xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision b7b5907b56e98719b1dba8364ebcfb264fc09bfe)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/InstIterator.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/Verifier.h"
55 #include "llvm/Support/BlockFrequency.h"
56 #include "llvm/Support/BranchProbability.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <map>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
72 using ProfileCount = Function::ProfileCount;
73 
74 #define DEBUG_TYPE "code-extractor"
75 
76 // Provide a command-line option to aggregate function arguments into a struct
77 // for functions produced by the code extractor. This is useful when converting
78 // extracted functions to pthread-based code, as only one argument (void*) can
79 // be passed in to pthread_create().
80 static cl::opt<bool>
81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82                  cl::desc("Aggregate arguments to code-extracted functions"));
83 
84 /// Test whether a block is valid for extraction.
85 static bool isBlockValidForExtraction(const BasicBlock &BB,
86                                       const SetVector<BasicBlock *> &Result,
87                                       bool AllowVarArgs, bool AllowAlloca) {
88   // taking the address of a basic block moved to another function is illegal
89   if (BB.hasAddressTaken())
90     return false;
91 
92   // don't hoist code that uses another basicblock address, as it's likely to
93   // lead to unexpected behavior, like cross-function jumps
94   SmallPtrSet<User const *, 16> Visited;
95   SmallVector<User const *, 16> ToVisit;
96 
97   for (Instruction const &Inst : BB)
98     ToVisit.push_back(&Inst);
99 
100   while (!ToVisit.empty()) {
101     User const *Curr = ToVisit.pop_back_val();
102     if (!Visited.insert(Curr).second)
103       continue;
104     if (isa<BlockAddress const>(Curr))
105       return false; // even a reference to self is likely to be not compatible
106 
107     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108       continue;
109 
110     for (auto const &U : Curr->operands()) {
111       if (auto *UU = dyn_cast<User>(U))
112         ToVisit.push_back(UU);
113     }
114   }
115 
116   // If explicitly requested, allow vastart and alloca. For invoke instructions
117   // verify that extraction is valid.
118   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119     if (isa<AllocaInst>(I)) {
120        if (!AllowAlloca)
121          return false;
122        continue;
123     }
124 
125     if (const auto *II = dyn_cast<InvokeInst>(I)) {
126       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127       // must be a part of the subgraph which is being extracted.
128       if (auto *UBB = II->getUnwindDest())
129         if (!Result.count(UBB))
130           return false;
131       continue;
132     }
133 
134     // All catch handlers of a catchswitch instruction as well as the unwind
135     // destination must be in the subgraph.
136     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137       if (auto *UBB = CSI->getUnwindDest())
138         if (!Result.count(UBB))
139           return false;
140       for (const auto *HBB : CSI->handlers())
141         if (!Result.count(const_cast<BasicBlock*>(HBB)))
142           return false;
143       continue;
144     }
145 
146     // Make sure that entire catch handler is within subgraph. It is sufficient
147     // to check that catch return's block is in the list.
148     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149       for (const auto *U : CPI->users())
150         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152             return false;
153       continue;
154     }
155 
156     // And do similar checks for cleanup handler - the entire handler must be
157     // in subgraph which is going to be extracted. For cleanup return should
158     // additionally check that the unwind destination is also in the subgraph.
159     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160       for (const auto *U : CPI->users())
161         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163             return false;
164       continue;
165     }
166     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167       if (auto *UBB = CRI->getUnwindDest())
168         if (!Result.count(UBB))
169           return false;
170       continue;
171     }
172 
173     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174       if (const Function *F = CI->getCalledFunction()) {
175         auto IID = F->getIntrinsicID();
176         if (IID == Intrinsic::vastart) {
177           if (AllowVarArgs)
178             continue;
179           else
180             return false;
181         }
182 
183         // Currently, we miscompile outlined copies of eh_typid_for. There are
184         // proposals for fixing this in llvm.org/PR39545.
185         if (IID == Intrinsic::eh_typeid_for)
186           return false;
187       }
188     }
189   }
190 
191   return true;
192 }
193 
194 /// Build a set of blocks to extract if the input blocks are viable.
195 static SetVector<BasicBlock *>
196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197                         bool AllowVarArgs, bool AllowAlloca) {
198   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199   SetVector<BasicBlock *> Result;
200 
201   // Loop over the blocks, adding them to our set-vector, and aborting with an
202   // empty set if we encounter invalid blocks.
