xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision c8dba682bba9c80654d7a10331f718da9b7b0475)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/CodeExtractor.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/BlockFrequency.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <map>
64 #include <set>
65 #include <utility>
66 #include <vector>
67 
68 using namespace llvm;
69 using ProfileCount = Function::ProfileCount;
70 
71 #define DEBUG_TYPE "code-extractor"
72 
73 // Provide a command-line option to aggregate function arguments into a struct
74 // for functions produced by the code extractor. This is useful when converting
75 // extracted functions to pthread-based code, as only one argument (void*) can
76 // be passed in to pthread_create().
77 static cl::opt<bool>
78 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
79                  cl::desc("Aggregate arguments to code-extracted functions"));
80 
81 /// Test whether a block is valid for extraction.
82 static bool isBlockValidForExtraction(const BasicBlock &BB,
83                                       const SetVector<BasicBlock *> &Result,
84                                       bool AllowVarArgs, bool AllowAlloca) {
85   // taking the address of a basic block moved to another function is illegal
86   if (BB.hasAddressTaken())
87     return false;
88 
89   // don't hoist code that uses another basicblock address, as it's likely to
90   // lead to unexpected behavior, like cross-function jumps
91   SmallPtrSet<User const *, 16> Visited;
92   SmallVector<User const *, 16> ToVisit;
93 
94   for (Instruction const &Inst : BB)
95     ToVisit.push_back(&Inst);
96 
97   while (!ToVisit.empty()) {
98     User const *Curr = ToVisit.pop_back_val();
99     if (!Visited.insert(Curr).second)
100       continue;
101     if (isa<BlockAddress const>(Curr))
102       return false; // even a reference to self is likely to be not compatible
103 
104     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
105       continue;
106 
107     for (auto const &U : Curr->operands()) {
108       if (auto *UU = dyn_cast<User>(U))
109         ToVisit.push_back(UU);
110     }
111   }
112 
113   // If explicitly requested, allow vastart and alloca. For invoke instructions
114   // verify that extraction is valid.
115   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
116     if (isa<AllocaInst>(I)) {
117        if (!AllowAlloca)
118          return false;
119        continue;
120     }
121 
122     if (const auto *II = dyn_cast<InvokeInst>(I)) {
123       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
124       // must be a part of the subgraph which is being extracted.
125       if (auto *UBB = II->getUnwindDest())
126         if (!Result.count(UBB))
127           return false;
128       continue;
129     }
130 
131     // All catch handlers of a catchswitch instruction as well as the unwind
132     // destination must be in the subgraph.
133     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
134       if (auto *UBB = CSI->getUnwindDest())
135         if (!Result.count(UBB))
136           return false;
137       for (auto *HBB : CSI->handlers())
138         if (!Result.count(const_cast<BasicBlock*>(HBB)))
139           return false;
140       continue;
141     }
142 
143     // Make sure that entire catch handler is within subgraph. It is sufficient
144     // to check that catch return's block is in the list.
145     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
146       for (const auto *U : CPI->users())
147         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
148           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
149             return false;
150       continue;
151     }
152 
153     // And do similar checks for cleanup handler - the entire handler must be
154     // in subgraph which is going to be extracted. For cleanup return should
155     // additionally check that the unwind destination is also in the subgraph.
156     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
157       for (const auto *U : CPI->users())
158         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
159           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
160             return false;
161       continue;
162     }
163     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
164       if (auto *UBB = CRI->getUnwindDest())
165         if (!Result.count(UBB))
166           return false;
167       continue;
168     }
169 
170     if (const CallInst *CI = dyn_cast<CallInst>(I))
171       if (const Function *F = CI->getCalledFunction())
172         if (F->getIntrinsicID() == Intrinsic::vastart) {
173           if (AllowVarArgs)
174             continue;
175           else
176             return false;
177         }
178   }
179 
180   return true;
181 }
182 
183 /// Build a set of blocks to extract if the input blocks are viable.
184 static SetVector<BasicBlock *>
185 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
186                         bool AllowVarArgs, bool AllowAlloca) {
187   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
188   SetVector<BasicBlock *> Result;
189 
190   // Loop over the blocks, adding them to our set-vector, and aborting with an
191   // empty set if we encounter invalid blocks.
192   for (BasicBlock *BB : BBs) {
193     // If this block is dead, don't process it.
194     if (DT && !DT->isReachableFromEntry(BB))
195       continue;
196 
197     if (!Result.insert(BB))
198       llvm_unreachable("Repeated basic blocks in extraction input");
199   }
200 
201   for (auto *BB : Result) {
202     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
203       return {};
204 
205     // Make sure that the first block is not a landing pad.
206     if (BB == Result.front()) {
207       if (BB->isEHPad()) {
208         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
209         return {};
210       }
211       continue;
212     }
213 
214     // All blocks other than the first must not have predecessors outside of
215     // the subgraph which is being extracted.
