1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/CodeExtractor.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/RegionInfo.h" 22 #include "llvm/Analysis/RegionIterator.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include <algorithm> 38 #include <set> 39 using namespace llvm; 40 41 // Provide a command-line option to aggregate function arguments into a struct 42 // for functions produced by the code extractor. This is useful when converting 43 // extracted functions to pthread-based code, as only one argument (void*) can 44 // be passed in to pthread_create(). 45 static cl::opt<bool> 46 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 47 cl::desc("Aggregate arguments to code-extracted functions")); 48 49 /// \brief Test whether a block is valid for extraction. 50 static bool isBlockValidForExtraction(const BasicBlock &BB) { 51 // Landing pads must be in the function where they were inserted for cleanup. 52 if (BB.isLandingPad()) 53 return false; 54 55 // Don't hoist code containing allocas, invokes, or vastarts. 56 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 57 if (isa<AllocaInst>(I) || isa<InvokeInst>(I)) 58 return false; 59 if (const CallInst *CI = dyn_cast<CallInst>(I)) 60 if (const Function *F = CI->getCalledFunction()) 61 if (F->getIntrinsicID() == Intrinsic::vastart) 62 return false; 63 } 64 65 return true; 66 } 67 68 /// \brief Build a set of blocks to extract if the input blocks are viable. 69 template <typename IteratorT> 70 static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin, 71 IteratorT BBEnd) { 72 SetVector<BasicBlock *> Result; 73 74 assert(BBBegin != BBEnd); 75 76 // Loop over the blocks, adding them to our set-vector, and aborting with an 77 // empty set if we encounter invalid blocks. 78 for (IteratorT I = BBBegin, E = BBEnd; I != E; ++I) { 79 if (!Result.insert(*I)) 80 llvm_unreachable("Repeated basic blocks in extraction input"); 81 82 if (!isBlockValidForExtraction(**I)) { 83 Result.clear(); 84 return Result; 85 } 86 } 87 88 #ifndef NDEBUG 89 for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()), 90 E = Result.end(); 91 I != E; ++I) 92 for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I); 93 PI != PE; ++PI) 94 assert(Result.count(*PI) && 95 "No blocks in this region may have entries from outside the region" 96 " except for the first block!"); 97 #endif 98 99 return Result; 100 } 101 102 /// \brief Helper to call buildExtractionBlockSet with an ArrayRef. 103 static SetVector<BasicBlock *> 104 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) { 105 return buildExtractionBlockSet(BBs.begin(), BBs.end()); 106 } 107 108 /// \brief Helper to call buildExtractionBlockSet with a RegionNode. 109 static SetVector<BasicBlock *> 110 buildExtractionBlockSet(const RegionNode &RN) { 111 if (!RN.isSubRegion()) 112 // Just a single BasicBlock. 113 return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>()); 114 115 const Region &R = *RN.getNodeAs<Region>(); 116 117 return buildExtractionBlockSet(R.block_begin(), R.block_end()); 118 } 119 120 CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs) 121 : DT(0), AggregateArgs(AggregateArgs||AggregateArgsOpt), 122 Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {} 123 124 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 125 bool AggregateArgs) 126 : DT(DT), AggregateArgs(AggregateArgs||AggregateArgsOpt), 127 Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {} 128 129 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs) 130 : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt), 131 Blocks(buildExtractionBlockSet(L.getBlocks())), NumExitBlocks(~0U) {} 132 133 CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN, 134 bool AggregateArgs) 135 : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt), 136 Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {} 137 138 /// definedInRegion - Return true if the specified value is defined in the 139 /// extracted region. 140 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 141 if (Instruction *I = dyn_cast<Instruction>(V)) 142 if (Blocks.count(I->getParent())) 143 return true; 144 return false; 145 } 146 147 /// definedInCaller - Return true if the specified value is defined in the 148 /// function being code extracted, but not in the region being extracted. 149 /// These values must be passed in as live-ins to the function. 