203   for (BasicBlock *BB : BBs) {
204     // If this block is dead, don't process it.
205     if (DT && !DT->isReachableFromEntry(BB))
206       continue;
207 
208     if (!Result.insert(BB))
209       llvm_unreachable("Repeated basic blocks in extraction input");
210   }
211 
212   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
213                     << '\n');
214 
215   for (auto *BB : Result) {
216     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
217       return {};
218 
219     // Make sure that the first block is not a landing pad.
220     if (BB == Result.front()) {
221       if (BB->isEHPad()) {
222         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
223         return {};
224       }
225       continue;
226     }
227 
228     // All blocks other than the first must not have predecessors outside of
229     // the subgraph which is being extracted.
230     for (auto *PBB : predecessors(BB))
231       if (!Result.count(PBB)) {
232         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
233                              "outside the region except for the first block!\n"
234                           << "Problematic source BB: " << BB->getName() << "\n"
235                           << "Problematic destination BB: " << PBB->getName()
236                           << "\n");
237         return {};
238       }
239   }
240 
241   return Result;
242 }
243 
244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
245                              bool AggregateArgs, BlockFrequencyInfo *BFI,
246                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
247                              bool AllowVarArgs, bool AllowAlloca,
248                              BasicBlock *AllocationBlock, std::string Suffix,
249                              bool ArgsInZeroAddressSpace)
250     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
251       BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
252       AllowVarArgs(AllowVarArgs),
253       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
254       Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {}
255 
256 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
257                              BlockFrequencyInfo *BFI,
258                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
259                              std::string Suffix)
260     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
261       BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false),
262       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
263                                      /* AllowVarArgs */ false,
264                                      /* AllowAlloca */ false)),
265       Suffix(Suffix) {}
266 
267 /// definedInRegion - Return true if the specified value is defined in the
268 /// extracted region.
269 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
270   if (Instruction *I = dyn_cast<Instruction>(V))
271     if (Blocks.count(I->getParent()))
272       return true;
273   return false;
274 }
275 
276 /// definedInCaller - Return true if the specified value is defined in the
277 /// function being code extracted, but not in the region being extracted.
278 /// These values must be passed in as live-ins to the function.
279 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
280   if (isa<Argument>(V)) return true;
281   if (Instruction *I = dyn_cast<Instruction>(V))
282     if (!Blocks.count(I->getParent()))
283       return true;
284   return false;
285 }
286 
287 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
288   BasicBlock *CommonExitBlock = nullptr;
289   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
290     for (auto *Succ : successors(Block)) {
291       // Internal edges, ok.
292       if (Blocks.count(Succ))
293         continue;
294       if (!CommonExitBlock) {
295         CommonExitBlock = Succ;
296         continue;
297       }
298       if (CommonExitBlock != Succ)
299         return true;
300     }
301     return false;
302   };
303 
304   if (any_of(Blocks, hasNonCommonExitSucc))
305     return nullptr;
306 
307   return CommonExitBlock;
308 }
309 
310 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
311   for (BasicBlock &BB : F) {
312     for (Instruction &II : BB.instructionsWithoutDebug())
313       if (auto *AI = dyn_cast<AllocaInst>(&II))
314         Allocas.push_back(AI);
315 
316     findSideEffectInfoForBlock(BB);
317   }
318 }
319 
320 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
321   for (Instruction &II : BB.instructionsWithoutDebug()) {
322     unsigned Opcode = II.getOpcode();
323     Value *MemAddr = nullptr;
324     switch (Opcode) {
325     case Instruction::Store:
326     case Instruction::Load: {
327       if (Opcode == Instruction::Store) {
328         StoreInst *SI = cast<StoreInst>(&II);
329         MemAddr = SI->getPointerOperand();
330       } else {
331         LoadInst *LI = cast<LoadInst>(&II);
332         MemAddr = LI->getPointerOperand();
333       }
334       // Global variable can not be aliased with locals.
335       if (isa<Constant>(MemAddr))
336         break;
337       Value *Base = MemAddr->stripInBoundsConstantOffsets();
338       if (!isa<AllocaInst>(Base)) {
339         SideEffectingBlocks.insert(&BB);
340         return;
341       }
342       BaseMemAddrs[&BB].insert(Base);
343       break;
344     }
345     default: {
346       IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
347       if (IntrInst) {
348         if (IntrInst->isLifetimeStartOrEnd())
349           break;
350         SideEffectingBlocks.insert(&BB);
351         return;
352       }
353       // Treat all the other cases conservatively if it has side effects.
