1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/Verifier.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <map> 69 #include <set> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 using namespace llvm::PatternMatch; 75 using ProfileCount = Function::ProfileCount; 76 77 #define DEBUG_TYPE "code-extractor" 78 79 // Provide a command-line option to aggregate function arguments into a struct 80 // for functions produced by the code extractor. This is useful when converting 81 // extracted functions to pthread-based code, as only one argument (void*) can 82 // be passed in to pthread_create(). 83 static cl::opt<bool> 84 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 85 cl::desc("Aggregate arguments to code-extracted functions")); 86 87 /// Test whether a block is valid for extraction. 88 static bool isBlockValidForExtraction(const BasicBlock &BB, 89 const SetVector<BasicBlock *> &Result, 90 bool AllowVarArgs, bool AllowAlloca) { 91 // taking the address of a basic block moved to another function is illegal 92 if (BB.hasAddressTaken()) 93 return false; 94 95 // don't hoist code that uses another basicblock address, as it's likely to 96 // lead to unexpected behavior, like cross-function jumps 97 SmallPtrSet<User const *, 16> Visited; 98 SmallVector<User const *, 16> ToVisit; 99 100 for (Instruction const &Inst : BB) 101 ToVisit.push_back(&Inst); 102 103 while (!ToVisit.empty()) { 104 User const *Curr = ToVisit.pop_back_val(); 105 if (!Visited.insert(Curr).second) 106 continue; 107 if (isa<BlockAddress const>(Curr)) 108 return false; // even a reference to self is likely to be not compatible 109 110 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 111 continue; 112 113 for (auto const &U : Curr->operands()) { 114 if (auto *UU = dyn_cast<User>(U)) 115 ToVisit.push_back(UU); 116 } 117 } 118 119 // If explicitly requested, allow vastart and alloca. For invoke instructions 120 // verify that extraction is valid. 121 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 122 if (isa<AllocaInst>(I)) { 123 if (!AllowAlloca) 124 return false; 125 continue; 126 } 127 128 if (const auto *II = dyn_cast<InvokeInst>(I)) { 129 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 130 // must be a part of the subgraph which is being extracted. 131 if (auto *UBB = II->getUnwindDest()) 132 if (!Result.count(UBB)) 133 return false; 134 continue; 135 } 136 137 // All catch handlers of a catchswitch instruction as well as the unwind 138 // destination must be in the subgraph. 139 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 140 if (auto *UBB = CSI->getUnwindDest()) 141 if (!Result.count(UBB)) 142 return false; 143 for (auto *HBB : CSI->handlers()) 144 if (!Result.count(const_cast<BasicBlock*>(HBB))) 145 return false; 146 continue; 147 } 148 149 // Make sure that entire catch handler is within subgraph. It is sufficient 150 // to check that catch return's block is in the list. 151 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 152 for (const auto *U : CPI->users()) 153 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 154 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 155 return false; 156 continue; 157 } 158 159 // And do similar checks for cleanup handler - the entire handler must be 160 // in subgraph which is going to be extracted. For cleanup return should 161 // additionally check that the unwind destination is also in the subgraph. 162 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 163 for (const auto *U : CPI->users()) 164 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 165 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 166 return false; 167 continue; 168 } 169 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 170 if (auto *UBB = CRI->getUnwindDest()) 171 if (!Result.count(UBB)) 172 return false; 173 continue; 174 } 175 176 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 177 if (const Function *F = CI->getCalledFunction()) { 178 auto IID = F->getIntrinsicID(); 179 if (IID == Intrinsic::vastart) { 180 if (AllowVarArgs) 181 continue; 182 else 183 return false; 184 } 185 186 // Currently, we miscompile outlined copies of eh_typid_for. There are 187 // proposals for fixing this in llvm.org/PR39545. 188 if (IID == Intrinsic::eh_typeid_for) 189 return false; 190 } 191 } 192 } 193 194 return true; 195 } 196 197 /// Build a set of blocks to extract if the input blocks are viable. 198 static SetVector<BasicBlock *> 199 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 200 bool AllowVarArgs, bool AllowAlloca) { 201 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 202 SetVector<BasicBlock *> Result; 203 204 // Loop over the blocks, adding them to our set-vector, and aborting with an 205 // empty set if we encounter invalid blocks. 206 for (BasicBlock *BB : BBs) { 207 // If this block is dead, don't process it. 208 if (DT && !DT->isReachableFromEntry(BB)) 209 continue; 210 211 if (!Result.insert(BB)) 212 llvm_unreachable("Repeated basic blocks in extraction input"); 213 } 214 215 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 216 << '\n'); 217 218 for (auto *BB : Result) { 219 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 220 return {}; 221 222 // Make sure that the first block is not a landing pad. 223 if (BB == Result.front()) { 224 if (BB->isEHPad()) { 225 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 226 return {}; 227 } 228 continue; 229 } 230 231 // All blocks other than the first must not have predecessors outside of 232 // the subgraph which is being extracted. 233 for (auto *PBB : predecessors(BB)) 234 if (!Result.count(PBB)) { 235 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 236 "outside the region except for the first block!\n" 237 << "Problematic source BB: " << BB->getName() << "\n" 238 << "Problematic destination BB: " << PBB->getName() 239 << "\n"); 240 return {}; 241 } 242 } 243 244 return Result; 245 } 246 247 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 248 bool AggregateArgs, BlockFrequencyInfo *BFI, 249 BranchProbabilityInfo *BPI, AssumptionCache *AC, 250 bool AllowVarArgs, bool AllowAlloca, 251 std::string Suffix) 252 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 253 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs), 254 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 255 Suffix(Suffix) {} 256 257 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 258 BlockFrequencyInfo *BFI, 259 BranchProbabilityInfo *BPI, AssumptionCache *AC, 260 std::string Suffix) 261 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 262 BPI(BPI), AC(AC), AllowVarArgs(false), 263 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 264 /* AllowVarArgs */ false, 265 /* AllowAlloca */ false)), 266 Suffix(Suffix) {} 267 268 /// definedInRegion - Return true if the specified value is defined in the 269 /// extracted region. 270 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 271 if (Instruction *I = dyn_cast<Instruction>(V)) 272 if (Blocks.count(I->getParent())) 273 return true; 274 return false; 275 } 276 277 /// definedInCaller - Return true if the specified value is defined in the 278 /// function being code extracted, but not in the region being extracted. 279 /// These values must be passed in as live-ins to the function. 