1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/Module.h" 22 #include "llvm/Pass.h" 23 #include "llvm/Analysis/Dominators.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/Verifier.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include <algorithm> 31 #include <set> 32 using namespace llvm; 33 34 // Provide a command-line option to aggregate function arguments into a struct 35 // for functions produced by the code extrator. This is useful when converting 36 // extracted functions to pthread-based code, as only one argument (void*) can 37 // be passed in to pthread_create(). 38 static cl::opt<bool> 39 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 40 cl::desc("Aggregate arguments to code-extracted functions")); 41 42 namespace { 43 class CodeExtractor { 44 typedef std::vector<Value*> Values; 45 std::set<BasicBlock*> BlocksToExtract; 46 DominatorSet *DS; 47 bool AggregateArgs; 48 unsigned NumExitBlocks; 49 const Type *RetTy; 50 public: 51 CodeExtractor(DominatorSet *ds = 0, bool AggArgs = false) 52 : DS(ds), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} 53 54 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 55 56 bool isEligible(const std::vector<BasicBlock*> &code); 57 58 private: 59 /// definedInRegion - Return true if the specified value is defined in the 60 /// extracted region. 61 bool definedInRegion(Value *V) const { 62 if (Instruction *I = dyn_cast<Instruction>(V)) 63 if (BlocksToExtract.count(I->getParent())) 64 return true; 65 return false; 66 } 67 68 /// definedInCaller - Return true if the specified value is defined in the 69 /// function being code extracted, but not in the region being extracted. 70 /// These values must be passed in as live-ins to the function. 71 bool definedInCaller(Value *V) const { 72 if (isa<Argument>(V)) return true; 73 if (Instruction *I = dyn_cast<Instruction>(V)) 74 if (!BlocksToExtract.count(I->getParent())) 75 return true; 76 return false; 77 } 78 79 void severSplitPHINodes(BasicBlock *&Header); 80 void splitReturnBlocks(); 81 void findInputsOutputs(Values &inputs, Values &outputs); 82 83 Function *constructFunction(const Values &inputs, 84 const Values &outputs, 85 BasicBlock *header, 86 BasicBlock *newRootNode, BasicBlock *newHeader, 87 Function *oldFunction, Module *M); 88 89 void moveCodeToFunction(Function *newFunction); 90 91 void emitCallAndSwitchStatement(Function *newFunction, 92 BasicBlock *newHeader, 93 Values &inputs, 94 Values &outputs); 95 96 }; 97 } 98 99 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 100 /// region, we need to split the entry block of the region so that the PHI node 101 /// is easier to deal with. 102 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 103 bool HasPredsFromRegion = false; 104 unsigned NumPredsOutsideRegion = 0; 105 106 if (Header != &Header->getParent()->front()) { 107 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 108 if (!PN) return; // No PHI nodes. 109 110 // If the header node contains any PHI nodes, check to see if there is more 111 // than one entry from outside the region. If so, we need to sever the 112 // header block into two. 113 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 114 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 115 HasPredsFromRegion = true; 116 else 117 ++NumPredsOutsideRegion; 118 119 // If there is one (or fewer) predecessor from outside the region, we don't 120 // need to do anything special. 121 if (NumPredsOutsideRegion <= 1) return; 122 } 123 124 // Otherwise, we need to split the header block into two pieces: one 125 // containing PHI nodes merging values from outside of the region, and a 126 // second that contains all of the code for the block and merges back any 127 // incoming values from inside of the region. 128 BasicBlock::iterator AfterPHIs = Header->begin(); 129 while (isa<PHINode>(AfterPHIs)) ++AfterPHIs; 130 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 131 Header->getName()+".ce"); 132 133 // We only want to code extract the second block now, and it becomes the new 134 // header of the region. 135 BasicBlock *OldPred = Header; 136 BlocksToExtract.erase(OldPred); 137 BlocksToExtract.insert(NewBB); 138 Header = NewBB; 139 140 // Okay, update dominator sets. The blocks that dominate the new one are the 141 // blocks that dominate TIBB plus the new block itself. 142 if (DS) { 143 DominatorSet::DomSetType DomSet = DS->getDominators(OldPred); 144 DomSet.insert(NewBB); // A block always dominates itself. 