354       if (II.mayHaveSideEffects()) {
355         SideEffectingBlocks.insert(&BB);
356         return;
357       }
358     }
359     }
360   }
361 }
362 
363 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
364     BasicBlock &BB, AllocaInst *Addr) const {
365   if (SideEffectingBlocks.count(&BB))
366     return true;
367   auto It = BaseMemAddrs.find(&BB);
368   if (It != BaseMemAddrs.end())
369     return It->second.count(Addr);
370   return false;
371 }
372 
373 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
374     const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
375   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
376   Function *Func = (*Blocks.begin())->getParent();
377   for (BasicBlock &BB : *Func) {
378     if (Blocks.count(&BB))
379       continue;
380     if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
381       return false;
382   }
383   return true;
384 }
385 
386 BasicBlock *
387 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
388   BasicBlock *SinglePredFromOutlineRegion = nullptr;
389   assert(!Blocks.count(CommonExitBlock) &&
390          "Expect a block outside the region!");
391   for (auto *Pred : predecessors(CommonExitBlock)) {
392     if (!Blocks.count(Pred))
393       continue;
394     if (!SinglePredFromOutlineRegion) {
395       SinglePredFromOutlineRegion = Pred;
396     } else if (SinglePredFromOutlineRegion != Pred) {
397       SinglePredFromOutlineRegion = nullptr;
398       break;
399     }
400   }
401 
402   if (SinglePredFromOutlineRegion)
403     return SinglePredFromOutlineRegion;
404 
405 #ifndef NDEBUG
406   auto getFirstPHI = [](BasicBlock *BB) {
407     BasicBlock::iterator I = BB->begin();
408     PHINode *FirstPhi = nullptr;
409     while (I != BB->end()) {
410       PHINode *Phi = dyn_cast<PHINode>(I);
411       if (!Phi)
412         break;
413       if (!FirstPhi) {
414         FirstPhi = Phi;
415         break;
416       }
417     }
418     return FirstPhi;
419   };
420   // If there are any phi nodes, the single pred either exists or has already
421   // be created before code extraction.
422   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
423 #endif
424 
425   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
426       CommonExitBlock->getFirstNonPHI()->getIterator());
427 
428   for (BasicBlock *Pred :
429        llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
430     if (Blocks.count(Pred))
431       continue;
432     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
433   }
434   // Now add the old exit block to the outline region.
435   Blocks.insert(CommonExitBlock);
436   OldTargets.push_back(NewExitBlock);
437   return CommonExitBlock;
438 }
439 
440 // Find the pair of life time markers for address 'Addr' that are either
441 // defined inside the outline region or can legally be shrinkwrapped into the
442 // outline region. If there are not other untracked uses of the address, return
443 // the pair of markers if found; otherwise return a pair of nullptr.
444 CodeExtractor::LifetimeMarkerInfo
445 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
446                                   Instruction *Addr,
447                                   BasicBlock *ExitBlock) const {
448   LifetimeMarkerInfo Info;
449 
450   for (User *U : Addr->users()) {
451     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
452     if (IntrInst) {
453       // We don't model addresses with multiple start/end markers, but the
454       // markers do not need to be in the region.
455       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
456         if (Info.LifeStart)
457           return {};
458         Info.LifeStart = IntrInst;
459         continue;
460       }
461       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
462         if (Info.LifeEnd)
463           return {};
464         Info.LifeEnd = IntrInst;
465         continue;
466       }
467       // At this point, permit debug uses outside of the region.
468       // This is fixed in a later call to fixupDebugInfoPostExtraction().
469       if (isa<DbgInfoIntrinsic>(IntrInst))
470         continue;
471     }
472     // Find untracked uses of the address, bail.
473     if (!definedInRegion(Blocks, U))
474       return {};
475   }
476 
477   if (!Info.LifeStart || !Info.LifeEnd)
478     return {};
479 
480   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
481   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
482   // Do legality check.
483   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
484       !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
485     return {};
486 
487   // Check to see if we have a place to do hoisting, if not, bail.