280 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 281 if (isa<Argument>(V)) return true; 282 if (Instruction *I = dyn_cast<Instruction>(V)) 283 if (!Blocks.count(I->getParent())) 284 return true; 285 return false; 286 } 287 288 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 289 BasicBlock *CommonExitBlock = nullptr; 290 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 291 for (auto *Succ : successors(Block)) { 292 // Internal edges, ok. 293 if (Blocks.count(Succ)) 294 continue; 295 if (!CommonExitBlock) { 296 CommonExitBlock = Succ; 297 continue; 298 } 299 if (CommonExitBlock != Succ) 300 return true; 301 } 302 return false; 303 }; 304 305 if (any_of(Blocks, hasNonCommonExitSucc)) 306 return nullptr; 307 308 return CommonExitBlock; 309 } 310 311 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 312 for (BasicBlock &BB : F) { 313 for (Instruction &II : BB.instructionsWithoutDebug()) 314 if (auto *AI = dyn_cast<AllocaInst>(&II)) 315 Allocas.push_back(AI); 316 317 findSideEffectInfoForBlock(BB); 318 } 319 } 320 321 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 322 for (Instruction &II : BB.instructionsWithoutDebug()) { 323 unsigned Opcode = II.getOpcode(); 324 Value *MemAddr = nullptr; 325 switch (Opcode) { 326 case Instruction::Store: 327 case Instruction::Load: { 328 if (Opcode == Instruction::Store) { 329 StoreInst *SI = cast<StoreInst>(&II); 330 MemAddr = SI->getPointerOperand(); 331 } else { 332 LoadInst *LI = cast<LoadInst>(&II); 333 MemAddr = LI->getPointerOperand(); 334 } 335 // Global variable can not be aliased with locals. 336 if (dyn_cast<Constant>(MemAddr)) 337 break; 338 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 339 if (!isa<AllocaInst>(Base)) { 340 SideEffectingBlocks.insert(&BB); 341 return; 342 } 343 BaseMemAddrs[&BB].insert(Base); 344 break; 345 } 346 default: { 347 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 348 if (IntrInst) { 349 if (IntrInst->isLifetimeStartOrEnd()) 350 break; 351 SideEffectingBlocks.insert(&BB); 352 return; 353 } 354 // Treat all the other cases conservatively if it has side effects. 355 if (II.mayHaveSideEffects()) { 356 SideEffectingBlocks.insert(&BB); 357 return; 358 } 359 } 360 } 361 } 362 } 363 364 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 365 BasicBlock &BB, AllocaInst *Addr) const { 366 if (SideEffectingBlocks.count(&BB)) 367 return true; 368 auto It = BaseMemAddrs.find(&BB); 369 if (It != BaseMemAddrs.end()) 370 return It->second.count(Addr); 371 return false; 372 } 373 374 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 375 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 376 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 377 Function *Func = (*Blocks.begin())->getParent(); 378 for (BasicBlock &BB : *Func) { 379 if (Blocks.count(&BB)) 380 continue; 381 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 382 return false; 383 } 384 return true; 385 } 386 387 BasicBlock * 388 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 389 BasicBlock *SinglePredFromOutlineRegion = nullptr; 390 assert(!Blocks.count(CommonExitBlock) && 391 "Expect a block outside the region!"); 392 for (auto *Pred : predecessors(CommonExitBlock)) { 393 if (!Blocks.count(Pred)) 394 continue; 395 if (!SinglePredFromOutlineRegion) { 396 SinglePredFromOutlineRegion = Pred; 397 } else if (SinglePredFromOutlineRegion != Pred) { 398 SinglePredFromOutlineRegion = nullptr; 399 break; 400 } 401 } 402 403 if (SinglePredFromOutlineRegion) 404 return SinglePredFromOutlineRegion; 405 406 #ifndef NDEBUG 407 auto getFirstPHI = [](BasicBlock *BB) { 408 BasicBlock::iterator I = BB->begin(); 409 PHINode *FirstPhi = nullptr; 410 while (I != BB->end()) { 411 PHINode *Phi = dyn_cast<PHINode>(I); 412 if (!Phi) 413 break; 414 if (!FirstPhi) { 415 FirstPhi = Phi; 416 break; 417 } 418 } 419 return FirstPhi; 420 }; 421 // If there are any phi nodes, the single pred either exists or has already 422 // be created before code extraction. 423 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 424 #endif 425 426 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 427 CommonExitBlock->getFirstNonPHI()->getIterator()); 428 429 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); 430 PI != PE;) { 431 BasicBlock *Pred = *PI++; 432 if (Blocks.count(Pred)) 433 continue; 434 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 435 } 436 // Now add the old exit block to the outline region. 437 Blocks.insert(CommonExitBlock); 438 return CommonExitBlock; 439 } 440 441 // Find the pair of life time markers for address 'Addr' that are either 442 // defined inside the outline region or can legally be shrinkwrapped into the 443 // outline region. If there are not other untracked uses of the address, return 444 // the pair of markers if found; otherwise return a pair of nullptr. 445 CodeExtractor::LifetimeMarkerInfo 446 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 447 Instruction *Addr, 448 BasicBlock *ExitBlock) const { 449 LifetimeMarkerInfo Info; 450 451 for (User *U : Addr->users()) { 452 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 453 if (IntrInst) { 454 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 455 // Do not handle the case where Addr has multiple start markers. 456 if (Info.LifeStart) 457 return {}; 458 Info.LifeStart = IntrInst; 459 } 460 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 461 if (Info.LifeEnd) 462 return {}; 463 Info.LifeEnd = IntrInst; 464 } 465 continue; 466 } 467 // Find untracked uses of the address, bail. 468 if (!definedInRegion(Blocks, U)) 469 return {}; 470 } 471 472 if (!Info.LifeStart || !Info.LifeEnd) 473 return {}; 474 475 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 476 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 477 // Do legality check. 478 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 479 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 480 return {}; 481 482 // Check to see if we have a place to do hoisting, if not, bail. 483 if (Info.HoistLifeEnd && !ExitBlock) 484 return {}; 485 486 return Info; 487 } 488 489 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 490 ValueSet &SinkCands, ValueSet &HoistCands, 491 BasicBlock *&ExitBlock) const { 492 Function *Func = (*Blocks.begin())->getParent(); 493 ExitBlock = getCommonExitBlock(Blocks); 494 495 auto moveOrIgnoreLifetimeMarkers = 496 [&](const LifetimeMarkerInfo &LMI) -> bool { 497 if (!LMI.LifeStart) 498 return false; 499 if (LMI.SinkLifeStart) { 500 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 501 << "\n"); 502 SinkCands.insert(LMI.LifeStart); 503 } 504 if (LMI.HoistLifeEnd) { 505 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 506 HoistCands.insert(LMI.LifeEnd); 507 } 508 return true; 509 }; 510 511 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 512 // this is much faster than walking all the instructions. 513 for (AllocaInst *AI : CEAC.getAllocas()) { 514 BasicBlock *BB = AI->getParent(); 515 if (Blocks.count(BB)) 516 continue; 517 518 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 519 // check whether it is actually still in the original function. 520 Function *AIFunc = BB->getParent(); 521 if (AIFunc != Func) 522 continue; 523 524 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 525 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 526 if (Moved) { 527 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 528 SinkCands.insert(AI); 529 continue; 530 } 531 532 // Follow any bitcasts. 