216     for (auto *PBB : predecessors(BB))
217       if (!Result.count(PBB)) {
218         LLVM_DEBUG(
219             dbgs() << "No blocks in this region may have entries from "
220                       "outside the region except for the first block!\n");
221         return {};
222       }
223   }
224 
225   return Result;
226 }
227 
228 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
229                              bool AggregateArgs, BlockFrequencyInfo *BFI,
230                              BranchProbabilityInfo *BPI, bool AllowVarArgs,
231                              bool AllowAlloca, std::string Suffix)
232     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
233       BPI(BPI), AllowVarArgs(AllowVarArgs),
234       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
235       Suffix(Suffix) {}
236 
237 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
238                              BlockFrequencyInfo *BFI,
239                              BranchProbabilityInfo *BPI, std::string Suffix)
240     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
241       BPI(BPI), AllowVarArgs(false),
242       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
243                                      /* AllowVarArgs */ false,
244                                      /* AllowAlloca */ false)),
245       Suffix(Suffix) {}
246 
247 /// definedInRegion - Return true if the specified value is defined in the
248 /// extracted region.
249 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
250   if (Instruction *I = dyn_cast<Instruction>(V))
251     if (Blocks.count(I->getParent()))
252       return true;
253   return false;
254 }
255 
256 /// definedInCaller - Return true if the specified value is defined in the
257 /// function being code extracted, but not in the region being extracted.
258 /// These values must be passed in as live-ins to the function.
259 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
260   if (isa<Argument>(V)) return true;
261   if (Instruction *I = dyn_cast<Instruction>(V))
262     if (!Blocks.count(I->getParent()))
263       return true;
264   return false;
265 }
266 
267 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
268   BasicBlock *CommonExitBlock = nullptr;
269   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
270     for (auto *Succ : successors(Block)) {
271       // Internal edges, ok.
272       if (Blocks.count(Succ))
273         continue;
274       if (!CommonExitBlock) {
275         CommonExitBlock = Succ;
276         continue;
277       }
278       if (CommonExitBlock == Succ)
279         continue;
280 
281       return true;
282     }
283     return false;
284   };
285 
286   if (any_of(Blocks, hasNonCommonExitSucc))
287     return nullptr;
288 
289   return CommonExitBlock;
290 }
291 
292 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
293     Instruction *Addr) const {
294   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
295   Function *Func = (*Blocks.begin())->getParent();
296   for (BasicBlock &BB : *Func) {
297     if (Blocks.count(&BB))
298       continue;
299     for (Instruction &II : BB) {
300       if (isa<DbgInfoIntrinsic>(II))
301         continue;
302 
303       unsigned Opcode = II.getOpcode();
304       Value *MemAddr = nullptr;
305       switch (Opcode) {
306       case Instruction::Store:
307       case Instruction::Load: {
308         if (Opcode == Instruction::Store) {
309           StoreInst *SI = cast<StoreInst>(&II);
310           MemAddr = SI->getPointerOperand();
311         } else {
312           LoadInst *LI = cast<LoadInst>(&II);
313           MemAddr = LI->getPointerOperand();
314         }
315         // Global variable can not be aliased with locals.
316         if (dyn_cast<Constant>(MemAddr))
317           break;
318         Value *Base = MemAddr->stripInBoundsConstantOffsets();
319         if (!dyn_cast<AllocaInst>(Base) || Base == AI)
320           return false;
321         break;
322       }
323       default: {
324         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
325         if (IntrInst) {
326           if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start ||
327               IntrInst->getIntrinsicID() == Intrinsic::lifetime_end)
328             break;
329           return false;
330         }
331         // Treat all the other cases conservatively if it has side effects.
332         if (II.mayHaveSideEffects())
333           return false;
334       }
335       }
336     }
337   }
338 
339   return true;
340 }
341 
342 BasicBlock *
343 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
344   BasicBlock *SinglePredFromOutlineRegion = nullptr;
345   assert(!Blocks.count(CommonExitBlock) &&
346          "Expect a block outside the region!");
347   for (auto *Pred : predecessors(CommonExitBlock)) {
348     if (!Blocks.count(Pred))
349       continue;
350     if (!SinglePredFromOutlineRegion) {
351       SinglePredFromOutlineRegion = Pred;
352     } else if (SinglePredFromOutlineRegion != Pred) {
353       SinglePredFromOutlineRegion = nullptr;
354       break;
355     }
356   }
357 
358   if (SinglePredFromOutlineRegion)
359     return SinglePredFromOutlineRegion;
360 
361 #ifndef NDEBUG
362   auto getFirstPHI = [](BasicBlock *BB) {
363     BasicBlock::iterator I = BB->begin();
364     PHINode *FirstPhi = nullptr;
365     while (I != BB->end()) {
366       PHINode *Phi = dyn_cast<PHINode>(I);
367       if (!Phi)
368         break;
369       if (!FirstPhi) {
370         FirstPhi = Phi;
371         break;
372       }
373     }
374     return FirstPhi;
375   };
376   // If there are any phi nodes, the single pred either exists or has already
377   // be created before code extraction.
378   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
379 #endif
380 
381   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
382       CommonExitBlock->getFirstNonPHI()->getIterator());
383 
384   for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
385        PI != PE;) {
386     BasicBlock *Pred = *PI++;
387     if (Blocks.count(Pred))
388       continue;
389     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
390   }
391   // Now add the old exit block to the outline region.