488   if (Info.HoistLifeEnd && !ExitBlock)
489     return {};
490 
491   return Info;
492 }
493 
494 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
495                                 ValueSet &SinkCands, ValueSet &HoistCands,
496                                 BasicBlock *&ExitBlock) const {
497   Function *Func = (*Blocks.begin())->getParent();
498   ExitBlock = getCommonExitBlock(Blocks);
499 
500   auto moveOrIgnoreLifetimeMarkers =
501       [&](const LifetimeMarkerInfo &LMI) -> bool {
502     if (!LMI.LifeStart)
503       return false;
504     if (LMI.SinkLifeStart) {
505       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
506                         << "\n");
507       SinkCands.insert(LMI.LifeStart);
508     }
509     if (LMI.HoistLifeEnd) {
510       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
511       HoistCands.insert(LMI.LifeEnd);
512     }
513     return true;
514   };
515 
516   // Look up allocas in the original function in CodeExtractorAnalysisCache, as
517   // this is much faster than walking all the instructions.
518   for (AllocaInst *AI : CEAC.getAllocas()) {
519     BasicBlock *BB = AI->getParent();
520     if (Blocks.count(BB))
521       continue;
522 
523     // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
524     // check whether it is actually still in the original function.
525     Function *AIFunc = BB->getParent();
526     if (AIFunc != Func)
527       continue;
528 
529     LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
530     bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
531     if (Moved) {
532       LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
533       SinkCands.insert(AI);
534       continue;
535     }
536 
537     // Find bitcasts in the outlined region that have lifetime marker users
538     // outside that region. Replace the lifetime marker use with an
539     // outside region bitcast to avoid unnecessary alloca/reload instructions
540     // and extra lifetime markers.
541     SmallVector<Instruction *, 2> LifetimeBitcastUsers;
542     for (User *U : AI->users()) {
543       if (!definedInRegion(Blocks, U))
544         continue;
545 
546       if (U->stripInBoundsConstantOffsets() != AI)
547         continue;
548 
549       Instruction *Bitcast = cast<Instruction>(U);
550       for (User *BU : Bitcast->users()) {
551         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
552         if (!IntrInst)
553           continue;
554 
555         if (!IntrInst->isLifetimeStartOrEnd())
556           continue;
557 
558         if (definedInRegion(Blocks, IntrInst))
559           continue;
560 
561         LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
562                           << *Bitcast << " in out-of-region lifetime marker "
563                           << *IntrInst << "\n");
564         LifetimeBitcastUsers.push_back(IntrInst);
565       }
566     }
567 
568     for (Instruction *I : LifetimeBitcastUsers) {
569       Module *M = AIFunc->getParent();
570       LLVMContext &Ctx = M->getContext();
571       auto *Int8PtrTy = PointerType::getUnqual(Ctx);
572       CastInst *CastI =
573           CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I);
574       I->replaceUsesOfWith(I->getOperand(1), CastI);
575     }
576 
577     // Follow any bitcasts.
578     SmallVector<Instruction *, 2> Bitcasts;
579     SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
580     for (User *U : AI->users()) {
581       if (U->stripInBoundsConstantOffsets() == AI) {
582         Instruction *Bitcast = cast<Instruction>(U);
583         LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
584         if (LMI.LifeStart) {
585           Bitcasts.push_back(Bitcast);
586           BitcastLifetimeInfo.push_back(LMI);
587           continue;
588         }
589       }
590 
591       // Found unknown use of AI.
592       if (!definedInRegion(Blocks, U)) {
593         Bitcasts.clear();
594         break;
595       }
596     }
597 
598     // Either no bitcasts reference the alloca or there are unknown uses.
599     if (Bitcasts.empty())
600       continue;
601 
602     LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
603     SinkCands.insert(AI);
604     for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
605       Instruction *BitcastAddr = Bitcasts[I];
606       const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
607       assert(LMI.LifeStart &&
608              "Unsafe to sink bitcast without lifetime markers");
609       moveOrIgnoreLifetimeMarkers(LMI);
610       if (!definedInRegion(Blocks, BitcastAddr)) {
611         LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
612                           << "\n");
613         SinkCands.insert(BitcastAddr);
614       }
615     }
616   }
617 }
618 
619 bool CodeExtractor::isEligible() const {
620   if (Blocks.empty())
621     return false;
622   BasicBlock *Header = *Blocks.begin();
623   Function *F = Header->getParent();
624 
625   // For functions with varargs, check that varargs handling is only done in the
626   // outlined function, i.e vastart and vaend are only used in outlined blocks.