533 SmallVector<Instruction *, 2> Bitcasts; 534 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 535 for (User *U : AI->users()) { 536 if (U->stripInBoundsConstantOffsets() == AI) { 537 Instruction *Bitcast = cast<Instruction>(U); 538 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 539 if (LMI.LifeStart) { 540 Bitcasts.push_back(Bitcast); 541 BitcastLifetimeInfo.push_back(LMI); 542 continue; 543 } 544 } 545 546 // Found unknown use of AI. 547 if (!definedInRegion(Blocks, U)) { 548 Bitcasts.clear(); 549 break; 550 } 551 } 552 553 // Either no bitcasts reference the alloca or there are unknown uses. 554 if (Bitcasts.empty()) 555 continue; 556 557 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 558 SinkCands.insert(AI); 559 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 560 Instruction *BitcastAddr = Bitcasts[I]; 561 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 562 assert(LMI.LifeStart && 563 "Unsafe to sink bitcast without lifetime markers"); 564 moveOrIgnoreLifetimeMarkers(LMI); 565 if (!definedInRegion(Blocks, BitcastAddr)) { 566 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 567 << "\n"); 568 SinkCands.insert(BitcastAddr); 569 } 570 } 571 } 572 } 573 574 bool CodeExtractor::isEligible() const { 575 if (Blocks.empty()) 576 return false; 577 BasicBlock *Header = *Blocks.begin(); 578 Function *F = Header->getParent(); 579 580 // For functions with varargs, check that varargs handling is only done in the 581 // outlined function, i.e vastart and vaend are only used in outlined blocks. 582 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 583 auto containsVarArgIntrinsic = [](const Instruction &I) { 584 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 585 if (const Function *Callee = CI->getCalledFunction()) 586 return Callee->getIntrinsicID() == Intrinsic::vastart || 587 Callee->getIntrinsicID() == Intrinsic::vaend; 588 return false; 589 }; 590 591 for (auto &BB : *F) { 592 if (Blocks.count(&BB)) 593 continue; 594 if (llvm::any_of(BB, containsVarArgIntrinsic)) 595 return false; 596 } 597 } 598 return true; 599 } 600 601 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 602 const ValueSet &SinkCands) const { 603 for (BasicBlock *BB : Blocks) { 604 // If a used value is defined outside the region, it's an input. If an 605 // instruction is used outside the region, it's an output. 606 for (Instruction &II : *BB) { 607 for (auto &OI : II.operands()) { 608 Value *V = OI; 609 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 610 Inputs.insert(V); 611 } 612 613 for (User *U : II.users()) 614 if (!definedInRegion(Blocks, U)) { 615 Outputs.insert(&II); 616 break; 617 } 618 } 619 } 620 } 621 622 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 623 /// of the region, we need to split the entry block of the region so that the 624 /// PHI node is easier to deal with. 625 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 626 unsigned NumPredsFromRegion = 0; 627 unsigned NumPredsOutsideRegion = 0; 628 629 if (Header != &Header->getParent()->getEntryBlock()) { 630 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 631 if (!PN) return; // No PHI nodes. 632 633 // If the header node contains any PHI nodes, check to see if there is more 634 // than one entry from outside the region. If so, we need to sever the 635 // header block into two. 636 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 637 if (Blocks.count(PN->getIncomingBlock(i))) 638 ++NumPredsFromRegion; 639 else 640 ++NumPredsOutsideRegion; 641 642 // If there is one (or fewer) predecessor from outside the region, we don't 643 // need to do anything special. 644 if (NumPredsOutsideRegion <= 1) return; 645 } 646 647 // Otherwise, we need to split the header block into two pieces: one 648 // containing PHI nodes merging values from outside of the region, and a 649 // second that contains all of the code for the block and merges back any 650 // incoming values from inside of the region. 651 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 652 653 // We only want to code extract the second block now, and it becomes the new 654 // header of the region. 655 BasicBlock *OldPred = Header; 656 Blocks.remove(OldPred); 657 Blocks.insert(NewBB); 658 Header = NewBB; 659 660 // Okay, now we need to adjust the PHI nodes and any branches from within the 661 // region to go to the new header block instead of the old header block. 662 if (NumPredsFromRegion) { 663 PHINode *PN = cast<PHINode>(OldPred->begin()); 664 // Loop over all of the predecessors of OldPred that are in the region, 665 // changing them to branch to NewBB instead. 666 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 667 if (Blocks.count(PN->getIncomingBlock(i))) { 668 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 669 TI->replaceUsesOfWith(OldPred, NewBB); 670 } 671 672 // Okay, everything within the region is now branching to the right block, we 673 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 674 BasicBlock::iterator AfterPHIs; 675 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 676 PHINode *PN = cast<PHINode>(AfterPHIs); 677 // Create a new PHI node in the new region, which has an incoming value 678 // from OldPred of PN. 679 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 680 PN->getName() + ".ce", &NewBB->front()); 681 PN->replaceAllUsesWith(NewPN); 682 NewPN->addIncoming(PN, OldPred); 683 684 // Loop over all of the incoming value in PN, moving them to NewPN if they 685 // are from the extracted region. 686 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 687 if (Blocks.count(PN->getIncomingBlock(i))) { 688 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 689 PN->removeIncomingValue(i); 690 --i; 691 } 692 } 693 } 694 } 695 } 696 697 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 698 /// outlined region, we split these PHIs on two: one with inputs from region 699 /// and other with remaining incoming blocks; then first PHIs are placed in 700 /// outlined region. 701 void CodeExtractor::severSplitPHINodesOfExits( 702 const SmallPtrSetImpl<BasicBlock *> &Exits) { 703 for (BasicBlock *ExitBB : Exits) { 704 BasicBlock *NewBB = nullptr; 705 706 for (PHINode &PN : ExitBB->phis()) { 707 // Find all incoming values from the outlining region. 708 SmallVector<unsigned, 2> IncomingVals; 709 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 710 if (Blocks.count(PN.getIncomingBlock(i))) 711 IncomingVals.push_back(i); 712 713 // Do not process PHI if there is one (or fewer) predecessor from region. 714 // If PHI has exactly one predecessor from region, only this one incoming 715 // will be replaced on codeRepl block, so it should be safe to skip PHI. 716 if (IncomingVals.size() <= 1) 717 continue; 718 719 // Create block for new PHIs and add it to the list of outlined if it 720 // wasn't done before. 721 if (!NewBB) { 722 NewBB = BasicBlock::Create(ExitBB->getContext(), 723 ExitBB->getName() + ".split", 724 ExitBB->getParent(), ExitBB); 725 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB), 726 pred_end(ExitBB)); 727 for (BasicBlock *PredBB : Preds) 728 if (Blocks.count(PredBB)) 729 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 730 BranchInst::Create(ExitBB, NewBB); 731 Blocks.insert(NewBB); 732 } 733 734 // Split this PHI. 735 PHINode *NewPN = 736 PHINode::Create(PN.getType(), IncomingVals.size(), 737 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 738 for (unsigned i : IncomingVals) 739 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 740 for (unsigned i : reverse(IncomingVals)) 741 PN.removeIncomingValue(i, false); 742 PN.addIncoming(NewPN, NewBB); 743 } 744 } 745 } 746 747 void CodeExtractor::splitReturnBlocks() { 748 for (BasicBlock *Block : Blocks) 749 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 750 BasicBlock *New = 751 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 752 if (DT) { 753 // Old dominates New. New node dominates all other nodes dominated 754 // by Old. 755 DomTreeNode *OldNode = DT->getNode(Block); 756 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 757 OldNode->end()); 758 759 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 760 761 for (DomTreeNode *I : Children) 762 DT->changeImmediateDominator(I, NewNode); 763 } 764 } 765 } 766 767 /// constructFunction - make a function based on inputs and outputs, as follows: 768 /// f(in0, ..., inN, out0, ..., outN) 769 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 770 const ValueSet &outputs, 771 BasicBlock *header, 772 BasicBlock *newRootNode, 773 BasicBlock *newHeader, 774 Function *oldFunction, 775 Module *M) { 776 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 777 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 778 779 // This function returns unsigned, outputs will go back by reference. 