392   Blocks.insert(CommonExitBlock);
393   return CommonExitBlock;
394 }
395 
396 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands,
397                                 BasicBlock *&ExitBlock) const {
398   Function *Func = (*Blocks.begin())->getParent();
399   ExitBlock = getCommonExitBlock(Blocks);
400 
401   for (BasicBlock &BB : *Func) {
402     if (Blocks.count(&BB))
403       continue;
404     for (Instruction &II : BB) {
405       auto *AI = dyn_cast<AllocaInst>(&II);
406       if (!AI)
407         continue;
408 
409       // Find the pair of life time markers for address 'Addr' that are either
410       // defined inside the outline region or can legally be shrinkwrapped into
411       // the outline region. If there are not other untracked uses of the
412       // address, return the pair of markers if found; otherwise return a pair
413       // of nullptr.
414       auto GetLifeTimeMarkers =
415           [&](Instruction *Addr, bool &SinkLifeStart,
416               bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> {
417         Instruction *LifeStart = nullptr, *LifeEnd = nullptr;
418 
419         for (User *U : Addr->users()) {
420           IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
421           if (IntrInst) {
422             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
423               // Do not handle the case where AI has multiple start markers.
424               if (LifeStart)
425                 return std::make_pair<Instruction *>(nullptr, nullptr);
426               LifeStart = IntrInst;
427             }
428             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
429               if (LifeEnd)
430                 return std::make_pair<Instruction *>(nullptr, nullptr);
431               LifeEnd = IntrInst;
432             }
433             continue;
434           }
435           // Find untracked uses of the address, bail.
436           if (!definedInRegion(Blocks, U))
437             return std::make_pair<Instruction *>(nullptr, nullptr);
438         }
439 
440         if (!LifeStart || !LifeEnd)
441           return std::make_pair<Instruction *>(nullptr, nullptr);
442 
443         SinkLifeStart = !definedInRegion(Blocks, LifeStart);
444         HoistLifeEnd = !definedInRegion(Blocks, LifeEnd);
445         // Do legality Check.
446         if ((SinkLifeStart || HoistLifeEnd) &&
447             !isLegalToShrinkwrapLifetimeMarkers(Addr))
448           return std::make_pair<Instruction *>(nullptr, nullptr);
449 
450         // Check to see if we have a place to do hoisting, if not, bail.
451         if (HoistLifeEnd && !ExitBlock)
452           return std::make_pair<Instruction *>(nullptr, nullptr);
453 
454         return std::make_pair(LifeStart, LifeEnd);
455       };
456 
457       bool SinkLifeStart = false, HoistLifeEnd = false;
458       auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd);
459 
460       if (Markers.first) {
461         if (SinkLifeStart)
462           SinkCands.insert(Markers.first);
463         SinkCands.insert(AI);
464         if (HoistLifeEnd)
465           HoistCands.insert(Markers.second);
466         continue;
467       }
468 
469       // Follow the bitcast.
470       Instruction *MarkerAddr = nullptr;
471       for (User *U : AI->users()) {
472         if (U->stripInBoundsConstantOffsets() == AI) {
473           SinkLifeStart = false;
474           HoistLifeEnd = false;
475           Instruction *Bitcast = cast<Instruction>(U);
476           Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd);
477           if (Markers.first) {
478             MarkerAddr = Bitcast;
479             continue;
480           }
481         }
482 
483         // Found unknown use of AI.
484         if (!definedInRegion(Blocks, U)) {
485           MarkerAddr = nullptr;
486           break;
487         }
488       }
489 
490       if (MarkerAddr) {
491         if (SinkLifeStart)
492           SinkCands.insert(Markers.first);
493         if (!definedInRegion(Blocks, MarkerAddr))
494           SinkCands.insert(MarkerAddr);
495         SinkCands.insert(AI);
496         if (HoistLifeEnd)
497           HoistCands.insert(Markers.second);
498       }
499     }
500   }
501 }
502 
503 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
504                                       const ValueSet &SinkCands) const {
505   for (BasicBlock *BB : Blocks) {
506     // If a used value is defined outside the region, it's an input.  If an
507     // instruction is used outside the region, it's an output.
508     for (Instruction &II : *BB) {
509       for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
510            ++OI) {
511         Value *V = *OI;
512         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
513           Inputs.insert(V);
514       }
515 
516       for (User *U : II.users())
517         if (!definedInRegion(Blocks, U)) {
518           Outputs.insert(&II);
519           break;
520         }
521     }
522   }
523 }
524 
525 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
526 /// region, we need to split the entry block of the region so that the PHI node
527 /// is easier to deal with.
528 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
529   unsigned NumPredsFromRegion = 0;
530   unsigned NumPredsOutsideRegion = 0;
531 
532   if (Header != &Header->getParent()->getEntryBlock()) {
533     PHINode *PN = dyn_cast<PHINode>(Header->begin());
534     if (!PN) return;  // No PHI nodes.
535 
536     // If the header node contains any PHI nodes, check to see if there is more
537     // than one entry from outside the region.  If so, we need to sever the
538     // header block into two.
539     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
540       if (Blocks.count(PN->getIncomingBlock(i)))
541         ++NumPredsFromRegion;
542       else
543         ++NumPredsOutsideRegion;
544 
545     // If there is one (or fewer) predecessor from outside the region, we don't
546     // need to do anything special.
