1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/Module.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Analysis/Dominators.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/Verifier.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include <algorithm> 34 #include <set> 35 using namespace llvm; 36 37 // Provide a command-line option to aggregate function arguments into a struct 38 // for functions produced by the code extractor. This is useful when converting 39 // extracted functions to pthread-based code, as only one argument (void*) can 40 // be passed in to pthread_create(). 41 static cl::opt<bool> 42 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 43 cl::desc("Aggregate arguments to code-extracted functions")); 44 45 namespace { 46 class CodeExtractor { 47 typedef std::vector<Value*> Values; 48 std::set<BasicBlock*> BlocksToExtract; 49 DominatorTree* DT; 50 bool AggregateArgs; 51 unsigned NumExitBlocks; 52 const Type *RetTy; 53 public: 54 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false) 55 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} 56 57 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 58 59 bool isEligible(const std::vector<BasicBlock*> &code); 60 61 private: 62 /// definedInRegion - Return true if the specified value is defined in the 63 /// extracted region. 64 bool definedInRegion(Value *V) const { 65 if (Instruction *I = dyn_cast<Instruction>(V)) 66 if (BlocksToExtract.count(I->getParent())) 67 return true; 68 return false; 69 } 70 71 /// definedInCaller - Return true if the specified value is defined in the 72 /// function being code extracted, but not in the region being extracted. 73 /// These values must be passed in as live-ins to the function. 74 bool definedInCaller(Value *V) const { 75 if (isa<Argument>(V)) return true; 76 if (Instruction *I = dyn_cast<Instruction>(V)) 77 if (!BlocksToExtract.count(I->getParent())) 78 return true; 79 return false; 80 } 81 82 void severSplitPHINodes(BasicBlock *&Header); 83 void splitReturnBlocks(); 84 void findInputsOutputs(Values &inputs, Values &outputs); 85 86 Function *constructFunction(const Values &inputs, 87 const Values &outputs, 88 BasicBlock *header, 89 BasicBlock *newRootNode, BasicBlock *newHeader, 90 Function *oldFunction, Module *M); 91 92 void moveCodeToFunction(Function *newFunction); 93 94 void emitCallAndSwitchStatement(Function *newFunction, 95 BasicBlock *newHeader, 96 Values &inputs, 97 Values &outputs); 98 99 }; 100 } 101 102 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 103 /// region, we need to split the entry block of the region so that the PHI node 104 /// is easier to deal with. 105 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 106 bool HasPredsFromRegion = false; 107 unsigned NumPredsOutsideRegion = 0; 108 109 if (Header != &Header->getParent()->getEntryBlock()) { 110 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 111 if (!PN) return; // No PHI nodes. 112 113 // If the header node contains any PHI nodes, check to see if there is more 114 // than one entry from outside the region. If so, we need to sever the 115 // header block into two. 116 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 117 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 118 HasPredsFromRegion = true; 119 else 120 ++NumPredsOutsideRegion; 121 122 // If there is one (or fewer) predecessor from outside the region, we don't 123 // need to do anything special. 124 if (NumPredsOutsideRegion <= 1) return; 125 } 126 127 // Otherwise, we need to split the header block into two pieces: one 128 // containing PHI nodes merging values from outside of the region, and a 129 // second that contains all of the code for the block and merges back any 130 // incoming values from inside of the region. 131 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI(); 132 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 133 Header->getName()+".ce"); 134 135 // We only want to code extract the second block now, and it becomes the new 136 // header of the region. 137 BasicBlock *OldPred = Header; 138 BlocksToExtract.erase(OldPred); 139 BlocksToExtract.insert(NewBB); 140 Header = NewBB; 141 142 // Okay, update dominator sets. The blocks that dominate the new one are the 143 // blocks that dominate TIBB plus the new block itself. 144 if (DT) 145 DT->splitBlock(NewBB); 146 147 // Okay, now we need to adjust the PHI nodes and any branches from within the 148 // region to go to the new header block instead of the old header block. 149 if (HasPredsFromRegion) { 150 PHINode *PN = cast<PHINode>(OldPred->begin()); 151 // Loop over all of the predecessors of OldPred that are in the region, 152 // changing them to branch to NewBB instead. 