627   if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
628     auto containsVarArgIntrinsic = [](const Instruction &I) {
629       if (const CallInst *CI = dyn_cast<CallInst>(&I))
630         if (const Function *Callee = CI->getCalledFunction())
631           return Callee->getIntrinsicID() == Intrinsic::vastart ||
632                  Callee->getIntrinsicID() == Intrinsic::vaend;
633       return false;
634     };
635 
636     for (auto &BB : *F) {
637       if (Blocks.count(&BB))
638         continue;
639       if (llvm::any_of(BB, containsVarArgIntrinsic))
640         return false;
641     }
642   }
643   return true;
644 }
645 
646 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
647                                       const ValueSet &SinkCands) const {
648   for (BasicBlock *BB : Blocks) {
649     // If a used value is defined outside the region, it's an input.  If an
650     // instruction is used outside the region, it's an output.
651     for (Instruction &II : *BB) {
652       for (auto &OI : II.operands()) {
653         Value *V = OI;
654         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
655           Inputs.insert(V);
656       }
657 
658       for (User *U : II.users())
659         if (!definedInRegion(Blocks, U)) {
660           Outputs.insert(&II);
661           break;
662         }
663     }
664   }
665 }
666 
667 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
668 /// of the region, we need to split the entry block of the region so that the
669 /// PHI node is easier to deal with.
670 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
671   unsigned NumPredsFromRegion = 0;
672   unsigned NumPredsOutsideRegion = 0;
673 
674   if (Header != &Header->getParent()->getEntryBlock()) {
675     PHINode *PN = dyn_cast<PHINode>(Header->begin());
676     if (!PN) return;  // No PHI nodes.
677 
678     // If the header node contains any PHI nodes, check to see if there is more
679     // than one entry from outside the region.  If so, we need to sever the
680     // header block into two.
681     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
682       if (Blocks.count(PN->getIncomingBlock(i)))
683         ++NumPredsFromRegion;
684       else
685         ++NumPredsOutsideRegion;
686 
687     // If there is one (or fewer) predecessor from outside the region, we don't
688     // need to do anything special.
689     if (NumPredsOutsideRegion <= 1) return;
690   }
691 
692   // Otherwise, we need to split the header block into two pieces: one
693   // containing PHI nodes merging values from outside of the region, and a
694   // second that contains all of the code for the block and merges back any
695   // incoming values from inside of the region.
696   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
697 
698   // We only want to code extract the second block now, and it becomes the new
699   // header of the region.
700   BasicBlock *OldPred = Header;
701   Blocks.remove(OldPred);
702   Blocks.insert(NewBB);
703   Header = NewBB;
704 
705   // Okay, now we need to adjust the PHI nodes and any branches from within the
706   // region to go to the new header block instead of the old header block.
707   if (NumPredsFromRegion) {
708     PHINode *PN = cast<PHINode>(OldPred->begin());
709     // Loop over all of the predecessors of OldPred that are in the region,
710     // changing them to branch to NewBB instead.
711     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
712       if (Blocks.count(PN->getIncomingBlock(i))) {
713         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
714         TI->replaceUsesOfWith(OldPred, NewBB);
715       }
716 
717     // Okay, everything within the region is now branching to the right block, we
718     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
719     BasicBlock::iterator AfterPHIs;
720     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
721       PHINode *PN = cast<PHINode>(AfterPHIs);
722       // Create a new PHI node in the new region, which has an incoming value
723       // from OldPred of PN.
724       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
725                                        PN->getName() + ".ce");
726       NewPN->insertBefore(NewBB->begin());
727       PN->replaceAllUsesWith(NewPN);
728       NewPN->addIncoming(PN, OldPred);
729 
730       // Loop over all of the incoming value in PN, moving them to NewPN if they
731       // are from the extracted region.
732       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
733         if (Blocks.count(PN->getIncomingBlock(i))) {
734           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
735           PN->removeIncomingValue(i);
736           --i;
737         }
738       }
739     }
740   }
741 }
742 
743 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
744 /// outlined region, we split these PHIs on two: one with inputs from region
745 /// and other with remaining incoming blocks; then first PHIs are placed in
746 /// outlined region.