780 switch (NumExitBlocks) { 781 case 0: 782 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 783 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 784 default: RetTy = Type::getInt16Ty(header->getContext()); break; 785 } 786 787 std::vector<Type *> paramTy; 788 789 // Add the types of the input values to the function's argument list 790 for (Value *value : inputs) { 791 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 792 paramTy.push_back(value->getType()); 793 } 794 795 // Add the types of the output values to the function's argument list. 796 for (Value *output : outputs) { 797 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 798 if (AggregateArgs) 799 paramTy.push_back(output->getType()); 800 else 801 paramTy.push_back(PointerType::getUnqual(output->getType())); 802 } 803 804 LLVM_DEBUG({ 805 dbgs() << "Function type: " << *RetTy << " f("; 806 for (Type *i : paramTy) 807 dbgs() << *i << ", "; 808 dbgs() << ")\n"; 809 }); 810 811 StructType *StructTy = nullptr; 812 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 813 StructTy = StructType::get(M->getContext(), paramTy); 814 paramTy.clear(); 815 paramTy.push_back(PointerType::getUnqual(StructTy)); 816 } 817 FunctionType *funcType = 818 FunctionType::get(RetTy, paramTy, 819 AllowVarArgs && oldFunction->isVarArg()); 820 821 std::string SuffixToUse = 822 Suffix.empty() 823 ? (header->getName().empty() ? "extracted" : header->getName().str()) 824 : Suffix; 825 // Create the new function 826 Function *newFunction = Function::Create( 827 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 828 oldFunction->getName() + "." + SuffixToUse, M); 829 // If the old function is no-throw, so is the new one. 830 if (oldFunction->doesNotThrow()) 831 newFunction->setDoesNotThrow(); 832 833 // Inherit the uwtable attribute if we need to. 834 if (oldFunction->hasUWTable()) 835 newFunction->setHasUWTable(); 836 837 // Inherit all of the target dependent attributes and white-listed 838 // target independent attributes. 839 // (e.g. If the extracted region contains a call to an x86.sse 840 // instruction we need to make sure that the extracted region has the 841 // "target-features" attribute allowing it to be lowered. 842 // FIXME: This should be changed to check to see if a specific 843 // attribute can not be inherited. 844 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { 845 if (Attr.isStringAttribute()) { 846 if (Attr.getKindAsString() == "thunk") 847 continue; 848 } else 849 switch (Attr.getKindAsEnum()) { 850 // Those attributes cannot be propagated safely. Explicitly list them 851 // here so we get a warning if new attributes are added. This list also 852 // includes non-function attributes. 853 case Attribute::Alignment: 854 case Attribute::AllocSize: 855 case Attribute::ArgMemOnly: 856 case Attribute::Builtin: 857 case Attribute::ByVal: 858 case Attribute::Convergent: 859 case Attribute::Dereferenceable: 860 case Attribute::DereferenceableOrNull: 861 case Attribute::InAlloca: 862 case Attribute::InReg: 863 case Attribute::InaccessibleMemOnly: 864 case Attribute::InaccessibleMemOrArgMemOnly: 865 case Attribute::JumpTable: 866 case Attribute::Naked: 867 case Attribute::Nest: 868 case Attribute::NoAlias: 869 case Attribute::NoBuiltin: 870 case Attribute::NoCapture: 871 case Attribute::NoReturn: 872 case Attribute::NoSync: 873 case Attribute::None: 874 case Attribute::NonNull: 875 case Attribute::ReadNone: 876 case Attribute::ReadOnly: 877 case Attribute::Returned: 878 case Attribute::ReturnsTwice: 879 case Attribute::SExt: 880 case Attribute::Speculatable: 881 case Attribute::StackAlignment: 882 case Attribute::StructRet: 883 case Attribute::SwiftError: 884 case Attribute::SwiftSelf: 885 case Attribute::WillReturn: 886 case Attribute::WriteOnly: 887 case Attribute::ZExt: 888 case Attribute::ImmArg: 889 case Attribute::EndAttrKinds: 890 case Attribute::EmptyKey: 891 case Attribute::TombstoneKey: 892 continue; 893 // Those attributes should be safe to propagate to the extracted function. 894 case Attribute::AlwaysInline: 895 case Attribute::Cold: 896 case Attribute::NoRecurse: 897 case Attribute::InlineHint: 898 case Attribute::MinSize: 899 case Attribute::NoDuplicate: 900 case Attribute::NoFree: 901 case Attribute::NoImplicitFloat: 902 case Attribute::NoInline: 903 case Attribute::NonLazyBind: 904 case Attribute::NoRedZone: 905 case Attribute::NoUnwind: 906 case Attribute::OptForFuzzing: 907 case Attribute::OptimizeNone: 908 case Attribute::OptimizeForSize: 909 case Attribute::SafeStack: 910 case Attribute::ShadowCallStack: 911 case Attribute::SanitizeAddress: 912 case Attribute::SanitizeMemory: 913 case Attribute::SanitizeThread: 914 case Attribute::SanitizeHWAddress: 915 case Attribute::SanitizeMemTag: 916 case Attribute::SpeculativeLoadHardening: 917 case Attribute::StackProtect: 918 case Attribute::StackProtectReq: 919 case Attribute::StackProtectStrong: 920 case Attribute::StrictFP: 921 case Attribute::UWTable: 922 case Attribute::NoCfCheck: 923 break; 924 } 925 926 newFunction->addFnAttr(Attr); 927 } 928 newFunction->getBasicBlockList().push_back(newRootNode); 929 930 // Create an iterator to name all of the arguments we inserted. 931 Function::arg_iterator AI = newFunction->arg_begin(); 932 933 // Rewrite all users of the inputs in the extracted region to use the 934 // arguments (or appropriate addressing into struct) instead. 935 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 936 Value *RewriteVal; 937 if (AggregateArgs) { 938 Value *Idx[2]; 939 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 940 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 941 Instruction *TI = newFunction->begin()->getTerminator(); 942 GetElementPtrInst *GEP = GetElementPtrInst::Create( 943 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 944 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP, 945 "loadgep_" + inputs[i]->getName(), TI); 946 } else 947 RewriteVal = &*AI++; 948 949 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 950 for (User *use : Users) 951 if (Instruction *inst = dyn_cast<Instruction>(use)) 952 if (Blocks.count(inst->getParent())) 953 inst->replaceUsesOfWith(inputs[i], RewriteVal); 954 } 955 956 // Set names for input and output arguments. 957 if (!AggregateArgs) { 958 AI = newFunction->arg_begin(); 959 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 960 AI->setName(inputs[i]->getName()); 961 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 962 AI->setName(outputs[i]->getName()+".out"); 963 } 964 965 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 966 // within the new function. This must be done before we lose track of which 967 // blocks were originally in the code region. 