150 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 151 if (isa<Argument>(V)) return true; 152 if (Instruction *I = dyn_cast<Instruction>(V)) 153 if (!Blocks.count(I->getParent())) 154 return true; 155 return false; 156 } 157 158 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, 159 ValueSet &Outputs) const { 160 for (SetVector<BasicBlock *>::const_iterator I = Blocks.begin(), 161 E = Blocks.end(); 162 I != E; ++I) { 163 BasicBlock *BB = *I; 164 165 // If a used value is defined outside the region, it's an input. If an 166 // instruction is used outside the region, it's an output. 167 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); 168 II != IE; ++II) { 169 for (User::op_iterator OI = II->op_begin(), OE = II->op_end(); 170 OI != OE; ++OI) 171 if (definedInCaller(Blocks, *OI)) 172 Inputs.insert(*OI); 173 174 for (User *U : II->users()) 175 if (!definedInRegion(Blocks, U)) { 176 Outputs.insert(II); 177 break; 178 } 179 } 180 } 181 } 182 183 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 184 /// region, we need to split the entry block of the region so that the PHI node 185 /// is easier to deal with. 186 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 187 unsigned NumPredsFromRegion = 0; 188 unsigned NumPredsOutsideRegion = 0; 189 190 if (Header != &Header->getParent()->getEntryBlock()) { 191 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 192 if (!PN) return; // No PHI nodes. 193 194 // If the header node contains any PHI nodes, check to see if there is more 195 // than one entry from outside the region. If so, we need to sever the 196 // header block into two. 197 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 198 if (Blocks.count(PN->getIncomingBlock(i))) 199 ++NumPredsFromRegion; 200 else 201 ++NumPredsOutsideRegion; 202 203 // If there is one (or fewer) predecessor from outside the region, we don't 204 // need to do anything special. 205 if (NumPredsOutsideRegion <= 1) return; 206 } 207 208 // Otherwise, we need to split the header block into two pieces: one 209 // containing PHI nodes merging values from outside of the region, and a 210 // second that contains all of the code for the block and merges back any 211 // incoming values from inside of the region. 212 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI(); 213 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 214 Header->getName()+".ce"); 215 216 // We only want to code extract the second block now, and it becomes the new 217 // header of the region. 218 BasicBlock *OldPred = Header; 219 Blocks.remove(OldPred); 220 Blocks.insert(NewBB); 221 Header = NewBB; 222 223 // Okay, update dominator sets. The blocks that dominate the new one are the 224 // blocks that dominate TIBB plus the new block itself. 225 if (DT) 226 DT->splitBlock(NewBB); 227 228 // Okay, now we need to adjust the PHI nodes and any branches from within the 229 // region to go to the new header block instead of the old header block. 230 if (NumPredsFromRegion) { 231 PHINode *PN = cast<PHINode>(OldPred->begin()); 232 // Loop over all of the predecessors of OldPred that are in the region, 233 // changing them to branch to NewBB instead. 234 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 235 if (Blocks.count(PN->getIncomingBlock(i))) { 236 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 237 TI->replaceUsesOfWith(OldPred, NewBB); 238 } 239 240 // Okay, everything within the region is now branching to the right block, we 241 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 242 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 243 PHINode *PN = cast<PHINode>(AfterPHIs); 244 // Create a new PHI node in the new region, which has an incoming value 245 // from OldPred of PN. 246 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 247 PN->getName()+".ce", NewBB->begin()); 248 NewPN->addIncoming(PN, OldPred); 249 250 // Loop over all of the incoming value in PN, moving them to NewPN if they 251 // are from the extracted region. 252 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 253 if (Blocks.count(PN->getIncomingBlock(i))) { 254 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 255 PN->removeIncomingValue(i); 256 --i; 257 } 258 } 259 } 260 } 261 } 262 263 void CodeExtractor::splitReturnBlocks() { 264 for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end(); 265 I != E; ++I) 266 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) { 267 BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 268 if (DT) { 269 // Old dominates New. New node dominates all other nodes dominated 270 // by Old. 271 DomTreeNode *OldNode = DT->getNode(*I); 272 SmallVector<DomTreeNode*, 8> Children; 273 for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end(); 274 DI != DE; ++DI) 275 