547     if (NumPredsOutsideRegion <= 1) return;
548   }
549 
550   // Otherwise, we need to split the header block into two pieces: one
551   // containing PHI nodes merging values from outside of the region, and a
552   // second that contains all of the code for the block and merges back any
553   // incoming values from inside of the region.
554   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
555 
556   // We only want to code extract the second block now, and it becomes the new
557   // header of the region.
558   BasicBlock *OldPred = Header;
559   Blocks.remove(OldPred);
560   Blocks.insert(NewBB);
561   Header = NewBB;
562 
563   // Okay, now we need to adjust the PHI nodes and any branches from within the
564   // region to go to the new header block instead of the old header block.
565   if (NumPredsFromRegion) {
566     PHINode *PN = cast<PHINode>(OldPred->begin());
567     // Loop over all of the predecessors of OldPred that are in the region,
568     // changing them to branch to NewBB instead.
569     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
570       if (Blocks.count(PN->getIncomingBlock(i))) {
571         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
572         TI->replaceUsesOfWith(OldPred, NewBB);
573       }
574 
575     // Okay, everything within the region is now branching to the right block, we
576     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
577     BasicBlock::iterator AfterPHIs;
578     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
579       PHINode *PN = cast<PHINode>(AfterPHIs);
580       // Create a new PHI node in the new region, which has an incoming value
581       // from OldPred of PN.
582       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
583                                        PN->getName() + ".ce", &NewBB->front());
584       PN->replaceAllUsesWith(NewPN);
585       NewPN->addIncoming(PN, OldPred);
586 
587       // Loop over all of the incoming value in PN, moving them to NewPN if they
588       // are from the extracted region.
589       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
590         if (Blocks.count(PN->getIncomingBlock(i))) {
591           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
592           PN->removeIncomingValue(i);
593           --i;
594         }
595       }
596     }
597   }
598 }
599 
600 void CodeExtractor::splitReturnBlocks() {
601   for (BasicBlock *Block : Blocks)
602     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
603       BasicBlock *New =
604           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
605       if (DT) {
606         // Old dominates New. New node dominates all other nodes dominated
607         // by Old.
608         DomTreeNode *OldNode = DT->getNode(Block);
609         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
610                                                OldNode->end());
611 
612         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
613 
614         for (DomTreeNode *I : Children)
615           DT->changeImmediateDominator(I, NewNode);
616       }
617     }
618 }
619 
620 /// constructFunction - make a function based on inputs and outputs, as follows:
621 /// f(in0, ..., inN, out0, ..., outN)
622 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
623                                            const ValueSet &outputs,
624                                            BasicBlock *header,
625                                            BasicBlock *newRootNode,
626                                            BasicBlock *newHeader,
627                                            Function *oldFunction,
628                                            Module *M) {
629   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
630   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
631 
632   // This function returns unsigned, outputs will go back by reference.
633   switch (NumExitBlocks) {
634   case 0:
635   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
636   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
637   default: RetTy = Type::getInt16Ty(header->getContext()); break;
638   }
639 
640   std::vector<Type *> paramTy;
641 
642   // Add the types of the input values to the function's argument list
643   for (Value *value : inputs) {
644     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
645     paramTy.push_back(value->getType());
646   }
647 
648   // Add the types of the output values to the function's argument list.
649   for (Value *output : outputs) {
650     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
651     if (AggregateArgs)
652       paramTy.push_back(output->getType());
653     else
654       paramTy.push_back(PointerType::getUnqual(output->getType()));
655   }
656 
657   LLVM_DEBUG({
658     dbgs() << "Function type: " << *RetTy << " f(";
659     for (Type *i : paramTy)
660       dbgs() << *i << ", ";
661     dbgs() << ")\n";
662   });
663 
664   StructType *StructTy;
665   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
666     StructTy = StructType::get(M->getContext(), paramTy);
667     paramTy.clear();
668     paramTy.push_back(PointerType::getUnqual(StructTy));
669   }
670   FunctionType *funcType =
671                   FunctionType::get(RetTy, paramTy,
672                                     AllowVarArgs && oldFunction->isVarArg());
673 
674   std::string SuffixToUse =
675       Suffix.empty()
676           ? (header->getName().empty() ? "extracted" : header->getName().str())
677           : Suffix;
678   // Create the new function
679   Function *newFunction = Function::Create(
680       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
681       oldFunction->getName() + "." + SuffixToUse, M);
682   // If the old function is no-throw, so is the new one.
683   if (oldFunction->doesNotThrow())
684     newFunction->setDoesNotThrow();
685 
686   // Inherit the uwtable attribute if we need to.
687   if (oldFunction->hasUWTable())
688     newFunction->setHasUWTable();
689 
690   // Inherit all of the target dependent attributes and white-listed
691   // target independent attributes.
692   //  (e.g. If the extracted region contains a call to an x86.sse
693   //  instruction we need to make sure that the extracted region has the
694   //  "target-features" attribute allowing it to be lowered.
695   // FIXME: This should be changed to check to see if a specific
696   //           attribute can not be inherited.
697   for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
698     if (Attr.isStringAttribute()) {
699       if (Attr.getKindAsString() == "thunk")
700         continue;
701     } else
702       switch (Attr.getKindAsEnum()) {
703       // Those attributes cannot be propagated safely. Explicitly list them
704       // here so we get a warning if new attributes are added. This list also
705       // includes non-function attributes.