968 std::vector<User *> Users(header->user_begin(), header->user_end()); 969 for (auto &U : Users) 970 // The BasicBlock which contains the branch is not in the region 971 // modify the branch target to a new block 972 if (Instruction *I = dyn_cast<Instruction>(U)) 973 if (I->isTerminator() && I->getFunction() == oldFunction && 974 !Blocks.count(I->getParent())) 975 I->replaceUsesOfWith(header, newHeader); 976 977 return newFunction; 978 } 979 980 /// Erase lifetime.start markers which reference inputs to the extraction 981 /// region, and insert the referenced memory into \p LifetimesStart. 982 /// 983 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 984 /// of allocas which will be moved from the caller function into the extracted 985 /// function (\p SunkAllocas). 986 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 987 const SetVector<Value *> &SunkAllocas, 988 SetVector<Value *> &LifetimesStart) { 989 for (BasicBlock *BB : Blocks) { 990 for (auto It = BB->begin(), End = BB->end(); It != End;) { 991 auto *II = dyn_cast<IntrinsicInst>(&*It); 992 ++It; 993 if (!II || !II->isLifetimeStartOrEnd()) 994 continue; 995 996 // Get the memory operand of the lifetime marker. If the underlying 997 // object is a sunk alloca, or is otherwise defined in the extraction 998 // region, the lifetime marker must not be erased. 999 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1000 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1001 continue; 1002 1003 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1004 LifetimesStart.insert(Mem); 1005 II->eraseFromParent(); 1006 } 1007 } 1008 } 1009 1010 /// Insert lifetime start/end markers surrounding the call to the new function 1011 /// for objects defined in the caller. 1012 static void insertLifetimeMarkersSurroundingCall( 1013 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1014 CallInst *TheCall) { 1015 LLVMContext &Ctx = M->getContext(); 1016 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 1017 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1018 Instruction *Term = TheCall->getParent()->getTerminator(); 1019 1020 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 1021 // needed to satisfy this requirement so they may be reused. 1022 DenseMap<Value *, Value *> Bitcasts; 1023 1024 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1025 // markers before the call if \p InsertBefore, and after the call otherwise. 1026 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 1027 bool InsertBefore) { 1028 for (Value *Mem : Objects) { 1029 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1030 TheCall->getFunction()) && 1031 "Input memory not defined in original function"); 1032 Value *&MemAsI8Ptr = Bitcasts[Mem]; 1033 if (!MemAsI8Ptr) { 1034 if (Mem->getType() == Int8PtrTy) 1035 MemAsI8Ptr = Mem; 1036 else 1037 MemAsI8Ptr = 1038 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 1039 } 1040 1041 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 1042 if (InsertBefore) 1043 Marker->insertBefore(TheCall); 1044 else 1045 Marker->insertBefore(Term); 1046 } 1047 }; 1048 1049 if (!LifetimesStart.empty()) { 1050 auto StartFn = llvm::Intrinsic::getDeclaration( 1051 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 1052 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 1053 } 1054 1055 if (!LifetimesEnd.empty()) { 1056 auto EndFn = llvm::Intrinsic::getDeclaration( 1057 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 1058 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 1059 } 1060 } 1061 1062 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1063 /// the call instruction, splitting any PHI nodes in the header block as 1064 /// necessary. 1065 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1066 BasicBlock *codeReplacer, 1067 ValueSet &inputs, 1068 ValueSet &outputs) { 1069 // Emit a call to the new function, passing in: *pointer to struct (if 1070 // aggregating parameters), or plan inputs and allocated memory for outputs 1071 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 1072 1073 Module *M = newFunction->getParent(); 1074 LLVMContext &Context = M->getContext(); 1075 const DataLayout &DL = M->getDataLayout(); 1076 CallInst *call = nullptr; 1077 1078 // Add inputs as params, or to be filled into the struct 1079 unsigned ArgNo = 0; 1080 SmallVector<unsigned, 1> SwiftErrorArgs; 1081 for (Value *input : inputs) { 1082 if (AggregateArgs) 1083 StructValues.push_back(input); 1084 else { 1085 params.push_back(input); 1086 if (input->isSwiftError()) 1087 SwiftErrorArgs.push_back(ArgNo); 1088 } 1089 ++ArgNo; 1090 } 1091 1092 // Create allocas for the outputs 1093 for (Value *output : outputs) { 1094 if (AggregateArgs) { 1095 StructValues.push_back(output); 1096 } else { 1097 AllocaInst *alloca = 1098 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1099 nullptr, output->getName() + ".loc", 1100 &codeReplacer->getParent()->front().front()); 1101 ReloadOutputs.push_back(alloca); 1102 params.push_back(alloca); 1103 } 1104 } 1105 1106 StructType *StructArgTy = nullptr; 1107 AllocaInst *Struct = nullptr; 1108 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 1109 std::vector<Type *> ArgTypes; 1110 for (ValueSet::iterator v = StructValues.begin(), 1111 ve = StructValues.end(); v != ve; ++v) 1112 ArgTypes.push_back((*v)->getType()); 1113 1114 // Allocate a struct at the beginning of this function 1115 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1116 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 1117 "structArg", 1118 &codeReplacer->getParent()->front().front()); 1119 params.push_back(Struct); 1120 1121 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 1122 Value *Idx[2]; 1123 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1124 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1125 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1126 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1127 codeReplacer->getInstList().push_back(GEP); 1128 StoreInst *SI = new StoreInst(StructValues[i], GEP); 1129 codeReplacer->getInstList().push_back(SI); 1130 } 1131 } 1132 1133 // Emit the call to the function 1134 call = CallInst::Create(newFunction, params, 1135 NumExitBlocks > 1 ? "targetBlock" : ""); 1136 // Add debug location to the new call, if the original function has debug 1137 // info. In that case, the terminator of the entry block of the extracted 1138 // function contains the first debug location of the extracted function, 1139 // set in extractCodeRegion. 1140 if (codeReplacer->getParent()->getSubprogram()) { 1141 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1142 call->setDebugLoc(DL); 1143 } 1144 codeReplacer->getInstList().push_back(call); 1145 1146 // Set swifterror parameter attributes. 1147 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1148 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1149 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1150 } 1151 1152 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 1153 unsigned FirstOut = inputs.size(); 1154 if (!AggregateArgs) 1155 std::advance(OutputArgBegin, inputs.size()); 1156 1157 // Reload the outputs passed in by reference. 