Children.push_back(*DI); 276 277 DomTreeNode *NewNode = DT->addNewBlock(New, *I); 278 279 for (SmallVectorImpl<DomTreeNode *>::iterator I = Children.begin(), 280 E = Children.end(); I != E; ++I) 281 DT->changeImmediateDominator(*I, NewNode); 282 } 283 } 284 } 285 286 /// constructFunction - make a function based on inputs and outputs, as follows: 287 /// f(in0, ..., inN, out0, ..., outN) 288 /// 289 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 290 const ValueSet &outputs, 291 BasicBlock *header, 292 BasicBlock *newRootNode, 293 BasicBlock *newHeader, 294 Function *oldFunction, 295 Module *M) { 296 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 297 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 298 299 // This function returns unsigned, outputs will go back by reference. 300 switch (NumExitBlocks) { 301 case 0: 302 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 303 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 304 default: RetTy = Type::getInt16Ty(header->getContext()); break; 305 } 306 307 std::vector<Type*> paramTy; 308 309 // Add the types of the input values to the function's argument list 310 for (ValueSet::const_iterator i = inputs.begin(), e = inputs.end(); 311 i != e; ++i) { 312 const Value *value = *i; 313 DEBUG(dbgs() << "value used in func: " << *value << "\n"); 314 paramTy.push_back(value->getType()); 315 } 316 317 // Add the types of the output values to the function's argument list. 318 for (ValueSet::const_iterator I = outputs.begin(), E = outputs.end(); 319 I != E; ++I) { 320 DEBUG(dbgs() << "instr used in func: " << **I << "\n"); 321 if (AggregateArgs) 322 paramTy.push_back((*I)->getType()); 323 else 324 paramTy.push_back(PointerType::getUnqual((*I)->getType())); 325 } 326 327 DEBUG(dbgs() << "Function type: " << *RetTy << " f("); 328 for (std::vector<Type*>::iterator i = paramTy.begin(), 329 e = paramTy.end(); i != e; ++i) 330 DEBUG(dbgs() << **i << ", "); 331 DEBUG(dbgs() << ")\n"); 332 333 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 334 PointerType *StructPtr = 335 PointerType::getUnqual(StructType::get(M->getContext(), paramTy)); 336 paramTy.clear(); 337 paramTy.push_back(StructPtr); 338 } 339 FunctionType *funcType = 340 FunctionType::get(RetTy, paramTy, false); 341 342 // Create the new function 343 Function *newFunction = Function::Create(funcType, 344 GlobalValue::InternalLinkage, 345 oldFunction->getName() + "_" + 346 header->getName(), M); 347 // If the old function is no-throw, so is the new one. 348 if (oldFunction->doesNotThrow()) 349 newFunction->setDoesNotThrow(); 350 351 newFunction->getBasicBlockList().push_back(newRootNode); 352 353 // Create an iterator to name all of the arguments we inserted. 354 Function::arg_iterator AI = newFunction->arg_begin(); 355 356 // Rewrite all users of the inputs in the extracted region to use the 357 // arguments (or appropriate addressing into struct) instead. 358 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 359 Value *RewriteVal; 360 if (AggregateArgs) { 361 Value *Idx[2]; 362 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 363 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 364 TerminatorInst *TI = newFunction->begin()->getTerminator(); 365 GetElementPtrInst *GEP = 366 GetElementPtrInst::Create(AI, Idx, "gep_" + inputs[i]->getName(), TI); 367 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 368 } else 369 RewriteVal = AI++; 370 371 std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 372 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 373 use != useE; ++use) 374 if (Instruction* inst = dyn_cast<Instruction>(*use)) 375 if (Blocks.count(inst->getParent())) 376 inst->replaceUsesOfWith(inputs[i], RewriteVal); 377 } 378 379 // Set names for input and output arguments. 380 if (!AggregateArgs) { 381 AI = newFunction->arg_begin(); 382 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 383 AI->setName(inputs[i]->getName()); 384 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 385 AI->setName(outputs[i]->getName()+".out"); 386 } 387 388 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 389 // within the new function. This must be done before we lose track of which 390 // blocks were originally in the code region. 