 for (unsigned idx = 0, end = phi->getNumIncomingValues(); idx != end; ++idx) 222 { 223 if (phi->getIncomingValue(idx) == 0 && phi->getIncomingBlock(idx) == 0) { 224 phi->removeIncomingValue(idx); 225 --idx; 226 --end; 227 } 228 } 229 } 230 231 // We are done with the saved values 232 PhiVal2Arg.clear(); 233 } 234 235 236 /// constructFunction - make a function based on inputs and outputs, as follows: 237 /// f(in0, ..., inN, out0, ..., outN) 238 /// 239 Function *CodeExtractor::constructFunction(const Values &inputs, 240 const Values &outputs, 241 BasicBlock *newRootNode, 242 BasicBlock *newHeader, 243 Function *oldFunction, Module *M) { 244 DEBUG(std::cerr << "inputs: " << inputs.size() << "\n"); 245 DEBUG(std::cerr << "outputs: " << outputs.size() << "\n"); 246 BasicBlock *header = *BlocksToExtract.begin(); 247 248 // This function returns unsigned, outputs will go back by reference. 249 Type *retTy = Type::UShortTy; 250 std::vector<const Type*> paramTy; 251 252 // Add the types of the input values to the function's argument list 253 for (Values::const_iterator i = inputs.begin(), 254 e = inputs.end(); i != e; ++i) { 255 const Value *value = *i; 256 DEBUG(std::cerr << "value used in func: " << value << "\n"); 257 paramTy.push_back(value->getType()); 258 } 259 260 // Add the types of the output values to the function's argument list, but 261 // make them pointer types for scalars 262 for (Values::const_iterator i = outputs.begin(), 263 e = outputs.end(); i != e; ++i) { 264 const Value *value = *i; 265 DEBUG(std::cerr << "instr used in func: " << value << "\n"); 266 const Type *valueType = value->getType(); 267 // Convert scalar types into a pointer of that type 268 if (valueType->isPrimitiveType()) { 269 valueType = PointerType::get(valueType); 270 } 271 paramTy.push_back(valueType); 272 } 273 274 DEBUG(std::cerr << "Function type: " << retTy << " f("); 275 for (std::vector<const Type*>::iterator i = paramTy.begin(), 276 e = paramTy.end(); i != e; ++i) 277 DEBUG(std::cerr << *i << ", "); 278 DEBUG(std::cerr << ")\n"); 279 280 const FunctionType *funcType = FunctionType::get(retTy, paramTy, false); 281 282 // Create the new function 283 Function *newFunction = new Function(funcType, 284 GlobalValue::InternalLinkage, 285 oldFunction->getName() + "_code", M); 286 newFunction->getBasicBlockList().push_back(newRootNode); 287 288 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 289 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 290 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 291 use != useE; ++use) 292 if (Instruction* inst = dyn_cast<Instruction>(*use)) 293 if (BlocksToExtract.count(inst->getParent())) 294 inst->replaceUsesOfWith(inputs[i], getFunctionArg(newFunction, i)); 295 } 296 297 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 298 // within the new function. This must be done before we lose track of which 299 // blocks were originally in the code region. 300 std::vector<User*> Users(header->use_begin(), header->use_end()); 301 for (std::vector<User*>::iterator i = Users.begin(), e = Users.end(); 302 i != e; ++i) { 303 if (BranchInst *inst = dyn_cast<BranchInst>(*i)) { 304 BasicBlock *BB = inst->getParent(); 305 if (!BlocksToExtract.count(BB) && BB->getParent() == oldFunction) { 306 // The BasicBlock which contains the branch is not in the region 307 // modify the branch target to a new block 308 inst->replaceUsesOfWith(header, newHeader); 309 } 310 } 311 } 312 313 return newFunction; 314 } 315 316 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 317 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 318 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 319 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 320 321 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 322 e = BlocksToExtract.end(); i != e; ++i) { 323 // Delete the basic block from the old function, and the list of blocks 324 oldBlocks.remove(*i); 325 326 // Insert this basic block into the new function 327 newBlocks.push_back(*i); 328 } 329 } 330 331 void 332 CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 333 BasicBlock *codeReplacer, 334 Values &inputs, 335 Values &outputs) 336 { 337 // Emit a call to the new function, passing allocated memory for outputs and 338 // just plain inputs for non-scalars 339 std::vector<Value*> params(inputs); 340 341 for (Values::const_iterator i = outputs.begin(), e = outputs.end(); i != e; 342 ++i) { 343 Value *Output = *i; 344 // Create allocas for scalar outputs 345 if (Output->getType()->isPrimitiveType()) { 346 AllocaInst *alloca = 347 new AllocaInst((*i)->getType(), 0, Output->getName()+".loc", 348 codeReplacer->getParent()->begin()->begin()); 349 params.push_back(alloca); 350 351 LoadInst *load = new LoadInst(alloca, Output->getName()+".reload"); 352 codeReplacer->getInstList().push_back(load); 353 std::vector<User*> Users((*i)->use_begin(), (*i)->use_end()); 354 for (std::vector<User*>::iterator use = Users.begin(), useE =Users.end(); 355 use != useE; ++use) { 356 if (Instruction* inst = dyn_cast<Instruction>(*use)) { 357 if (!BlocksToExtract.count(inst->getParent())) 358 inst->replaceUsesOfWith(*i, load); 359 } 360 } 361 } else { 362 params.push_back(*i); 363 } 364 } 365 366 CallInst *call = new CallInst(newFunction, params, "targetBlock"); 367 codeReplacer->getInstList().push_front(call); 368 369 // Now we can emit a switch statement using the call as a value. 370 SwitchInst *TheSwitch = new SwitchInst(call, codeReplacer, codeReplacer); 371 372 // Since there may be multiple exits from the original region, make the new 373 // function return an unsigned, switch on that number. This loop iterates 374 // over all of the blocks in the extracted region, updating any terminator 375 // instructions in the to-be-extracted region that branch to blocks that are 376 // not in the region to be extracted. 