145 DS->addBasicBlock(NewBB, DomSet); 146 147 // Additionally, NewBB dominates all blocks in the function that are 148 // dominated by OldPred. 149 Function *F = Header->getParent(); 150 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) 151 if (DS->properlyDominates(OldPred, I)) 152 DS->addDominator(I, NewBB); 153 } 154 155 // Okay, now we need to adjust the PHI nodes and any branches from within the 156 // region to go to the new header block instead of the old header block. 157 if (HasPredsFromRegion) { 158 PHINode *PN = cast<PHINode>(OldPred->begin()); 159 // Loop over all of the predecessors of OldPred that are in the region, 160 // changing them to branch to NewBB instead. 161 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 162 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 163 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 164 TI->replaceUsesOfWith(OldPred, NewBB); 165 } 166 167 // Okay, everthing within the region is now branching to the right block, we 168 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 169 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 170 PHINode *PN = cast<PHINode>(AfterPHIs); 171 // Create a new PHI node in the new region, which has an incoming value 172 // from OldPred of PN. 173 PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".ce", 174 NewBB->begin()); 175 NewPN->addIncoming(PN, OldPred); 176 177 // Loop over all of the incoming value in PN, moving them to NewPN if they 178 // are from the extracted region. 179 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 180 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 181 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 182 PN->removeIncomingValue(i); 183 --i; 184 } 185 } 186 } 187 } 188 } 189 190 void CodeExtractor::splitReturnBlocks() { 191 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), 192 E = BlocksToExtract.end(); I != E; ++I) 193 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) 194 (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 195 } 196 197 // findInputsOutputs - Find inputs to, outputs from the code region. 198 // 199 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 200 std::set<BasicBlock*> ExitBlocks; 201 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 202 ce = BlocksToExtract.end(); ci != ce; ++ci) { 203 BasicBlock *BB = *ci; 204 205 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 206 // If a used value is defined outside the region, it's an input. If an 207 // instruction is used outside the region, it's an output. 208 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 209 if (definedInCaller(*O)) 210 inputs.push_back(*O); 211 212 // Consider uses of this instruction (outputs). 213 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 214 UI != E; ++UI) 215 if (!definedInRegion(*UI)) { 216 outputs.push_back(I); 217 break; 218 } 219 } // for: insts 220 221 // Keep track of the exit blocks from the region. 222 TerminatorInst *TI = BB->getTerminator(); 223 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 224 if (!BlocksToExtract.count(TI->getSuccessor(i))) 225 ExitBlocks.insert(TI->getSuccessor(i)); 226 } // for: basic blocks 227 228 NumExitBlocks = ExitBlocks.size(); 229 230 // Eliminate duplicates. 231 std::sort(inputs.begin(), inputs.end()); 232 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end()); 233 std::sort(outputs.begin(), outputs.end()); 234 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end()); 235 } 236 237 /// constructFunction - make a function based on inputs and outputs, as follows: 238 /// f(in0, ..., inN, out0, ..., outN) 239 /// 240 Function *CodeExtractor::constructFunction(const Values &inputs, 241 const Values &outputs, 242 BasicBlock *header, 243 BasicBlock *newRootNode, 244 BasicBlock *newHeader, 245 Function *oldFunction, 246 Module *M) { 247 DOUT << "inputs: " << inputs.size() << "\n"; 248 DOUT << "outputs: " << outputs.size() << "\n"; 249 250 // This function returns unsigned, outputs will go back by reference. 