391 std::vector<User*> Users(header->user_begin(), header->user_end()); 392 for (unsigned i = 0, e = Users.size(); i != e; ++i) 393 // The BasicBlock which contains the branch is not in the region 394 // modify the branch target to a new block 395 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 396 if (!Blocks.count(TI->getParent()) && 397 TI->getParent()->getParent() == oldFunction) 398 TI->replaceUsesOfWith(header, newHeader); 399 400 return newFunction; 401 } 402 403 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI 404 /// that uses the value within the basic block, and return the predecessor 405 /// block associated with that use, or return 0 if none is found. 406 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) { 407 for (Use &U : Used->uses()) { 408 PHINode *P = dyn_cast<PHINode>(U.getUser()); 409 if (P && P->getParent() == BB) 410 return P->getIncomingBlock(U); 411 } 412 413 return 0; 414 } 415 416 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 417 /// the call instruction, splitting any PHI nodes in the header block as 418 /// necessary. 419 void CodeExtractor:: 420 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 421 ValueSet &inputs, ValueSet &outputs) { 422 // Emit a call to the new function, passing in: *pointer to struct (if 423 // aggregating parameters), or plan inputs and allocated memory for outputs 424 std::vector<Value*> params, StructValues, ReloadOutputs, Reloads; 425 426 LLVMContext &Context = newFunction->getContext(); 427 428 // Add inputs as params, or to be filled into the struct 429 for (ValueSet::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 430 if (AggregateArgs) 431 StructValues.push_back(*i); 432 else 433 params.push_back(*i); 434 435 // Create allocas for the outputs 436 for (ValueSet::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 437 if (AggregateArgs) { 438 StructValues.push_back(*i); 439 } else { 440 AllocaInst *alloca = 441 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 442 codeReplacer->getParent()->begin()->begin()); 443 ReloadOutputs.push_back(alloca); 444 params.push_back(alloca); 445 } 446 } 447 448 AllocaInst *Struct = 0; 449 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 450 std::vector<Type*> ArgTypes; 451 for (ValueSet::iterator v = StructValues.begin(), 452 ve = StructValues.end(); v != ve; ++v) 453 ArgTypes.push_back((*v)->getType()); 454 455 // Allocate a struct at the beginning of this function 456 Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 457 Struct = 458 new AllocaInst(StructArgTy, 0, "structArg", 459 codeReplacer->getParent()->begin()->begin()); 460 params.push_back(Struct); 461 462 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 463 Value *Idx[2]; 464 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 465 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 466 GetElementPtrInst *GEP = 467 GetElementPtrInst::Create(Struct, Idx, 468 "gep_" + StructValues[i]->getName()); 469 codeReplacer->getInstList().push_back(GEP); 470 StoreInst *SI = new StoreInst(StructValues[i], GEP); 471 codeReplacer->getInstList().push_back(SI); 472 } 473 } 474 475 // Emit the call to the function 476 CallInst *call = CallInst::Create(newFunction, params, 477 NumExitBlocks > 1 ? "targetBlock" : ""); 478 codeReplacer->getInstList().push_back(call); 479 480 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 481 unsigned FirstOut = inputs.size(); 482 if (!AggregateArgs) 483 std::advance(OutputArgBegin, inputs.size()); 484 485 // Reload the outputs passed in by reference 486 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 487 Value *Output = 0; 488 if (AggregateArgs) { 489 Value *Idx[2]; 490 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 491 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 492 GetElementPtrInst *GEP 493 = GetElementPtrInst::Create(Struct, Idx, 494 "gep_reload_" + outputs[i]->getName()); 495 codeReplacer->getInstList().push_back(GEP); 496 Output = GEP; 497 } else { 498 Output = ReloadOutputs[i]; 499 } 500 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 501 Reloads.push_back(load); 502 codeReplacer->getInstList().push_back(load); 503 std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 504 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 505 Instruction *inst = cast<Instruction>(Users[u]); 506 if (!Blocks.count(inst->getParent())) 507 inst->replaceUsesOfWith(outputs[i], load); 508 } 509 } 510 511 // Now we can emit a switch statement using the call as a value. 512 SwitchInst *TheSwitch = 513 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 514 codeReplacer, 0, codeReplacer); 515 516 // Since there may be multiple exits from the original region, make the new 517 // function return an unsigned, switch on that number. This loop iterates 518 // over all of the blocks in the extracted region, updating any terminator 519 // instructions in the to-be-extracted region that branch to blocks that are 520 // not in the region to be extracted. 