377 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 378 379 unsigned switchVal = 0; 380 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 381 e = BlocksToExtract.end(); i != e; ++i) { 382 TerminatorInst *TI = (*i)->getTerminator(); 383 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 384 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 385 BasicBlock *OldTarget = TI->getSuccessor(i); 386 // add a new basic block which returns the appropriate value 387 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 388 if (!NewTarget) { 389 // If we don't already have an exit stub for this non-extracted 390 // destination, create one now! 391 NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", 392 newFunction); 393 394 ConstantUInt *brVal = ConstantUInt::get(Type::UShortTy, switchVal++); 395 ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); 396 397 // Update the switch instruction. 398 TheSwitch->addCase(brVal, OldTarget); 399 400 // Restore values just before we exit 401 // FIXME: Use a GetElementPtr to bunch the outputs in a struct 402 for (unsigned out = 0, e = outputs.size(); out != e; ++out) 403 new StoreInst(outputs[out], getFunctionArg(newFunction, out),NTRet); 404 } 405 406 // rewrite the original branch instruction with this new target 407 TI->setSuccessor(i, NewTarget); 408 } 409 } 410 411 // Now that we've done the deed, make the default destination of the switch 412 // instruction be one of the exit blocks of the region. 413 if (TheSwitch->getNumSuccessors() > 1) { 414 // FIXME: this is broken w.r.t. PHI nodes, but the old code was more broken. 415 // This edge is not traversable. 416 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(1)); 417 } 418 } 419 420 421 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 422 /// new function. Returns pointer to the new function. 423 /// 424 /// algorithm: 425 /// 426 /// find inputs and outputs for the region 427 /// 428 /// for inputs: add to function as args, map input instr* to arg# 429 /// for outputs: add allocas for scalars, 430 /// add to func as args, map output instr* to arg# 431 /// 432 /// rewrite func to use argument #s instead of instr* 433 /// 434 /// for each scalar output in the function: at every exit, store intermediate 435 /// computed result back into memory. 436 /// 437 Function *CodeExtractor::ExtractCodeRegion(const std::vector<BasicBlock*> &code) 438 { 439 // 1) Find inputs, outputs 440 // 2) Construct new function 441 // * Add allocas for defs, pass as args by reference 442 // * Pass in uses as args 443 // 3) Move code region, add call instr to func 444 // 445 BlocksToExtract.insert(code.begin(), code.end()); 446 447 Values inputs, outputs; 448 449 // Assumption: this is a single-entry code region, and the header is the first 450 // block in the region. 451 BasicBlock *header = code[0]; 452 for (unsigned i = 1, e = code.size(); i != e; ++i) 453 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 454 PI != E; ++PI) 455 assert(BlocksToExtract.count(*PI) && 456 "No blocks in this region may have entries from outside the region" 457 " except for the first block!"); 458 459 Function *oldFunction = header->getParent(); 460 461 // This takes place of the original loop 462 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction); 463 464 // The new function needs a root node because other nodes can branch to the 465 // head of the loop, and the root cannot have predecessors 466 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 467 newFuncRoot->getInstList().push_back(new BranchInst(header)); 468 469 // Find inputs to, outputs from the code region 470 // 471 // If one of the inputs is coming from a different basic block and it's in a 472 // phi node, we need to rewrite the phi node: 473 // 474 // * All the inputs which involve basic blocks OUTSIDE of this region go into 475 // a NEW phi node that takes care of finding which value really came in. 476 // The result of this phi is passed to the function as an argument. 477 // 478 // * All the other phi values stay. 479 // 480 // FIXME: PHI nodes' incoming blocks aren't being rewritten to accomodate for 481 // blocks moving to a new function. 482 // SOLUTION: move Phi nodes out of the loop header into the codeReplacer, pass 483 // the values as parameters to the function 484 findInputsOutputs(inputs, outputs, codeReplacer, newFuncRoot); 485 486 // Step 2: Construct new function based on inputs/outputs, 487 // Add allocas for all defs 488 Function *newFunction = constructFunction(inputs, outputs, newFuncRoot, 489 codeReplacer, oldFunction, 490 oldFunction->getParent()); 491 492 rewritePhiNodes(newFunction, newFuncRoot); 493 494 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 495 496 moveCodeToFunction(newFunction); 497 498 DEBUG(if (verifyFunction(*newFunction)) abort()); 499 return newFunction; 500 } 501 502 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 503 /// function 504 /// 505 Function* llvm::ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 506 return CodeExtractor().ExtractCodeRegion(code); 507 } 508 509 /// ExtractBasicBlock - slurp a natural loop into a brand new function 510 /// 511 Function* llvm::ExtractLoop(Loop *L) { 512 return CodeExtractor().ExtractCodeRegion(L->getBlocks()); 513 } 514 515 /// ExtractBasicBlock - slurp a basic block into a brand new function 516 /// 517 Function* llvm::ExtractBasicBlock(BasicBlock *BB) { 518 std::vector<BasicBlock*> Blocks; 519 Blocks.push_back(BB); 520 return CodeExtractor().ExtractCodeRegion(Blocks); 521 } 522