153 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 154 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 155 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 156 TI->replaceUsesOfWith(OldPred, NewBB); 157 } 158 159 // Okay, everthing within the region is now branching to the right block, we 160 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 161 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 162 PHINode *PN = cast<PHINode>(AfterPHIs); 163 // Create a new PHI node in the new region, which has an incoming value 164 // from OldPred of PN. 165 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce", 166 NewBB->begin()); 167 NewPN->addIncoming(PN, OldPred); 168 169 // Loop over all of the incoming value in PN, moving them to NewPN if they 170 // are from the extracted region. 171 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 172 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 173 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 174 PN->removeIncomingValue(i); 175 --i; 176 } 177 } 178 } 179 } 180 } 181 182 void CodeExtractor::splitReturnBlocks() { 183 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), 184 E = BlocksToExtract.end(); I != E; ++I) 185 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) { 186 BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 187 if (DT) { 188 // Old dominates New. New node domiantes all other nodes dominated 189 //by Old. 190 DomTreeNode *OldNode = DT->getNode(*I); 191 SmallVector<DomTreeNode*, 8> Children; 192 for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end(); 193 DI != DE; ++DI) 194 Children.push_back(*DI); 195 196 DomTreeNode *NewNode = DT->addNewBlock(New, *I); 197 198 for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(), 199 E = Children.end(); I != E; ++I) 200 DT->changeImmediateDominator(*I, NewNode); 201 } 202 } 203 } 204 205 // findInputsOutputs - Find inputs to, outputs from the code region. 206 // 207 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 208 std::set<BasicBlock*> ExitBlocks; 209 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 210 ce = BlocksToExtract.end(); ci != ce; ++ci) { 211 BasicBlock *BB = *ci; 212 213 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 214 // If a used value is defined outside the region, it's an input. If an 215 // instruction is used outside the region, it's an output. 216 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 217 if (definedInCaller(*O)) 218 inputs.push_back(*O); 219 220 // Consider uses of this instruction (outputs). 221 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 222 UI != E; ++UI) 223 if (!definedInRegion(*UI)) { 224 outputs.push_back(I); 225 break; 226 } 227 } // for: insts 228 229 // Keep track of the exit blocks from the region. 230 TerminatorInst *TI = BB->getTerminator(); 231 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 232 if (!BlocksToExtract.count(TI->getSuccessor(i))) 233 ExitBlocks.insert(TI->getSuccessor(i)); 234 } // for: basic blocks 235 236 NumExitBlocks = ExitBlocks.size(); 237 238 // Eliminate duplicates. 239 std::sort(inputs.begin(), inputs.end()); 240 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end()); 241 std::sort(outputs.begin(), outputs.end()); 242 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end()); 243 } 244 245 /// constructFunction - make a function based on inputs and outputs, as follows: 246 /// f(in0, ..., inN, out0, ..., outN) 247 /// 248 Function *CodeExtractor::constructFunction(const Values &inputs, 249 const Values &outputs, 250 BasicBlock *header, 251 BasicBlock *newRootNode, 252 BasicBlock *newHeader, 253 Function *oldFunction, 254 Module *M) { 255 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 256 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 257 258 // This function returns unsigned, outputs will go back by reference. 259 switch (NumExitBlocks) { 260 case 0: 261 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 262 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 263 default: RetTy = Type::getInt16Ty(header->getContext()); break; 264 } 265 266 std::vector<const Type*> paramTy; 267 268 // Add the types of the input values to the function's argument list 269 for (Values::const_iterator i = inputs.begin(), 270 e = inputs.end(); i != e; ++i) { 271 const Value *value = *i; 272 DEBUG(dbgs() << "value used in func: " << *value << "\n"); 273 paramTy.push_back(value->getType()); 274 } 275 276 // Add the types of the output values to the function's argument list. 277 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 278 I != E; ++I) { 279 DEBUG(dbgs() << "instr used in func: " << **I << "\n"); 280 if (AggregateArgs) 281 paramTy.push_back((*I)->getType()); 282 else 