747 void CodeExtractor::severSplitPHINodesOfExits(
748     const SmallPtrSetImpl<BasicBlock *> &Exits) {
749   for (BasicBlock *ExitBB : Exits) {
750     BasicBlock *NewBB = nullptr;
751 
752     for (PHINode &PN : ExitBB->phis()) {
753       // Find all incoming values from the outlining region.
754       SmallVector<unsigned, 2> IncomingVals;
755       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
756         if (Blocks.count(PN.getIncomingBlock(i)))
757           IncomingVals.push_back(i);
758 
759       // Do not process PHI if there is one (or fewer) predecessor from region.
760       // If PHI has exactly one predecessor from region, only this one incoming
761       // will be replaced on codeRepl block, so it should be safe to skip PHI.
762       if (IncomingVals.size() <= 1)
763         continue;
764 
765       // Create block for new PHIs and add it to the list of outlined if it
766       // wasn't done before.
767       if (!NewBB) {
768         NewBB = BasicBlock::Create(ExitBB->getContext(),
769                                    ExitBB->getName() + ".split",
770                                    ExitBB->getParent(), ExitBB);
771         SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
772         for (BasicBlock *PredBB : Preds)
773           if (Blocks.count(PredBB))
774             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
775         BranchInst::Create(ExitBB, NewBB);
776         Blocks.insert(NewBB);
777       }
778 
779       // Split this PHI.
780       PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(),
781                                        PN.getName() + ".ce");
782       NewPN->insertBefore(NewBB->getFirstNonPHIIt());
783       for (unsigned i : IncomingVals)
784         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
785       for (unsigned i : reverse(IncomingVals))
786         PN.removeIncomingValue(i, false);
787       PN.addIncoming(NewPN, NewBB);
788     }
789   }
790 }
791 
792 void CodeExtractor::splitReturnBlocks() {
793   for (BasicBlock *Block : Blocks)
794     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
795       BasicBlock *New =
796           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
797       if (DT) {
798         // Old dominates New. New node dominates all other nodes dominated
799         // by Old.
800         DomTreeNode *OldNode = DT->getNode(Block);
801         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
802                                                OldNode->end());
803 
804         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
805 
806         for (DomTreeNode *I : Children)
807           DT->changeImmediateDominator(I, NewNode);
808       }
809     }
810 }
811 
812 /// constructFunction - make a function based on inputs and outputs, as follows:
813 /// f(in0, ..., inN, out0, ..., outN)
814 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
815                                            const ValueSet &outputs,
816                                            BasicBlock *header,
817                                            BasicBlock *newRootNode,
818                                            BasicBlock *newHeader,
819                                            Function *oldFunction,
820                                            Module *M) {
821   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
822   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
823 
824   // This function returns unsigned, outputs will go back by reference.
825   switch (NumExitBlocks) {
826   case 0:
827   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
828   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
829   default: RetTy = Type::getInt16Ty(header->getContext()); break;
830   }
831 
832   std::vector<Type *> ParamTy;
833   std::vector<Type *> AggParamTy;
834   ValueSet StructValues;
835   const DataLayout &DL = M->getDataLayout();
836 
837   // Add the types of the input values to the function's argument list
838   for (Value *value : inputs) {
839     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
840     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
841       AggParamTy.push_back(value->getType());
842       StructValues.insert(value);
843     } else
844       ParamTy.push_back(value->getType());
845   }
846 
847   // Add the types of the output values to the function's argument list.
848   for (Value *output : outputs) {
849     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
850     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
851       AggParamTy.push_back(output->getType());
852       StructValues.insert(output);
853     } else
854       ParamTy.push_back(
855           PointerType::get(output->getType(), DL.getAllocaAddrSpace()));
856   }
857 
858   assert(
859       (ParamTy.size() + AggParamTy.size()) ==
860           (inputs.size() + outputs.size()) &&
861       "Number of scalar and aggregate params does not match inputs, outputs");
862   assert((StructValues.empty() || AggregateArgs) &&
863          "Expeced StructValues only with AggregateArgs set");
864 
865   // Concatenate scalar and aggregate params in ParamTy.