521 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 522 523 unsigned switchVal = 0; 524 for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(), 525 e = Blocks.end(); i != e; ++i) { 526 TerminatorInst *TI = (*i)->getTerminator(); 527 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 528 if (!Blocks.count(TI->getSuccessor(i))) { 529 BasicBlock *OldTarget = TI->getSuccessor(i); 530 // add a new basic block which returns the appropriate value 531 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 532 if (!NewTarget) { 533 // If we don't already have an exit stub for this non-extracted 534 // destination, create one now! 535 NewTarget = BasicBlock::Create(Context, 536 OldTarget->getName() + ".exitStub", 537 newFunction); 538 unsigned SuccNum = switchVal++; 539 540 Value *brVal = 0; 541 switch (NumExitBlocks) { 542 case 0: 543 case 1: break; // No value needed. 544 case 2: // Conditional branch, return a bool 545 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 546 break; 547 default: 548 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 549 break; 550 } 551 552 ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget); 553 554 // Update the switch instruction. 555 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 556 SuccNum), 557 OldTarget); 558 559 // Restore values just before we exit 560 Function::arg_iterator OAI = OutputArgBegin; 561 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 562 // For an invoke, the normal destination is the only one that is 563 // dominated by the result of the invocation 564 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 565 566 bool DominatesDef = true; 567 568 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 569 DefBlock = Invoke->getNormalDest(); 570 571 // Make sure we are looking at the original successor block, not 572 // at a newly inserted exit block, which won't be in the dominator 573 // info. 574 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 575 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 576 if (DefBlock == I->second) { 577 DefBlock = I->first; 578 break; 579 } 580 581 // In the extract block case, if the block we are extracting ends 582 // with an invoke instruction, make sure that we don't emit a 583 // store of the invoke value for the unwind block. 584 if (!DT && DefBlock != OldTarget) 585 DominatesDef = false; 586 } 587 588 if (DT) { 589 DominatesDef = DT->dominates(DefBlock, OldTarget); 590 591 // If the output value is used by a phi in the target block, 592 // then we need to test for dominance of the phi's predecessor 593 // instead. Unfortunately, this a little complicated since we 594 // have already rewritten uses of the value to uses of the reload. 595 BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out], 596 OldTarget); 597 if (pred && DT && DT->dominates(DefBlock, pred)) 598 DominatesDef = true; 599 } 600 601 if (DominatesDef) { 602 if (AggregateArgs) { 603 Value *Idx[2]; 604 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 605 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), 606 FirstOut+out); 607 GetElementPtrInst *GEP = 608 GetElementPtrInst::Create(OAI, Idx, 609 "gep_" + outputs[out]->getName(), 610 NTRet); 611 new StoreInst(outputs[out], GEP, NTRet); 612 } else { 613 new StoreInst(outputs[out], OAI, NTRet); 614 } 615 } 616 // Advance output iterator even if we don't emit a store 617 if (!AggregateArgs) ++OAI; 618 } 619 } 620 621 // rewrite the original branch instruction with this new target 622 TI->setSuccessor(i, NewTarget); 623 } 624 } 625 626 // Now that we've done the deed, simplify the switch instruction. 627 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 628 switch (NumExitBlocks) { 629 case 0: 630 // There are no successors (the block containing the switch itself), which 631 // means that previously this was the last part of the function, and hence 632 // this should be rewritten as a `ret' 633 634 // Check if the function should return a value 635 if (OldFnRetTy->isVoidTy()) { 636 ReturnInst::Create(Context, 0, TheSwitch); // Return void 637 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 638 // return what we have 639 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 640 } else { 641 // Otherwise we must have code extracted an unwind or something, just 642 // return whatever we want. 643 ReturnInst::Create(Context, 644 Constant::getNullValue(OldFnRetTy), TheSwitch); 645 } 646 647 TheSwitch->eraseFromParent(); 648 break; 649 case 1: 650 // Only a single destination, change the switch into an unconditional 651 // branch. 