706       case Attribute::Alignment:
707       case Attribute::AllocSize:
708       case Attribute::ArgMemOnly:
709       case Attribute::Builtin:
710       case Attribute::ByVal:
711       case Attribute::Convergent:
712       case Attribute::Dereferenceable:
713       case Attribute::DereferenceableOrNull:
714       case Attribute::InAlloca:
715       case Attribute::InReg:
716       case Attribute::InaccessibleMemOnly:
717       case Attribute::InaccessibleMemOrArgMemOnly:
718       case Attribute::JumpTable:
719       case Attribute::Naked:
720       case Attribute::Nest:
721       case Attribute::NoAlias:
722       case Attribute::NoBuiltin:
723       case Attribute::NoCapture:
724       case Attribute::NoReturn:
725       case Attribute::None:
726       case Attribute::NonNull:
727       case Attribute::ReadNone:
728       case Attribute::ReadOnly:
729       case Attribute::Returned:
730       case Attribute::ReturnsTwice:
731       case Attribute::SExt:
732       case Attribute::Speculatable:
733       case Attribute::StackAlignment:
734       case Attribute::StructRet:
735       case Attribute::SwiftError:
736       case Attribute::SwiftSelf:
737       case Attribute::WriteOnly:
738       case Attribute::ZExt:
739       case Attribute::EndAttrKinds:
740         continue;
741       // Those attributes should be safe to propagate to the extracted function.
742       case Attribute::AlwaysInline:
743       case Attribute::Cold:
744       case Attribute::NoRecurse:
745       case Attribute::InlineHint:
746       case Attribute::MinSize:
747       case Attribute::NoDuplicate:
748       case Attribute::NoImplicitFloat:
749       case Attribute::NoInline:
750       case Attribute::NonLazyBind:
751       case Attribute::NoRedZone:
752       case Attribute::NoUnwind:
753       case Attribute::OptForFuzzing:
754       case Attribute::OptimizeNone:
755       case Attribute::OptimizeForSize:
756       case Attribute::SafeStack:
757       case Attribute::ShadowCallStack:
758       case Attribute::SanitizeAddress:
759       case Attribute::SanitizeMemory:
760       case Attribute::SanitizeThread:
761       case Attribute::SanitizeHWAddress:
762       case Attribute::SpeculativeLoadHardening:
763       case Attribute::StackProtect:
764       case Attribute::StackProtectReq:
765       case Attribute::StackProtectStrong:
766       case Attribute::StrictFP:
767       case Attribute::UWTable:
768       case Attribute::NoCfCheck:
769         break;
770       }
771 
772     newFunction->addFnAttr(Attr);
773   }
774   newFunction->getBasicBlockList().push_back(newRootNode);
775 
776   // Create an iterator to name all of the arguments we inserted.
777   Function::arg_iterator AI = newFunction->arg_begin();
778 
779   // Rewrite all users of the inputs in the extracted region to use the
780   // arguments (or appropriate addressing into struct) instead.
781   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
782     Value *RewriteVal;
783     if (AggregateArgs) {
784       Value *Idx[2];
785       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
786       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
787       Instruction *TI = newFunction->begin()->getTerminator();
788       GetElementPtrInst *GEP = GetElementPtrInst::Create(
789           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
790       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
791     } else
792       RewriteVal = &*AI++;
793 
794     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
795     for (User *use : Users)
796       if (Instruction *inst = dyn_cast<Instruction>(use))
797         if (Blocks.count(inst->getParent()))
798           inst->replaceUsesOfWith(inputs[i], RewriteVal);
799   }
800 
801   // Set names for input and output arguments.
802   if (!AggregateArgs) {
803     AI = newFunction->arg_begin();
804     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
805       AI->setName(inputs[i]->getName());
806     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
807       AI->setName(outputs[i]->getName()+".out");
808   }
809 
810   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
811   // within the new function. This must be done before we lose track of which
812   // blocks were originally in the code region.
813   std::vector<User *> Users(header->user_begin(), header->user_end());
814   for (unsigned i = 0, e = Users.size(); i != e; ++i)
815     // The BasicBlock which contains the branch is not in the region
816     // modify the branch target to a new block
817     if (Instruction *I = dyn_cast<Instruction>(Users[i]))
818       if (I->isTerminator() && !Blocks.count(I->getParent()) &&
819           I->getParent()->getParent() == oldFunction)
820         I->replaceUsesOfWith(header, newHeader);
821 
822   return newFunction;
823 }
824 
825 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
826 /// the call instruction, splitting any PHI nodes in the header block as
827 /// necessary.