866   size_t NumScalarParams = ParamTy.size();
867   StructType *StructTy = nullptr;
868   if (AggregateArgs && !AggParamTy.empty()) {
869     StructTy = StructType::get(M->getContext(), AggParamTy);
870     ParamTy.push_back(PointerType::get(
871         StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace()));
872   }
873 
874   LLVM_DEBUG({
875     dbgs() << "Function type: " << *RetTy << " f(";
876     for (Type *i : ParamTy)
877       dbgs() << *i << ", ";
878     dbgs() << ")\n";
879   });
880 
881   FunctionType *funcType = FunctionType::get(
882       RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
883 
884   std::string SuffixToUse =
885       Suffix.empty()
886           ? (header->getName().empty() ? "extracted" : header->getName().str())
887           : Suffix;
888   // Create the new function
889   Function *newFunction = Function::Create(
890       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
891       oldFunction->getName() + "." + SuffixToUse, M);
892 
893   // Inherit all of the target dependent attributes and white-listed
894   // target independent attributes.
895   //  (e.g. If the extracted region contains a call to an x86.sse
896   //  instruction we need to make sure that the extracted region has the
897   //  "target-features" attribute allowing it to be lowered.
898   // FIXME: This should be changed to check to see if a specific
899   //           attribute can not be inherited.
900   for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
901     if (Attr.isStringAttribute()) {
902       if (Attr.getKindAsString() == "thunk")
903         continue;
904     } else
905       switch (Attr.getKindAsEnum()) {
906       // Those attributes cannot be propagated safely. Explicitly list them
907       // here so we get a warning if new attributes are added.
908       case Attribute::AllocSize:
909       case Attribute::Builtin:
910       case Attribute::Convergent:
911       case Attribute::JumpTable:
912       case Attribute::Naked:
913       case Attribute::NoBuiltin:
914       case Attribute::NoMerge:
915       case Attribute::NoReturn:
916       case Attribute::NoSync:
917       case Attribute::ReturnsTwice:
918       case Attribute::Speculatable:
919       case Attribute::StackAlignment:
920       case Attribute::WillReturn:
921       case Attribute::AllocKind:
922       case Attribute::PresplitCoroutine:
923       case Attribute::Memory:
924       case Attribute::NoFPClass:
925       case Attribute::CoroDestroyOnlyWhenComplete:
926         continue;
927       // Those attributes should be safe to propagate to the extracted function.
928       case Attribute::AlwaysInline:
929       case Attribute::Cold:
930       case Attribute::DisableSanitizerInstrumentation:
931       case Attribute::FnRetThunkExtern:
932       case Attribute::Hot:
933       case Attribute::NoRecurse:
934       case Attribute::InlineHint:
935       case Attribute::MinSize:
936       case Attribute::NoCallback:
937       case Attribute::NoDuplicate:
938       case Attribute::NoFree:
939       case Attribute::NoImplicitFloat:
940       case Attribute::NoInline:
941       case Attribute::NonLazyBind:
942       case Attribute::NoRedZone:
943       case Attribute::NoUnwind:
944       case Attribute::NoSanitizeBounds:
945       case Attribute::NoSanitizeCoverage:
946       case Attribute::NullPointerIsValid:
947       case Attribute::OptimizeForDebugging:
948       case Attribute::OptForFuzzing:
949       case Attribute::OptimizeNone:
950       case Attribute::OptimizeForSize:
951       case Attribute::SafeStack:
952       case Attribute::ShadowCallStack:
953       case Attribute::SanitizeAddress:
954       case Attribute::SanitizeMemory:
955       case Attribute::SanitizeThread:
956       case Attribute::SanitizeHWAddress:
957       case Attribute::SanitizeMemTag:
958       case Attribute::SpeculativeLoadHardening:
959       case Attribute::StackProtect:
960       case Attribute::StackProtectReq:
961       case Attribute::StackProtectStrong:
962       case Attribute::StrictFP:
963       case Attribute::UWTable:
964       case Attribute::VScaleRange:
965       case Attribute::NoCfCheck:
966       case Attribute::MustProgress:
967       case Attribute::NoProfile:
968       case Attribute::SkipProfile:
969         break;
970       // These attributes cannot be applied to functions.