283 paramTy.push_back(PointerType::getUnqual((*I)->getType())); 284 } 285 286 DEBUG(dbgs() << "Function type: " << *RetTy << " f("); 287 for (std::vector<const Type*>::iterator i = paramTy.begin(), 288 e = paramTy.end(); i != e; ++i) 289 DEBUG(dbgs() << **i << ", "); 290 DEBUG(dbgs() << ")\n"); 291 292 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 293 PointerType *StructPtr = 294 PointerType::getUnqual(StructType::get(M->getContext(), paramTy)); 295 paramTy.clear(); 296 paramTy.push_back(StructPtr); 297 } 298 const FunctionType *funcType = 299 FunctionType::get(RetTy, paramTy, false); 300 301 // Create the new function 302 Function *newFunction = Function::Create(funcType, 303 GlobalValue::InternalLinkage, 304 oldFunction->getName() + "_" + 305 header->getName(), M); 306 // If the old function is no-throw, so is the new one. 307 if (oldFunction->doesNotThrow()) 308 newFunction->setDoesNotThrow(true); 309 310 newFunction->getBasicBlockList().push_back(newRootNode); 311 312 // Create an iterator to name all of the arguments we inserted. 313 Function::arg_iterator AI = newFunction->arg_begin(); 314 315 // Rewrite all users of the inputs in the extracted region to use the 316 // arguments (or appropriate addressing into struct) instead. 317 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 318 Value *RewriteVal; 319 if (AggregateArgs) { 320 Value *Idx[2]; 321 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 322 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 323 TerminatorInst *TI = newFunction->begin()->getTerminator(); 324 GetElementPtrInst *GEP = 325 GetElementPtrInst::Create(AI, Idx, Idx+2, 326 "gep_" + inputs[i]->getName(), TI); 327 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 328 } else 329 RewriteVal = AI++; 330 331 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 332 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 333 use != useE; ++use) 334 if (Instruction* inst = dyn_cast<Instruction>(*use)) 335 if (BlocksToExtract.count(inst->getParent())) 336 inst->replaceUsesOfWith(inputs[i], RewriteVal); 337 } 338 339 // Set names for input and output arguments. 340 if (!AggregateArgs) { 341 AI = newFunction->arg_begin(); 342 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 343 AI->setName(inputs[i]->getName()); 344 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 345 AI->setName(outputs[i]->getName()+".out"); 346 } 347 348 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 349 // within the new function. This must be done before we lose track of which 350 // blocks were originally in the code region. 351 std::vector<User*> Users(header->use_begin(), header->use_end()); 352 for (unsigned i = 0, e = Users.size(); i != e; ++i) 353 // The BasicBlock which contains the branch is not in the region 354 // modify the branch target to a new block 355 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 356 if (!BlocksToExtract.count(TI->getParent()) && 357 TI->getParent()->getParent() == oldFunction) 358 TI->replaceUsesOfWith(header, newHeader); 359 360 return newFunction; 361 } 362 363 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI 364 /// that uses the value within the basic block, and return the predecessor 365 /// block associated with that use, or return 0 if none is found. 366 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) { 367 for (Value::use_iterator UI = Used->use_begin(), 368 UE = Used->use_end(); UI != UE; ++UI) { 369 PHINode *P = dyn_cast<PHINode>(*UI); 370 if (P && P->getParent() == BB) 371 return P->getIncomingBlock(UI); 372 } 373 374 return 0; 375 } 376 377 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 378 /// the call instruction, splitting any PHI nodes in the header block as 379 /// necessary. 380 void CodeExtractor:: 381 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 382 Values &inputs, Values &outputs) { 383 // Emit a call to the new function, passing in: *pointer to struct (if 384 // aggregating parameters), or plan inputs and allocated memory for outputs 385 std::vector<Value*> params, StructValues, ReloadOutputs, Reloads; 386 387 LLVMContext &Context = newFunction->getContext(); 388 389 // Add inputs as params, or to be filled into the struct 390 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 391 if (AggregateArgs) 392 StructValues.push_back(*i); 393 else 394 params.push_back(*i); 395 396 // Create allocas for the outputs 397 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 398 if (AggregateArgs) { 399 StructValues.push_back(*i); 400 } else { 401 AllocaInst *alloca = 402 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 403 codeReplacer->getParent()->begin()->begin()); 404 ReloadOutputs.push_back(alloca); 405 params.push_back(alloca); 