828 void CodeExtractor::
829 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
830                            ValueSet &inputs, ValueSet &outputs) {
831   // Emit a call to the new function, passing in: *pointer to struct (if
832   // aggregating parameters), or plan inputs and allocated memory for outputs
833   std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
834 
835   Module *M = newFunction->getParent();
836   LLVMContext &Context = M->getContext();
837   const DataLayout &DL = M->getDataLayout();
838 
839   // Add inputs as params, or to be filled into the struct
840   for (Value *input : inputs)
841     if (AggregateArgs)
842       StructValues.push_back(input);
843     else
844       params.push_back(input);
845 
846   // Create allocas for the outputs
847   for (Value *output : outputs) {
848     if (AggregateArgs) {
849       StructValues.push_back(output);
850     } else {
851       AllocaInst *alloca =
852         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
853                        nullptr, output->getName() + ".loc",
854                        &codeReplacer->getParent()->front().front());
855       ReloadOutputs.push_back(alloca);
856       params.push_back(alloca);
857     }
858   }
859 
860   StructType *StructArgTy = nullptr;
861   AllocaInst *Struct = nullptr;
862   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
863     std::vector<Type *> ArgTypes;
864     for (ValueSet::iterator v = StructValues.begin(),
865            ve = StructValues.end(); v != ve; ++v)
866       ArgTypes.push_back((*v)->getType());
867 
868     // Allocate a struct at the beginning of this function
869     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
870     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
871                             "structArg",
872                             &codeReplacer->getParent()->front().front());
873     params.push_back(Struct);
874 
875     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
876       Value *Idx[2];
877       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
878       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
879       GetElementPtrInst *GEP = GetElementPtrInst::Create(
880           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
881       codeReplacer->getInstList().push_back(GEP);
882       StoreInst *SI = new StoreInst(StructValues[i], GEP);
883       codeReplacer->getInstList().push_back(SI);
884     }
885   }
886 
887   // Emit the call to the function
888   CallInst *call = CallInst::Create(newFunction, params,
889                                     NumExitBlocks > 1 ? "targetBlock" : "");
890   // Add debug location to the new call, if the original function has debug
891   // info. In that case, the terminator of the entry block of the extracted
892   // function contains the first debug location of the extracted function,
893   // set in extractCodeRegion.
894   if (codeReplacer->getParent()->getSubprogram()) {
895     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
896       call->setDebugLoc(DL);
897   }
898   codeReplacer->getInstList().push_back(call);
899 
900   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
901   unsigned FirstOut = inputs.size();
902   if (!AggregateArgs)
903     std::advance(OutputArgBegin, inputs.size());
904 
905   // Reload the outputs passed in by reference.
906   Function::arg_iterator OAI = OutputArgBegin;
907   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
908     Value *Output = nullptr;
909     if (AggregateArgs) {
910       Value *Idx[2];
911       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
912       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
913       GetElementPtrInst *GEP = GetElementPtrInst::Create(
914           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
915       codeReplacer->getInstList().push_back(GEP);
916       Output = GEP;
917     } else {
918       Output = ReloadOutputs[i];
919     }
920     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
921     Reloads.push_back(load);
922     codeReplacer->getInstList().push_back(load);
923     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
924     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
925       Instruction *inst = cast<Instruction>(Users[u]);
926       if (!Blocks.count(inst->getParent()))
927         inst->replaceUsesOfWith(outputs[i], load);
928     }
929 
930     // Store to argument right after the definition of output value.
931     auto *OutI = dyn_cast<Instruction>(outputs[i]);
932     if (!OutI)
933       continue;
934 
935     // Find proper insertion point.
936     Instruction *InsertPt;
937     // In case OutI is an invoke, we insert the store at the beginning in the
938     // 'normal destination' BB. Otherwise we insert the store right after OutI.
939     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
940       InsertPt = InvokeI->getNormalDest()->getFirstNonPHI();
941     else
942       InsertPt = OutI->getNextNode();
943 
944     // Let's assume that there is no other guy interleave non-PHI in PHIs.
945     if (isa<PHINode>(InsertPt))
946       InsertPt = InsertPt->getParent()->getFirstNonPHI();
947 
948     assert(OAI != newFunction->arg_end() &&
949            "Number of output arguments should match "
950            "the amount of defined values");
951     if (AggregateArgs) {
952       Value *Idx[2];
953       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
954       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
955       GetElementPtrInst *GEP = GetElementPtrInst::Create(
956           StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), InsertPt);
957       new StoreInst(outputs[i], GEP, InsertPt);
958       // Since there should be only one struct argument aggregating
959       // all the output values, we shouldn't increment OAI, which always
960       // points to the struct argument, in this case.
961     } else {
962       new StoreInst(outputs[i], &*OAI, InsertPt);
963       ++OAI;
964     }
965   }
966 
967   // Now we can emit a switch statement using the call as a value.
968   SwitchInst *TheSwitch =
969       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
970                          codeReplacer, 0, codeReplacer);
971 
972   // Since there may be multiple exits from the original region, make the new
973   // function return an unsigned, switch on that number.  This loop iterates
974   // over all of the blocks in the extracted region, updating any terminator
975   // instructions in the to-be-extracted region that branch to blocks that are
976   // not in the region to be extracted.
977   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
978 
979   unsigned switchVal = 0;
980   for (BasicBlock *Block : Blocks) {
981     Instruction *TI = Block->getTerminator();
982     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
983       if (!Blocks.count(TI->getSuccessor(i))) {
984         BasicBlock *OldTarget = TI->getSuccessor(i);
985         // add a new basic block which returns the appropriate value
986         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
987         if (!NewTarget) {
988           // If we don't already have an exit stub for this non-extracted
989           // destination, create one now!
990           NewTarget = BasicBlock::Create(Context,
991                                          OldTarget->getName() + ".exitStub",
992                                          newFunction);
993           unsigned SuccNum = switchVal++;
994 
995           Value *brVal = nullptr;
996           switch (NumExitBlocks) {
997           case 0:
998           case 1: break;  // No value needed.