251 switch (NumExitBlocks) { 252 case 0: 253 case 1: RetTy = Type::VoidTy; break; 254 case 2: RetTy = Type::Int1Ty; break; 255 default: RetTy = Type::Int16Ty; break; 256 } 257 258 std::vector<const Type*> paramTy; 259 260 // Add the types of the input values to the function's argument list 261 for (Values::const_iterator i = inputs.begin(), 262 e = inputs.end(); i != e; ++i) { 263 const Value *value = *i; 264 DOUT << "value used in func: " << *value << "\n"; 265 paramTy.push_back(value->getType()); 266 } 267 268 // Add the types of the output values to the function's argument list. 269 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 270 I != E; ++I) { 271 DOUT << "instr used in func: " << **I << "\n"; 272 if (AggregateArgs) 273 paramTy.push_back((*I)->getType()); 274 else 275 paramTy.push_back(PointerType::get((*I)->getType())); 276 } 277 278 DOUT << "Function type: " << *RetTy << " f("; 279 for (std::vector<const Type*>::iterator i = paramTy.begin(), 280 e = paramTy.end(); i != e; ++i) 281 DOUT << **i << ", "; 282 DOUT << ")\n"; 283 284 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 285 PointerType *StructPtr = PointerType::get(StructType::get(paramTy)); 286 paramTy.clear(); 287 paramTy.push_back(StructPtr); 288 } 289 const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false); 290 291 // Create the new function 292 Function *newFunction = new Function(funcType, 293 GlobalValue::InternalLinkage, 294 oldFunction->getName() + "_" + 295 header->getName(), M); 296 newFunction->getBasicBlockList().push_back(newRootNode); 297 298 // Create an iterator to name all of the arguments we inserted. 299 Function::arg_iterator AI = newFunction->arg_begin(); 300 301 // Rewrite all users of the inputs in the extracted region to use the 302 // arguments (or appropriate addressing into struct) instead. 303 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 304 Value *RewriteVal; 305 if (AggregateArgs) { 306 std::vector<Value*> Indices; 307 Indices.push_back(Constant::getNullValue(Type::Int32Ty)); 308 Indices.push_back(ConstantInt::get(Type::Int32Ty, i)); 309 std::string GEPname = "gep_" + inputs[i]->getName(); 310 TerminatorInst *TI = newFunction->begin()->getTerminator(); 311 GetElementPtrInst *GEP = new GetElementPtrInst(AI, Indices, GEPname, TI); 312 RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); 313 } else 314 RewriteVal = AI++; 315 316 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 317 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 318 use != useE; ++use) 319 if (Instruction* inst = dyn_cast<Instruction>(*use)) 320 if (BlocksToExtract.count(inst->getParent())) 321 inst->replaceUsesOfWith(inputs[i], RewriteVal); 322 } 323 324 // Set names for input and output arguments. 325 if (!AggregateArgs) { 326 AI = newFunction->arg_begin(); 327 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 328 AI->setName(inputs[i]->getName()); 329 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 330 AI->setName(outputs[i]->getName()+".out"); 331 } 332 333 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 334 // within the new function. This must be done before we lose track of which 335 // blocks were originally in the code region. 336 std::vector<User*> Users(header->use_begin(), header->use_end()); 337 for (unsigned i = 0, e = Users.size(); i != e; ++i) 338 // The BasicBlock which contains the branch is not in the region 339 // modify the branch target to a new block 340 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 341 if (!BlocksToExtract.count(TI->getParent()) && 342 TI->getParent()->getParent() == oldFunction) 343 TI->replaceUsesOfWith(header, newHeader); 344 345 return newFunction; 346 } 347 348 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 349 /// the call instruction, splitting any PHI nodes in the header block as 350 /// necessary. 351 void CodeExtractor:: 352 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 353 Values &inputs, Values &outputs) { 354 // Emit a call to the new function, passing in: *pointer to struct (if 355 // aggregating parameters), or plan inputs and allocated memory for outputs 356 std::vector<Value*> params, StructValues, ReloadOutputs; 357 358 // Add inputs as params, or to be filled into the struct 359 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 360 if (AggregateArgs) 361 StructValues.push_back(*i); 362 else 363 params.push_back(*i); 364 365 // Create allocas for the outputs 366 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 367 if (AggregateArgs) { 368 StructValues.push_back(*i); 369 } else { 370 AllocaInst *alloca = 371 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 372 codeReplacer->getParent()->begin()->begin()); 373 ReloadOutputs.push_back(alloca); 374 params.push_back(alloca); 375 } 376 } 377 378 AllocaInst *Struct = 0; 379 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 380 std::vector<const Type*> ArgTypes; 381 for (Values::iterator v = StructValues.begin(), 382 ve = StructValues.end(); v != ve; ++v) 383 ArgTypes.push_back((*v)->getType()); 384 385 // Allocate a struct at the beginning of this function 386 Type *StructArgTy = StructType::get(ArgTypes); 387 Struct = 388 new AllocaInst(StructArgTy, 0, "structArg", 389 codeReplacer->getParent()->begin()->begin()); 390 params.push_back(Struct); 391 392 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 393 std::vector<Value*> Indices; 394 Indices.push_back(Constant::getNullValue(Type::Int32Ty)); 395 Indices.push_back(ConstantInt::get(Type::Int32Ty, i)); 396 GetElementPtrInst *GEP = 397 new GetElementPtrInst(Struct, Indices, 398 "gep_" + StructValues[i]->getName()); 399 codeReplacer->getInstList().push_back(GEP); 400 StoreInst *SI = new StoreInst(StructValues[i], GEP); 401 codeReplacer->getInstList().push_back(SI); 402 } 403 } 404 405 // Emit the call to the function 406 CallInst *call = new CallInst(newFunction, params, 407 NumExitBlocks > 1 ? "targetBlock" : ""); 408 codeReplacer->getInstList().push_back(call); 409 410 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 411 unsigned FirstOut = inputs.size(); 412 if (!AggregateArgs) 413 std::advance(OutputArgBegin, inputs.size()); 414 415 // Reload the outputs passed in by reference 416 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 417 Value *Output = 0; 418 if (AggregateArgs) { 419 std::vector<Value*> Indices; 420 Indices.push_back(Constant::getNullValue(Type::Int32Ty)); 421 Indices.push_back(ConstantInt::get(Type::Int32Ty, FirstOut + i)); 422 GetElementPtrInst *GEP 423 = new GetElementPtrInst(Struct, Indices, 424 "gep_reload_" + outputs[i]->getName()); 425 codeReplacer->getInstList().push_back(GEP); 426 Output = GEP; 427 } else { 428 Output = ReloadOutputs[i]; 429 } 430 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 431 codeReplacer->getInstList().push_back(load); 432 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 433 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 434 Instruction *inst = cast<Instruction>(Users[u]); 435 if (!BlocksToExtract.count(inst->getParent())) 436 inst->replaceUsesOfWith(outputs[i], load); 437 } 438 } 439 440 // Now we can emit a switch statement using the call as a value. 441 SwitchInst *TheSwitch = 442 new SwitchInst(ConstantInt::getNullValue(Type::Int16Ty), 443 codeReplacer, 0, codeReplacer); 444 445 // Since there may be multiple exits from the original region, make the new 446 // function return an unsigned, switch on that number. This loop iterates 447 // over all of the blocks in the extracted region, updating any terminator 448 // instructions in the to-be-extracted region that branch to blocks that are 449 // not in the region to be extracted. 450 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 451 452 unsigned switchVal = 0; 453 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 454 e = BlocksToExtract.end(); i != e; ++i) { 455 TerminatorInst *TI = (*i)->getTerminator(); 456 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 457 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 458 BasicBlock *OldTarget = TI->getSuccessor(i); 459 // add a new basic block which returns the appropriate value 460 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 461 if (!NewTarget) { 462 // If we don't already have an exit stub for this non-extracted 463 // destination, create one now! 464 NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", 465 newFunction); 466 unsigned SuccNum = switchVal++; 467 468 Value *brVal = 0; 469 switch (NumExitBlocks) { 470 case 0: 471 case 1: break; // No value needed. 472 case 2: // Conditional branch, return a bool 473 brVal = ConstantInt::get(Type::Int1Ty, !SuccNum); 474 break; 475 default: 476 brVal = ConstantInt::get(Type::Int16Ty, SuccNum); 477 break; 478 } 479 480 ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); 481 482 // Update the switch instruction. 483 TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum), 484 OldTarget); 485 486 // Restore values just before we exit 487 Function::arg_iterator OAI = OutputArgBegin; 488 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 489 // For an invoke, the normal destination is the only one that is 490 // dominated by the result of the invocation 491 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 492 493 bool DominatesDef = true; 494 495 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 496 DefBlock = Invoke->getNormalDest(); 497 498 // Make sure we are looking at the original successor block, not 499 // at a newly inserted exit block, which won't be in the dominator 500 // info. 501 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 502 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 503 if (DefBlock == I->second) { 504 DefBlock = I->first; 505 break; 506 } 507 508 // In the extract block case, if the block we are extracting ends 509 // with an invoke instruction, make sure that we don't emit a 510 // store of the invoke value for the unwind block. 