406 } 407 } 408 409 AllocaInst *Struct = 0; 410 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 411 std::vector<const Type*> ArgTypes; 412 for (Values::iterator v = StructValues.begin(), 413 ve = StructValues.end(); v != ve; ++v) 414 ArgTypes.push_back((*v)->getType()); 415 416 // Allocate a struct at the beginning of this function 417 Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 418 Struct = 419 new AllocaInst(StructArgTy, 0, "structArg", 420 codeReplacer->getParent()->begin()->begin()); 421 params.push_back(Struct); 422 423 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 424 Value *Idx[2]; 425 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 426 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 427 GetElementPtrInst *GEP = 428 GetElementPtrInst::Create(Struct, Idx, Idx + 2, 429 "gep_" + StructValues[i]->getName()); 430 codeReplacer->getInstList().push_back(GEP); 431 StoreInst *SI = new StoreInst(StructValues[i], GEP); 432 codeReplacer->getInstList().push_back(SI); 433 } 434 } 435 436 // Emit the call to the function 437 CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(), 438 NumExitBlocks > 1 ? "targetBlock" : ""); 439 codeReplacer->getInstList().push_back(call); 440 441 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 442 unsigned FirstOut = inputs.size(); 443 if (!AggregateArgs) 444 std::advance(OutputArgBegin, inputs.size()); 445 446 // Reload the outputs passed in by reference 447 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 448 Value *Output = 0; 449 if (AggregateArgs) { 450 Value *Idx[2]; 451 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 452 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 453 GetElementPtrInst *GEP 454 = GetElementPtrInst::Create(Struct, Idx, Idx + 2, 455 "gep_reload_" + outputs[i]->getName()); 456 codeReplacer->getInstList().push_back(GEP); 457 Output = GEP; 458 } else { 459 Output = ReloadOutputs[i]; 460 } 461 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 462 Reloads.push_back(load); 463 codeReplacer->getInstList().push_back(load); 464 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 465 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 466 Instruction *inst = cast<Instruction>(Users[u]); 467 if (!BlocksToExtract.count(inst->getParent())) 468 inst->replaceUsesOfWith(outputs[i], load); 469 } 470 } 471 472 // Now we can emit a switch statement using the call as a value. 473 SwitchInst *TheSwitch = 474 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 475 codeReplacer, 0, codeReplacer); 476 477 // Since there may be multiple exits from the original region, make the new 478 // function return an unsigned, switch on that number. This loop iterates 479 // over all of the blocks in the extracted region, updating any terminator 480 // instructions in the to-be-extracted region that branch to blocks that are 481 // not in the region to be extracted. 482 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 483 484 unsigned switchVal = 0; 485 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 486 e = BlocksToExtract.end(); i != e; ++i) { 487 TerminatorInst *TI = (*i)->getTerminator(); 488 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 489 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 490 BasicBlock *OldTarget = TI->getSuccessor(i); 491 // add a new basic block which returns the appropriate value 492 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 493 if (!NewTarget) { 494 // If we don't already have an exit stub for this non-extracted 495 // destination, create one now! 496 NewTarget = BasicBlock::Create(Context, 497 OldTarget->getName() + ".exitStub", 498 newFunction); 499 unsigned SuccNum = switchVal++; 500 501 Value *brVal = 0; 502 switch (NumExitBlocks) { 503 case 0: 504 case 1: break; // No value needed. 505 case 2: // Conditional branch, return a bool 506 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 507 break; 508 default: 509 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 510 break; 511 } 512 513 ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget); 514 515 // Update the switch instruction. 516 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 517 SuccNum), 518 OldTarget); 519 520 // Restore values just before we exit 521 Function::arg_iterator OAI = OutputArgBegin; 522 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 523 // For an invoke, the normal destination is the only one that is 524 // dominated by the result of the invocation 525 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 526 527 bool DominatesDef = true; 528 529 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 530 DefBlock = Invoke->getNormalDest(); 531 532 // Make sure we are looking at the original successor block, not 533 // at a newly inserted exit block, which won't be in the dominator 534 // info. 535 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 536 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 537 if (DefBlock == I->second) { 538 DefBlock = I->first; 539 break; 540 } 541 542 // In the extract block case, if the block we are extracting ends 543 // with an invoke instruction, make sure that we don't emit a 544 // store of the invoke value for the unwind block. 