999           case 2:         // Conditional branch, return a bool
1000             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1001             break;
1002           default:
1003             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1004             break;
1005           }
1006 
1007           ReturnInst::Create(Context, brVal, NewTarget);
1008 
1009           // Update the switch instruction.
1010           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1011                                               SuccNum),
1012                              OldTarget);
1013         }
1014 
1015         // rewrite the original branch instruction with this new target
1016         TI->setSuccessor(i, NewTarget);
1017       }
1018   }
1019 
1020   // Now that we've done the deed, simplify the switch instruction.
1021   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1022   switch (NumExitBlocks) {
1023   case 0:
1024     // There are no successors (the block containing the switch itself), which
1025     // means that previously this was the last part of the function, and hence
1026     // this should be rewritten as a `ret'
1027 
1028     // Check if the function should return a value
1029     if (OldFnRetTy->isVoidTy()) {
1030       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1031     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1032       // return what we have
1033       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1034     } else {
1035       // Otherwise we must have code extracted an unwind or something, just
1036       // return whatever we want.
1037       ReturnInst::Create(Context,
1038                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1039     }
1040 
1041     TheSwitch->eraseFromParent();
1042     break;
1043   case 1:
1044     // Only a single destination, change the switch into an unconditional
1045     // branch.
1046     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1047     TheSwitch->eraseFromParent();
1048     break;
1049   case 2:
1050     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1051                        call, TheSwitch);
1052     TheSwitch->eraseFromParent();
1053     break;
1054   default:
1055     // Otherwise, make the default destination of the switch instruction be one
1056     // of the other successors.
1057     TheSwitch->setCondition(call);
1058     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1059     // Remove redundant case
1060     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1061     break;
1062   }
1063 }
1064 
1065 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1066   Function *oldFunc = (*Blocks.begin())->getParent();
1067   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1068   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1069 
1070   for (BasicBlock *Block : Blocks) {
1071     // Delete the basic block from the old function, and the list of blocks
1072     oldBlocks.remove(Block);
1073 
1074     // Insert this basic block into the new function
1075     newBlocks.push_back(Block);
1076   }
1077 }
1078 
1079 void CodeExtractor::calculateNewCallTerminatorWeights(
1080     BasicBlock *CodeReplacer,
1081     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1082     BranchProbabilityInfo *BPI) {
1083   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1084   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1085 
1086   // Update the branch weights for the exit block.
1087   Instruction *TI = CodeReplacer->getTerminator();
1088   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1089 
1090   // Block Frequency distribution with dummy node.
1091   Distribution BranchDist;
1092 
1093   // Add each of the frequencies of the successors.
1094   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1095     BlockNode ExitNode(i);
1096     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1097     if (ExitFreq != 0)
1098       BranchDist.addExit(ExitNode, ExitFreq);
1099     else
1100       BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1101   }
1102 
1103   // Check for no total weight.
1104   if (BranchDist.Total == 0)
1105     return;
1106 
1107   // Normalize the distribution so that they can fit in unsigned.
1108   BranchDist.normalize();
1109 
1110   // Create normalized branch weights and set the metadata.
1111   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1112     const auto &Weight = BranchDist.Weights[I];
1113 
1114     // Get the weight and update the current BFI.
1115     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1116     BranchProbability BP(Weight.Amount, BranchDist.Total);
1117     BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1118   }
1119   TI->setMetadata(
1120       LLVMContext::MD_prof,
1121       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1122 }
1123 
1124 Function *CodeExtractor::extractCodeRegion() {
1125   if (!isEligible())
1126     return nullptr;
1127 
1128   // Assumption: this is a single-entry code region, and the header is the first
1129   // block in the region.
1130   BasicBlock *header = *Blocks.begin();
1131   Function *oldFunction = header->getParent();
1132 
1133   // For functions with varargs, check that varargs handling is only done in the
1134   // outlined function, i.e vastart and vaend are only used in outlined blocks.
1135   if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) {
1136     auto containsVarArgIntrinsic = [](Instruction &I) {
1137       if (const CallInst *CI = dyn_cast<CallInst>(&I))
1138         if (const Function *F = CI->getCalledFunction())
1139           return F->getIntrinsicID() == Intrinsic::vastart ||
1140                  F->getIntrinsicID() == Intrinsic::vaend;
1141       return false;
1142     };
1143 
1144     for (auto &BB : *oldFunction) {
1145       if (Blocks.count(&BB))
1146         continue;
1147       if (llvm::any_of(BB, containsVarArgIntrinsic))
1148         return nullptr;
1149     }
1150   }
1151   ValueSet inputs, outputs, SinkingCands, HoistingCands;
1152   BasicBlock *CommonExit = nullptr;
1153 
1154   // Calculate the entry frequency of the new function before we change the root
1155   //   block.
1156   BlockFrequency EntryFreq;
1157   if (BFI) {
1158     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1159     for (BasicBlock *Pred : predecessors(header)) {
1160       if (Blocks.count(Pred))
1161         continue;
1162       EntryFreq +=
1163           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1164     }
1165   }
1166 
1167   // If we have to split PHI nodes or the entry block, do so now.