511 if (!DS && DefBlock != OldTarget) 512 DominatesDef = false; 513 } 514 515 if (DS) 516 DominatesDef = DS->dominates(DefBlock, OldTarget); 517 518 if (DominatesDef) { 519 if (AggregateArgs) { 520 std::vector<Value*> Indices; 521 Indices.push_back(Constant::getNullValue(Type::Int32Ty)); 522 Indices.push_back(ConstantInt::get(Type::Int32Ty,FirstOut+out)); 523 GetElementPtrInst *GEP = 524 new GetElementPtrInst(OAI, Indices, 525 "gep_" + outputs[out]->getName(), 526 NTRet); 527 new StoreInst(outputs[out], GEP, NTRet); 528 } else { 529 new StoreInst(outputs[out], OAI, NTRet); 530 } 531 } 532 // Advance output iterator even if we don't emit a store 533 if (!AggregateArgs) ++OAI; 534 } 535 } 536 537 // rewrite the original branch instruction with this new target 538 TI->setSuccessor(i, NewTarget); 539 } 540 } 541 542 // Now that we've done the deed, simplify the switch instruction. 543 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 544 switch (NumExitBlocks) { 545 case 0: 546 // There are no successors (the block containing the switch itself), which 547 // means that previously this was the last part of the function, and hence 548 // this should be rewritten as a `ret' 549 550 // Check if the function should return a value 551 if (OldFnRetTy == Type::VoidTy) { 552 new ReturnInst(0, TheSwitch); // Return void 553 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 554 // return what we have 555 new ReturnInst(TheSwitch->getCondition(), TheSwitch); 556 } else { 557 // Otherwise we must have code extracted an unwind or something, just 558 // return whatever we want. 559 new ReturnInst(Constant::getNullValue(OldFnRetTy), TheSwitch); 560 } 561 562 TheSwitch->getParent()->getInstList().erase(TheSwitch); 563 break; 564 case 1: 565 // Only a single destination, change the switch into an unconditional 566 // branch. 567 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch); 568 TheSwitch->getParent()->getInstList().erase(TheSwitch); 569 break; 570 case 2: 571 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 572 call, TheSwitch); 573 TheSwitch->getParent()->getInstList().erase(TheSwitch); 574 break; 575 default: 576 // Otherwise, make the default destination of the switch instruction be one 577 // of the other successors. 578 TheSwitch->setOperand(0, call); 579 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 580 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 581 break; 582 } 583 } 584 585 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 586 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 587 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 588 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 589 590 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 591 e = BlocksToExtract.end(); i != e; ++i) { 592 // Delete the basic block from the old function, and the list of blocks 593 oldBlocks.remove(*i); 594 595 // Insert this basic block into the new function 596 newBlocks.push_back(*i); 597 } 598 } 599 600 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 601 /// new function. Returns pointer to the new function. 602 /// 603 /// algorithm: 604 /// 605 /// find inputs and outputs for the region 606 /// 607 /// for inputs: add to function as args, map input instr* to arg# 608 /// for outputs: add allocas for scalars, 609 /// add to func as args, map output instr* to arg# 610 /// 611 /// rewrite func to use argument #s instead of instr* 612 /// 613 /// for each scalar output in the function: at every exit, store intermediate 614 /// computed result back into memory. 615 /// 616 Function *CodeExtractor:: 617 ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 618 if (!isEligible(code)) 619 return 0; 620 621 // 1) Find inputs, outputs 622 // 2) Construct new function 623 // * Add allocas for defs, pass as args by reference 624 // * Pass in uses as args 625 // 3) Move code region, add call instr to func 626 // 627 BlocksToExtract.insert(code.begin(), code.end()); 628 629 Values inputs, outputs; 630 631 // Assumption: this is a single-entry code region, and the header is the first 632 // block in the region. 