545 if (!DT && DefBlock != OldTarget) 546 DominatesDef = false; 547 } 548 549 if (DT) { 550 DominatesDef = DT->dominates(DefBlock, OldTarget); 551 552 // If the output value is used by a phi in the target block, 553 // then we need to test for dominance of the phi's predecessor 554 // instead. Unfortunately, this a little complicated since we 555 // have already rewritten uses of the value to uses of the reload. 556 BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out], 557 OldTarget); 558 if (pred && DT && DT->dominates(DefBlock, pred)) 559 DominatesDef = true; 560 } 561 562 if (DominatesDef) { 563 if (AggregateArgs) { 564 Value *Idx[2]; 565 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 566 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), 567 FirstOut+out); 568 GetElementPtrInst *GEP = 569 GetElementPtrInst::Create(OAI, Idx, Idx + 2, 570 "gep_" + outputs[out]->getName(), 571 NTRet); 572 new StoreInst(outputs[out], GEP, NTRet); 573 } else { 574 new StoreInst(outputs[out], OAI, NTRet); 575 } 576 } 577 // Advance output iterator even if we don't emit a store 578 if (!AggregateArgs) ++OAI; 579 } 580 } 581 582 // rewrite the original branch instruction with this new target 583 TI->setSuccessor(i, NewTarget); 584 } 585 } 586 587 // Now that we've done the deed, simplify the switch instruction. 588 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 589 switch (NumExitBlocks) { 590 case 0: 591 // There are no successors (the block containing the switch itself), which 592 // means that previously this was the last part of the function, and hence 593 // this should be rewritten as a `ret' 594 595 // Check if the function should return a value 596 if (OldFnRetTy->isVoidTy()) { 597 ReturnInst::Create(Context, 0, TheSwitch); // Return void 598 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 599 // return what we have 600 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 601 } else { 602 // Otherwise we must have code extracted an unwind or something, just 603 // return whatever we want. 604 ReturnInst::Create(Context, 605 Constant::getNullValue(OldFnRetTy), TheSwitch); 606 } 607 608 TheSwitch->eraseFromParent(); 609 break; 610 case 1: 611 // Only a single destination, change the switch into an unconditional 612 // branch. 613 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 614 TheSwitch->eraseFromParent(); 615 break; 616 case 2: 617 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 618 call, TheSwitch); 619 TheSwitch->eraseFromParent(); 620 break; 621 default: 622 // Otherwise, make the default destination of the switch instruction be one 623 // of the other successors. 624 TheSwitch->setOperand(0, call); 625 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 626 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 627 break; 628 } 629 } 630 631 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 632 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 633 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 634 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 635 636 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 637 e = BlocksToExtract.end(); i != e; ++i) { 638 // Delete the basic block from the old function, and the list of blocks 639 oldBlocks.remove(*i); 640 641 // Insert this basic block into the new function 642 newBlocks.push_back(*i); 643 } 644 } 645 646 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 647 /// new function. Returns pointer to the new function. 648 /// 649 /// algorithm: 650 /// 651 /// find inputs and outputs for the region 652 /// 653 /// for inputs: add to function as args, map input instr* to arg# 654 /// for outputs: add allocas for scalars, 655 /// add to func as args, map output instr* to arg# 656 /// 657 /// rewrite func to use argument #s instead of instr* 658 /// 659 /// for each scalar output in the function: at every exit, store intermediate 660 /// computed result back into memory. 661 /// 662 Function *CodeExtractor:: 663 ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 664 if (!isEligible(code)) 665 return 0; 666 667 // 1) Find inputs, outputs 668 // 2) Construct new function 669 // * Add allocas for defs, pass as args by reference 670 // * Pass in uses as args 671 // 3) Move code region, add call instr to func 672 // 673 BlocksToExtract.insert(code.begin(), code.end()); 674 675 Values inputs, outputs; 676 677 // Assumption: this is a single-entry code region, and the header is the first 678 // block in the region. 