1168   severSplitPHINodes(header);
1169 
1170   // If we have any return instructions in the region, split those blocks so
1171   // that the return is not in the region.
1172   splitReturnBlocks();
1173 
1174   // This takes place of the original loop
1175   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1176                                                 "codeRepl", oldFunction,
1177                                                 header);
1178 
1179   // The new function needs a root node because other nodes can branch to the
1180   // head of the region, but the entry node of a function cannot have preds.
1181   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1182                                                "newFuncRoot");
1183   auto *BranchI = BranchInst::Create(header);
1184   // If the original function has debug info, we have to add a debug location
1185   // to the new branch instruction from the artificial entry block.
1186   // We use the debug location of the first instruction in the extracted
1187   // blocks, as there is no other equivalent line in the source code.
1188   if (oldFunction->getSubprogram()) {
1189     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1190       return any_of(*BB, [&BranchI](const Instruction &I) {
1191         if (!I.getDebugLoc())
1192           return false;
1193         BranchI->setDebugLoc(I.getDebugLoc());
1194         return true;
1195       });
1196     });
1197   }
1198   newFuncRoot->getInstList().push_back(BranchI);
1199 
1200   findAllocas(SinkingCands, HoistingCands, CommonExit);
1201   assert(HoistingCands.empty() || CommonExit);
1202 
1203   // Find inputs to, outputs from the code region.
1204   findInputsOutputs(inputs, outputs, SinkingCands);
1205 
1206   // Now sink all instructions which only have non-phi uses inside the region
1207   for (auto *II : SinkingCands)
1208     cast<Instruction>(II)->moveBefore(*newFuncRoot,
1209                                       newFuncRoot->getFirstInsertionPt());
1210 
1211   if (!HoistingCands.empty()) {
1212     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1213     Instruction *TI = HoistToBlock->getTerminator();
1214     for (auto *II : HoistingCands)
1215       cast<Instruction>(II)->moveBefore(TI);
1216   }
1217 
1218   // Calculate the exit blocks for the extracted region and the total exit
1219   // weights for each of those blocks.
1220   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1221   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1222   for (BasicBlock *Block : Blocks) {
1223     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1224          ++SI) {
1225       if (!Blocks.count(*SI)) {
1226         // Update the branch weight for this successor.
1227         if (BFI) {
1228           BlockFrequency &BF = ExitWeights[*SI];
1229           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1230         }
1231         ExitBlocks.insert(*SI);
1232       }
1233     }
1234   }
1235   NumExitBlocks = ExitBlocks.size();
1236 
1237   // Construct new function based on inputs/outputs & add allocas for all defs.
1238   Function *newFunction = constructFunction(inputs, outputs, header,
1239                                             newFuncRoot,
1240                                             codeReplacer, oldFunction,
1241                                             oldFunction->getParent());
1242 
1243   // Update the entry count of the function.
1244   if (BFI) {
1245     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1246     if (Count.hasValue())
1247       newFunction->setEntryCount(
1248           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1249     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1250   }
1251 
1252   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1253 
1254   moveCodeToFunction(newFunction);
1255 
1256   // Propagate personality info to the new function if there is one.
1257   if (oldFunction->hasPersonalityFn())
1258     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1259 
1260   // Update the branch weights for the exit block.
1261   if (BFI && NumExitBlocks > 1)
1262     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1263 
1264   // Loop over all of the PHI nodes in the header block, and change any
1265   // references to the old incoming edge to be the new incoming edge.
1266   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1267     PHINode *PN = cast<PHINode>(I);
1268     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1269       if (!Blocks.count(PN->getIncomingBlock(i)))
1270         PN->setIncomingBlock(i, newFuncRoot);
1271   }
1272 
1273   // Look at all successors of the codeReplacer block.  If any of these blocks
1274   // had PHI nodes in them, we need to update the "from" block to be the code
1275   // replacer, not the original block in the extracted region.
1276   std::vector<BasicBlock *> Succs(succ_begin(codeReplacer),
1277                                   succ_end(codeReplacer));
1278   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
1279     for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
1280       PHINode *PN = cast<PHINode>(I);
1281       std::set<BasicBlock*> ProcessedPreds;
1282       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1283         if (Blocks.count(PN->getIncomingBlock(i))) {
1284           if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
1285             PN->setIncomingBlock(i, codeReplacer);
1286           else {
1287             // There were multiple entries in the PHI for this block, now there
1288             // is only one, so remove the duplicated entries.
1289             PN->removeIncomingValue(i, false);
1290             --i; --e;
1291           }
1292         }
1293     }
1294 
1295   // Erase debug info intrinsics. Variable updates within the new function are
1296   // invisible to debuggers. This could be improved by defining a DISubprogram
1297   // for the new function.
1298   for (BasicBlock &BB : *newFunction) {
1299     auto BlockIt = BB.begin();
1300     while (BlockIt != BB.end()) {
1301       Instruction *Inst = &*BlockIt;
1302       ++BlockIt;
1303       if (isa<DbgInfoIntrinsic>(Inst))
1304         Inst->eraseFromParent();
1305     }
1306   }
1307 
1308   LLVM_DEBUG(if (verifyFunction(*newFunction))
1309                  report_fatal_error("verifyFunction failed!"));
1310   return newFunction;
1311 }
1312