1158 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1159 Value *Output = nullptr; 1160 if (AggregateArgs) { 1161 Value *Idx[2]; 1162 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1163 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1164 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1165 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1166 codeReplacer->getInstList().push_back(GEP); 1167 Output = GEP; 1168 } else { 1169 Output = ReloadOutputs[i]; 1170 } 1171 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1172 outputs[i]->getName() + ".reload"); 1173 Reloads.push_back(load); 1174 codeReplacer->getInstList().push_back(load); 1175 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1176 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1177 Instruction *inst = cast<Instruction>(Users[u]); 1178 if (!Blocks.count(inst->getParent())) 1179 inst->replaceUsesOfWith(outputs[i], load); 1180 } 1181 } 1182 1183 // Now we can emit a switch statement using the call as a value. 1184 SwitchInst *TheSwitch = 1185 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1186 codeReplacer, 0, codeReplacer); 1187 1188 // Since there may be multiple exits from the original region, make the new 1189 // function return an unsigned, switch on that number. This loop iterates 1190 // over all of the blocks in the extracted region, updating any terminator 1191 // instructions in the to-be-extracted region that branch to blocks that are 1192 // not in the region to be extracted. 1193 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1194 1195 unsigned switchVal = 0; 1196 for (BasicBlock *Block : Blocks) { 1197 Instruction *TI = Block->getTerminator(); 1198 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1199 if (!Blocks.count(TI->getSuccessor(i))) { 1200 BasicBlock *OldTarget = TI->getSuccessor(i); 1201 // add a new basic block which returns the appropriate value 1202 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1203 if (!NewTarget) { 1204 // If we don't already have an exit stub for this non-extracted 1205 // destination, create one now! 1206 NewTarget = BasicBlock::Create(Context, 1207 OldTarget->getName() + ".exitStub", 1208 newFunction); 1209 unsigned SuccNum = switchVal++; 1210 1211 Value *brVal = nullptr; 1212 switch (NumExitBlocks) { 1213 case 0: 1214 case 1: break; // No value needed. 1215 case 2: // Conditional branch, return a bool 1216 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1217 break; 1218 default: 1219 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1220 break; 1221 } 1222 1223 ReturnInst::Create(Context, brVal, NewTarget); 1224 1225 // Update the switch instruction. 1226 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1227 SuccNum), 1228 OldTarget); 1229 } 1230 1231 // rewrite the original branch instruction with this new target 1232 TI->setSuccessor(i, NewTarget); 1233 } 1234 } 1235 1236 // Store the arguments right after the definition of output value. 1237 // This should be proceeded after creating exit stubs to be ensure that invoke 1238 // result restore will be placed in the outlined function. 1239 Function::arg_iterator OAI = OutputArgBegin; 1240 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1241 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1242 if (!OutI) 1243 continue; 1244 1245 // Find proper insertion point. 1246 BasicBlock::iterator InsertPt; 1247 // In case OutI is an invoke, we insert the store at the beginning in the 1248 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1249 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1250 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1251 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1252 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1253 else 1254 InsertPt = std::next(OutI->getIterator()); 1255 1256 Instruction *InsertBefore = &*InsertPt; 1257 assert((InsertBefore->getFunction() == newFunction || 1258 Blocks.count(InsertBefore->getParent())) && 1259 "InsertPt should be in new function"); 1260 assert(OAI != newFunction->arg_end() && 1261 "Number of output arguments should match " 1262 "the amount of defined values"); 1263 if (AggregateArgs) { 1264 Value *Idx[2]; 1265 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1266 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1267 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1268 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), 1269 InsertBefore); 1270 new StoreInst(outputs[i], GEP, InsertBefore); 1271 // Since there should be only one struct argument aggregating 1272 // all the output values, we shouldn't increment OAI, which always 1273 // points to the struct argument, in this case. 1274 } else { 1275 new StoreInst(outputs[i], &*OAI, InsertBefore); 1276 ++OAI; 1277 } 1278 } 1279 1280 // Now that we've done the deed, simplify the switch instruction. 1281 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1282 switch (NumExitBlocks) { 1283 case 0: 1284 // There are no successors (the block containing the switch itself), which 1285 // means that previously this was the last part of the function, and hence 1286 // this should be rewritten as a `ret' 1287 1288 // Check if the function should return a value 1289 if (OldFnRetTy->isVoidTy()) { 1290 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1291 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1292 // return what we have 1293 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1294 } else { 1295 // Otherwise we must have code extracted an unwind or something, just 1296 // return whatever we want. 1297 ReturnInst::Create(Context, 1298 Constant::getNullValue(OldFnRetTy), TheSwitch); 1299 } 1300 1301 TheSwitch->eraseFromParent(); 1302 break; 1303 case 1: 1304 // Only a single destination, change the switch into an unconditional 1305 // branch. 1306 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1307 TheSwitch->eraseFromParent(); 1308 break; 1309 case 2: 1310 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1311 call, TheSwitch); 1312 TheSwitch->eraseFromParent(); 1313 break; 1314 default: 1315 // Otherwise, make the default destination of the switch instruction be one 1316 // of the other successors. 1317 TheSwitch->setCondition(call); 1318 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1319 // Remove redundant case 1320 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1321 break; 1322 } 1323 1324 // Insert lifetime markers around the reloads of any output values. The 1325 // allocas output values are stored in are only in-use in the codeRepl block. 1326 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1327 1328 return call; 1329 } 1330 1331 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1332 Function *oldFunc = (*Blocks.begin())->getParent(); 1333 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1334 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1335 1336 for (BasicBlock *Block : Blocks) { 1337 // Delete the basic block from the old function, and the list of blocks 1338 oldBlocks.remove(Block); 1339 1340 // Insert this basic block into the new function 1341 newBlocks.push_back(Block); 1342 } 1343 } 1344 1345 void CodeExtractor::calculateNewCallTerminatorWeights( 1346 BasicBlock *CodeReplacer, 1347 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1348 BranchProbabilityInfo *BPI) { 1349 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1350 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1351 1352 // Update the branch weights for the exit block. 1353 Instruction *TI = CodeReplacer->getTerminator(); 1354 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1355 1356 // Block Frequency distribution with dummy node. 1357 Distribution BranchDist; 1358 1359 // Add each of the frequencies of the successors. 