679 BasicBlock *header = code[0]; 680 681 for (unsigned i = 1, e = code.size(); i != e; ++i) 682 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 683 PI != E; ++PI) 684 assert(BlocksToExtract.count(*PI) && 685 "No blocks in this region may have entries from outside the region" 686 " except for the first block!"); 687 688 // If we have to split PHI nodes or the entry block, do so now. 689 severSplitPHINodes(header); 690 691 // If we have any return instructions in the region, split those blocks so 692 // that the return is not in the region. 693 splitReturnBlocks(); 694 695 Function *oldFunction = header->getParent(); 696 697 // This takes place of the original loop 698 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 699 "codeRepl", oldFunction, 700 header); 701 702 // The new function needs a root node because other nodes can branch to the 703 // head of the region, but the entry node of a function cannot have preds. 704 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 705 "newFuncRoot"); 706 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 707 708 // Find inputs to, outputs from the code region. 709 findInputsOutputs(inputs, outputs); 710 711 // Construct new function based on inputs/outputs & add allocas for all defs. 712 Function *newFunction = constructFunction(inputs, outputs, header, 713 newFuncRoot, 714 codeReplacer, oldFunction, 715 oldFunction->getParent()); 716 717 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 718 719 moveCodeToFunction(newFunction); 720 721 // Loop over all of the PHI nodes in the header block, and change any 722 // references to the old incoming edge to be the new incoming edge. 723 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 724 PHINode *PN = cast<PHINode>(I); 725 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 726 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 727 PN->setIncomingBlock(i, newFuncRoot); 728 } 729 730 // Look at all successors of the codeReplacer block. If any of these blocks 731 // had PHI nodes in them, we need to update the "from" block to be the code 732 // replacer, not the original block in the extracted region. 733 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 734 succ_end(codeReplacer)); 735 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 736 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 737 PHINode *PN = cast<PHINode>(I); 738 std::set<BasicBlock*> ProcessedPreds; 739 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 740 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 741 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 742 PN->setIncomingBlock(i, codeReplacer); 743 else { 744 // There were multiple entries in the PHI for this block, now there 745 // is only one, so remove the duplicated entries. 746 PN->removeIncomingValue(i, false); 747 --i; --e; 748 } 749 } 750 } 751 752 //cerr << "NEW FUNCTION: " << *newFunction; 753 // verifyFunction(*newFunction); 754 755 // cerr << "OLD FUNCTION: " << *oldFunction; 756 // verifyFunction(*oldFunction); 757 758 DEBUG(if (verifyFunction(*newFunction)) 759 llvm_report_error("verifyFunction failed!")); 760 return newFunction; 761 } 762 763 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 764 // Deny code region if it contains allocas or vastarts. 765 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 766 BB != e; ++BB) 767 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 768 I != Ie; ++I) 769 if (isa<AllocaInst>(*I)) 770 return false; 771 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 772 if (const Function *F = CI->getCalledFunction()) 773 if (F->getIntrinsicID() == Intrinsic::vastart) 774 return false; 775 return true; 776 } 777 778 779 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 780 /// function 781 /// 782 Function* llvm::ExtractCodeRegion(DominatorTree &DT, 783 const std::vector<BasicBlock*> &code, 784 bool AggregateArgs) { 785 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code); 786 } 787 788 /// ExtractBasicBlock - slurp a natural loop into a brand new function 789 /// 790 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) { 791 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 792 } 793 794 /// ExtractBasicBlock - slurp a basic block into a brand new function 795 /// 796 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 797 std::vector<BasicBlock*> Blocks; 798 Blocks.push_back(BB); 799 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 800 } 801