633 BasicBlock *header = code[0]; 634 635 for (unsigned i = 1, e = code.size(); i != e; ++i) 636 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 637 PI != E; ++PI) 638 assert(BlocksToExtract.count(*PI) && 639 "No blocks in this region may have entries from outside the region" 640 " except for the first block!"); 641 642 // If we have to split PHI nodes or the entry block, do so now. 643 severSplitPHINodes(header); 644 645 // If we have any return instructions in the region, split those blocks so 646 // that the return is not in the region. 647 splitReturnBlocks(); 648 649 Function *oldFunction = header->getParent(); 650 651 // This takes place of the original loop 652 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction, header); 653 654 // The new function needs a root node because other nodes can branch to the 655 // head of the region, but the entry node of a function cannot have preds. 656 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 657 newFuncRoot->getInstList().push_back(new BranchInst(header)); 658 659 // Find inputs to, outputs from the code region. 660 findInputsOutputs(inputs, outputs); 661 662 // Construct new function based on inputs/outputs & add allocas for all defs. 663 Function *newFunction = constructFunction(inputs, outputs, header, 664 newFuncRoot, 665 codeReplacer, oldFunction, 666 oldFunction->getParent()); 667 668 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 669 670 moveCodeToFunction(newFunction); 671 672 // Loop over all of the PHI nodes in the header block, and change any 673 // references to the old incoming edge to be the new incoming edge. 674 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 675 PHINode *PN = cast<PHINode>(I); 676 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 677 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 678 PN->setIncomingBlock(i, newFuncRoot); 679 } 680 681 // Look at all successors of the codeReplacer block. If any of these blocks 682 // had PHI nodes in them, we need to update the "from" block to be the code 683 // replacer, not the original block in the extracted region. 684 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 685 succ_end(codeReplacer)); 686 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 687 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 688 PHINode *PN = cast<PHINode>(I); 689 std::set<BasicBlock*> ProcessedPreds; 690 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 691 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 692 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 693 PN->setIncomingBlock(i, codeReplacer); 694 else { 695 // There were multiple entries in the PHI for this block, now there 696 // is only one, so remove the duplicated entries. 697 PN->removeIncomingValue(i, false); 698 --i; --e; 699 } 700 } 701 702 //cerr << "NEW FUNCTION: " << *newFunction; 703 // verifyFunction(*newFunction); 704 705 // cerr << "OLD FUNCTION: " << *oldFunction; 706 // verifyFunction(*oldFunction); 707 708 DEBUG(if (verifyFunction(*newFunction)) abort()); 709 return newFunction; 710 } 711 712 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 713 // Deny code region if it contains allocas or vastarts. 714 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 715 BB != e; ++BB) 716 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 717 I != Ie; ++I) 718 if (isa<AllocaInst>(*I)) 719 return false; 720 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 721 if (const Function *F = CI->getCalledFunction()) 722 if (F->getIntrinsicID() == Intrinsic::vastart) 723 return false; 724 return true; 725 } 726 727 728 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 729 /// function 730 /// 731 Function* llvm::ExtractCodeRegion(DominatorSet &DS, 732 const std::vector<BasicBlock*> &code, 733 bool AggregateArgs) { 734 return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(code); 735 } 736 737 /// ExtractBasicBlock - slurp a natural loop into a brand new function 738 /// 739 Function* llvm::ExtractLoop(DominatorSet &DS, Loop *L, bool AggregateArgs) { 740 return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 741 } 742 743 /// ExtractBasicBlock - slurp a basic block into a brand new function 744 /// 745 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 746 std::vector<BasicBlock*> Blocks; 747 Blocks.push_back(BB); 748 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 749 } 750