1360 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1361 BlockNode ExitNode(i); 1362 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1363 if (ExitFreq != 0) 1364 BranchDist.addExit(ExitNode, ExitFreq); 1365 else 1366 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 1367 } 1368 1369 // Check for no total weight. 1370 if (BranchDist.Total == 0) 1371 return; 1372 1373 // Normalize the distribution so that they can fit in unsigned. 1374 BranchDist.normalize(); 1375 1376 // Create normalized branch weights and set the metadata. 1377 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1378 const auto &Weight = BranchDist.Weights[I]; 1379 1380 // Get the weight and update the current BFI. 1381 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1382 BranchProbability BP(Weight.Amount, BranchDist.Total); 1383 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 1384 } 1385 TI->setMetadata( 1386 LLVMContext::MD_prof, 1387 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1388 } 1389 1390 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1391 /// \p F. 1392 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1393 for (Instruction &I : instructions(F)) { 1394 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1395 findDbgUsers(DbgUsers, &I); 1396 for (DbgVariableIntrinsic *DVI : DbgUsers) 1397 if (DVI->getFunction() != &F) 1398 DVI->eraseFromParent(); 1399 } 1400 } 1401 1402 /// Fix up the debug info in the old and new functions by pointing line 1403 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1404 /// intrinsics which point to values outside of the new function. 1405 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1406 CallInst &TheCall) { 1407 DISubprogram *OldSP = OldFunc.getSubprogram(); 1408 LLVMContext &Ctx = OldFunc.getContext(); 1409 1410 if (!OldSP) { 1411 // Erase any debug info the new function contains. 1412 stripDebugInfo(NewFunc); 1413 // Make sure the old function doesn't contain any non-local metadata refs. 1414 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1415 return; 1416 } 1417 1418 // Create a subprogram for the new function. Leave out a description of the 1419 // function arguments, as the parameters don't correspond to anything at the 1420 // source level. 1421 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1422 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolvedNodes=*/false, 1423 OldSP->getUnit()); 1424 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 1425 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1426 DISubprogram::SPFlagOptimized | 1427 DISubprogram::SPFlagLocalToUnit; 1428 auto NewSP = DIB.createFunction( 1429 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1430 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1431 NewFunc.setSubprogram(NewSP); 1432 1433 // Debug intrinsics in the new function need to be updated in one of two 1434 // ways: 1435 // 1) They need to be deleted, because they describe a value in the old 1436 // function. 1437 // 2) They need to point to fresh metadata, e.g. because they currently 1438 // point to a variable in the wrong scope. 1439 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1440 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1441 for (Instruction &I : instructions(NewFunc)) { 1442 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1443 if (!DII) 1444 continue; 1445 1446 // Point the intrinsic to a fresh label within the new function. 1447 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1448 DILabel *OldLabel = DLI->getLabel(); 1449 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1450 if (!NewLabel) 1451 NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(), 1452 OldLabel->getFile(), OldLabel->getLine()); 1453 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); 1454 continue; 1455 } 1456 1457 // If the location isn't a constant or an instruction, delete the 1458 // intrinsic. 1459 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1460 Value *Location = DVI->getVariableLocation(); 1461 if (!Location || 1462 (!isa<Constant>(Location) && !isa<Instruction>(Location))) { 1463 DebugIntrinsicsToDelete.push_back(DVI); 1464 continue; 1465 } 1466 1467 // If the variable location is an instruction but isn't in the new 1468 // function, delete the intrinsic. 1469 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1470 if (LocationInst && LocationInst->getFunction() != &NewFunc) { 1471 DebugIntrinsicsToDelete.push_back(DVI); 1472 continue; 1473 } 1474 1475 // Point the intrinsic to a fresh variable within the new function. 1476 DILocalVariable *OldVar = DVI->getVariable(); 1477 DINode *&NewVar = RemappedMetadata[OldVar]; 1478 if (!NewVar) 1479 NewVar = DIB.createAutoVariable( 1480 NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1481 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1482 OldVar->getAlignInBits()); 1483 DVI->setArgOperand(1, MetadataAsValue::get(Ctx, NewVar)); 1484 } 1485 for (auto *DII : DebugIntrinsicsToDelete) 1486 DII->eraseFromParent(); 1487 DIB.finalizeSubprogram(NewSP); 1488 1489 // Fix up the scope information attached to the line locations in the new 1490 // function. 1491 for (Instruction &I : instructions(NewFunc)) { 1492 if (const DebugLoc &DL = I.getDebugLoc()) 1493 I.setDebugLoc(DebugLoc::get(DL.getLine(), DL.getCol(), NewSP)); 1494 1495 // Loop info metadata may contain line locations. Fix them up. 1496 auto updateLoopInfoLoc = [&Ctx, 1497 NewSP](const DILocation &Loc) -> DILocation * { 1498 return DILocation::get(Ctx, Loc.getLine(), Loc.getColumn(), NewSP, 1499 nullptr); 1500 }; 1501 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1502 } 1503 if (!TheCall.getDebugLoc()) 1504 TheCall.setDebugLoc(DebugLoc::get(0, 0, OldSP)); 1505 1506 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1507 } 1508 1509 Function * 1510 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1511 if (!isEligible()) 1512 return nullptr; 1513 1514 // Assumption: this is a single-entry code region, and the header is the first 1515 // block in the region. 1516 BasicBlock *header = *Blocks.begin(); 1517 Function *oldFunction = header->getParent(); 1518 1519 // Calculate the entry frequency of the new function before we change the root 1520 // block. 1521 BlockFrequency EntryFreq; 1522 if (BFI) { 1523 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1524 for (BasicBlock *Pred : predecessors(header)) { 1525 if (Blocks.count(Pred)) 1526 continue; 1527 EntryFreq += 1528 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1529 } 1530 } 1531 1532 // Remove @llvm.assume calls that will be moved to the new function from the 1533 // old function's assumption cache. 1534 for (BasicBlock *Block : Blocks) { 1535 for (auto It = Block->begin(), End = Block->end(); It != End;) { 1536 Instruction *I = &*It; 1537 ++It; 1538 1539 if (match(I, m_Intrinsic<Intrinsic::assume>())) { 1540 if (AC) 1541 AC->unregisterAssumption(cast<CallInst>(I)); 1542 I->eraseFromParent(); 1543 } 1544 } 1545 } 1546 1547 // If we have any return instructions in the region, split those blocks so 1548 // that the return is not in the region. 1549 splitReturnBlocks(); 1550 1551 // Calculate the exit blocks for the extracted region and the total exit 1552 // weights for each of those blocks. 1553 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1554 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1555 for (BasicBlock *Block : Blocks) { 1556 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1557 ++SI) { 1558 if (!Blocks.count(*SI)) { 1559 // Update the branch weight for this successor. 