652 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 653 TheSwitch->eraseFromParent(); 654 break; 655 case 2: 656 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 657 call, TheSwitch); 658 TheSwitch->eraseFromParent(); 659 break; 660 default: 661 // Otherwise, make the default destination of the switch instruction be one 662 // of the other successors. 663 TheSwitch->setCondition(call); 664 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 665 // Remove redundant case 666 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 667 break; 668 } 669 } 670 671 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 672 Function *oldFunc = (*Blocks.begin())->getParent(); 673 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 674 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 675 676 for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(), 677 e = Blocks.end(); i != e; ++i) { 678 // Delete the basic block from the old function, and the list of blocks 679 oldBlocks.remove(*i); 680 681 // Insert this basic block into the new function 682 newBlocks.push_back(*i); 683 } 684 } 685 686 Function *CodeExtractor::extractCodeRegion() { 687 if (!isEligible()) 688 return 0; 689 690 ValueSet inputs, outputs; 691 692 // Assumption: this is a single-entry code region, and the header is the first 693 // block in the region. 694 BasicBlock *header = *Blocks.begin(); 695 696 // If we have to split PHI nodes or the entry block, do so now. 697 severSplitPHINodes(header); 698 699 // If we have any return instructions in the region, split those blocks so 700 // that the return is not in the region. 701 splitReturnBlocks(); 702 703 Function *oldFunction = header->getParent(); 704 705 // This takes place of the original loop 706 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 707 "codeRepl", oldFunction, 708 header); 709 710 // The new function needs a root node because other nodes can branch to the 711 // head of the region, but the entry node of a function cannot have preds. 712 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 713 "newFuncRoot"); 714 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 715 716 // Find inputs to, outputs from the code region. 717 findInputsOutputs(inputs, outputs); 718 719 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 720 for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end(); 721 I != E; ++I) 722 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 723 if (!Blocks.count(*SI)) 724 ExitBlocks.insert(*SI); 725 NumExitBlocks = ExitBlocks.size(); 726 727 // Construct new function based on inputs/outputs & add allocas for all defs. 728 Function *newFunction = constructFunction(inputs, outputs, header, 729 newFuncRoot, 730 codeReplacer, oldFunction, 731 oldFunction->getParent()); 732 733 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 734 735 moveCodeToFunction(newFunction); 736 737 // Loop over all of the PHI nodes in the header block, and change any 738 // references to the old incoming edge to be the new incoming edge. 739 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 740 PHINode *PN = cast<PHINode>(I); 741 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 742 if (!Blocks.count(PN->getIncomingBlock(i))) 743 PN->setIncomingBlock(i, newFuncRoot); 744 } 745 746 // Look at all successors of the codeReplacer block. If any of these blocks 747 // had PHI nodes in them, we need to update the "from" block to be the code 748 // replacer, not the original block in the extracted region. 749 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 750 succ_end(codeReplacer)); 751 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 752 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 753 PHINode *PN = cast<PHINode>(I); 754 std::set<BasicBlock*> ProcessedPreds; 755 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 756 if (Blocks.count(PN->getIncomingBlock(i))) { 757 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 758 PN->setIncomingBlock(i, codeReplacer); 759 else { 760 // There were multiple entries in the PHI for this block, now there 761 // is only one, so remove the duplicated entries. 762 PN->removeIncomingValue(i, false); 763 --i; --e; 764 } 765 } 766 } 767 768 //cerr << "NEW FUNCTION: " << *newFunction; 769 // verifyFunction(*newFunction); 770 771 // cerr << "OLD FUNCTION: " << *oldFunction; 772 // verifyFunction(*oldFunction); 773 774 DEBUG(if (verifyFunction(*newFunction)) 775 report_fatal_error("verifyFunction failed!")); 776 return newFunction; 777 } 778