1560 if (BFI) { 1561 BlockFrequency &BF = ExitWeights[*SI]; 1562 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1563 } 1564 ExitBlocks.insert(*SI); 1565 } 1566 } 1567 } 1568 NumExitBlocks = ExitBlocks.size(); 1569 1570 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1571 severSplitPHINodesOfEntry(header); 1572 severSplitPHINodesOfExits(ExitBlocks); 1573 1574 // This takes place of the original loop 1575 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1576 "codeRepl", oldFunction, 1577 header); 1578 1579 // The new function needs a root node because other nodes can branch to the 1580 // head of the region, but the entry node of a function cannot have preds. 1581 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1582 "newFuncRoot"); 1583 auto *BranchI = BranchInst::Create(header); 1584 // If the original function has debug info, we have to add a debug location 1585 // to the new branch instruction from the artificial entry block. 1586 // We use the debug location of the first instruction in the extracted 1587 // blocks, as there is no other equivalent line in the source code. 1588 if (oldFunction->getSubprogram()) { 1589 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1590 return any_of(*BB, [&BranchI](const Instruction &I) { 1591 if (!I.getDebugLoc()) 1592 return false; 1593 BranchI->setDebugLoc(I.getDebugLoc()); 1594 return true; 1595 }); 1596 }); 1597 } 1598 newFuncRoot->getInstList().push_back(BranchI); 1599 1600 ValueSet inputs, outputs, SinkingCands, HoistingCands; 1601 BasicBlock *CommonExit = nullptr; 1602 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1603 assert(HoistingCands.empty() || CommonExit); 1604 1605 // Find inputs to, outputs from the code region. 1606 findInputsOutputs(inputs, outputs, SinkingCands); 1607 1608 // Now sink all instructions which only have non-phi uses inside the region. 1609 // Group the allocas at the start of the block, so that any bitcast uses of 1610 // the allocas are well-defined. 1611 AllocaInst *FirstSunkAlloca = nullptr; 1612 for (auto *II : SinkingCands) { 1613 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1614 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1615 if (!FirstSunkAlloca) 1616 FirstSunkAlloca = AI; 1617 } 1618 } 1619 assert((SinkingCands.empty() || FirstSunkAlloca) && 1620 "Did not expect a sink candidate without any allocas"); 1621 for (auto *II : SinkingCands) { 1622 if (!isa<AllocaInst>(II)) { 1623 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1624 } 1625 } 1626 1627 if (!HoistingCands.empty()) { 1628 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1629 Instruction *TI = HoistToBlock->getTerminator(); 1630 for (auto *II : HoistingCands) 1631 cast<Instruction>(II)->moveBefore(TI); 1632 } 1633 1634 // Collect objects which are inputs to the extraction region and also 1635 // referenced by lifetime start markers within it. The effects of these 1636 // markers must be replicated in the calling function to prevent the stack 1637 // coloring pass from merging slots which store input objects. 1638 ValueSet LifetimesStart; 1639 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1640 1641 // Construct new function based on inputs/outputs & add allocas for all defs. 1642 Function *newFunction = 1643 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1644 oldFunction, oldFunction->getParent()); 1645 1646 // Update the entry count of the function. 1647 if (BFI) { 1648 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1649 if (Count.hasValue()) 1650 newFunction->setEntryCount( 1651 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1652 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1653 } 1654 1655 CallInst *TheCall = 1656 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1657 1658 moveCodeToFunction(newFunction); 1659 1660 // Replicate the effects of any lifetime start/end markers which referenced 1661 // input objects in the extraction region by placing markers around the call. 1662 insertLifetimeMarkersSurroundingCall( 1663 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1664 1665 // Propagate personality info to the new function if there is one. 1666 if (oldFunction->hasPersonalityFn()) 1667 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1668 1669 // Update the branch weights for the exit block. 1670 if (BFI && NumExitBlocks > 1) 1671 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1672 1673 // Loop over all of the PHI nodes in the header and exit blocks, and change 1674 // any references to the old incoming edge to be the new incoming edge. 1675 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1676 PHINode *PN = cast<PHINode>(I); 1677 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1678 if (!Blocks.count(PN->getIncomingBlock(i))) 1679 PN->setIncomingBlock(i, newFuncRoot); 1680 } 1681 1682 for (BasicBlock *ExitBB : ExitBlocks) 1683 for (PHINode &PN : ExitBB->phis()) { 1684 Value *IncomingCodeReplacerVal = nullptr; 1685 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1686 // Ignore incoming values from outside of the extracted region. 1687 if (!Blocks.count(PN.getIncomingBlock(i))) 1688 continue; 1689 1690 // Ensure that there is only one incoming value from codeReplacer. 1691 if (!IncomingCodeReplacerVal) { 1692 PN.setIncomingBlock(i, codeReplacer); 1693 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1694 } else 1695 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1696 "PHI has two incompatbile incoming values from codeRepl"); 1697 } 1698 } 1699 1700 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1701 1702 // Mark the new function `noreturn` if applicable. Terminators which resume 1703 // exception propagation are treated as returning instructions. This is to 1704 // avoid inserting traps after calls to outlined functions which unwind. 1705 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1706 const Instruction *Term = BB.getTerminator(); 1707 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1708 }); 1709 if (doesNotReturn) 1710 newFunction->setDoesNotReturn(); 1711 1712 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1713 newFunction->dump(); 1714 report_fatal_error("verification of newFunction failed!"); 1715 }); 1716 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1717 report_fatal_error("verification of oldFunction failed!")); 1718 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1719 report_fatal_error("Stale Asumption cache for old Function!")); 1720 return newFunction; 1721 } 1722 1723 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1724 const Function &NewFunc, 1725 AssumptionCache *AC) { 1726 for (auto AssumeVH : AC->assumptions()) { 1727 CallInst *I = dyn_cast_or_null<CallInst>(AssumeVH); 1728 if (!I) 1729 continue; 1730 1731 // There shouldn't be any llvm.assume intrinsics in the new function. 1732 if (I->getFunction() != &OldFunc) 1733 return true; 1734 1735 // There shouldn't be any stale affected values in the assumption cache 1736 // that were previously in the old function, but that have now been moved 1737 // to the new function. 1738 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1739 CallInst *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1740 if (!AffectedCI) 1741 continue; 1742 if (AffectedCI->getFunction() != &OldFunc) 1743 return true; 1744 auto *AssumedInst = dyn_cast<Instruction>(AffectedCI->getOperand(0)); 1745 if (AssumedInst->getFunction() != &OldFunc) 1746 return true; 1747 } 1748 } 1749 return false; 1750 } 1751