971       case Attribute::Alignment:
972       case Attribute::AllocatedPointer:
973       case Attribute::AllocAlign:
974       case Attribute::ByVal:
975       case Attribute::Dereferenceable:
976       case Attribute::DereferenceableOrNull:
977       case Attribute::ElementType:
978       case Attribute::InAlloca:
979       case Attribute::InReg:
980       case Attribute::Nest:
981       case Attribute::NoAlias:
982       case Attribute::NoCapture:
983       case Attribute::NoUndef:
984       case Attribute::NonNull:
985       case Attribute::Preallocated:
986       case Attribute::ReadNone:
987       case Attribute::ReadOnly:
988       case Attribute::Returned:
989       case Attribute::SExt:
990       case Attribute::StructRet:
991       case Attribute::SwiftError:
992       case Attribute::SwiftSelf:
993       case Attribute::SwiftAsync:
994       case Attribute::ZExt:
995       case Attribute::ImmArg:
996       case Attribute::ByRef:
997       case Attribute::WriteOnly:
998       case Attribute::Writable:
999       //  These are not really attributes.
1000       case Attribute::None:
1001       case Attribute::EndAttrKinds:
1002       case Attribute::EmptyKey:
1003       case Attribute::TombstoneKey:
1004         llvm_unreachable("Not a function attribute");
1005       }
1006 
1007     newFunction->addFnAttr(Attr);
1008   }
1009   newFunction->insert(newFunction->end(), newRootNode);
1010 
1011   // Create scalar and aggregate iterators to name all of the arguments we
1012   // inserted.
1013   Function::arg_iterator ScalarAI = newFunction->arg_begin();
1014   Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1015 
1016   // Rewrite all users of the inputs in the extracted region to use the
1017   // arguments (or appropriate addressing into struct) instead.
1018   for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1019     Value *RewriteVal;
1020     if (AggregateArgs && StructValues.contains(inputs[i])) {
1021       Value *Idx[2];
1022       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1023       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1024       Instruction *TI = newFunction->begin()->getTerminator();
1025       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1026           StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1027       RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1028                                 "loadgep_" + inputs[i]->getName(), TI);
1029       ++aggIdx;
1030     } else
1031       RewriteVal = &*ScalarAI++;
1032 
1033     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1034     for (User *use : Users)
1035       if (Instruction *inst = dyn_cast<Instruction>(use))
1036         if (Blocks.count(inst->getParent()))
1037           inst->replaceUsesOfWith(inputs[i], RewriteVal);
1038   }
1039 
1040   // Set names for input and output arguments.
1041   if (NumScalarParams) {
1042     ScalarAI = newFunction->arg_begin();
1043     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
1044       if (!StructValues.contains(inputs[i]))
1045         ScalarAI->setName(inputs[i]->getName());
1046     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
1047       if (!StructValues.contains(outputs[i]))
1048         ScalarAI->setName(outputs[i]->getName() + ".out");
1049   }
1050 
1051   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1052   // within the new function. This must be done before we lose track of which
1053   // blocks were originally in the code region.
1054   std::vector<User *> Users(header->user_begin(), header->user_end());
1055   for (auto &U : Users)
1056     // The BasicBlock which contains the branch is not in the region
1057     // modify the branch target to a new block
1058     if (Instruction *I = dyn_cast<Instruction>(U))
1059       if (I->isTerminator() && I->getFunction() == oldFunction &&
1060           !Blocks.count(I->getParent()))
1061         I->replaceUsesOfWith(header, newHeader);
1062 
1063   return newFunction;
1064 }
1065 
1066 /// Erase lifetime.start markers which reference inputs to the extraction
1067 /// region, and insert the referenced memory into \p LifetimesStart.
1068 ///
1069 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1070 /// of allocas which will be moved from the caller function into the extracted
1071 /// function (\p SunkAllocas).
1072 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1073                                          const SetVector<Value *> &SunkAllocas,
1074                                          SetVector<Value *> &LifetimesStart) {
1075   for (BasicBlock *BB : Blocks) {
1076     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1077       auto *II = dyn_cast<IntrinsicInst>(&I);
1078       if (!II || !II->isLifetimeStartOrEnd())
1079         continue;
1080 
1081       // Get the memory operand of the lifetime marker. If the underlying
1082       // object is a sunk alloca, or is otherwise defined in the extraction
1083       // region, the lifetime marker must not be erased.
1084       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1085       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1086         continue;
1087 
1088       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1089         LifetimesStart.insert(Mem);
1090       II->eraseFromParent();
1091     }
1092   }
1093 }
1094 
1095 /// Insert lifetime start/end markers surrounding the call to the new function
1096 /// for objects defined in the caller.
1097 static void insertLifetimeMarkersSurroundingCall(
1098     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1099     CallInst *TheCall) {
1100   LLVMContext &Ctx = M->getContext();
1101   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1102   Instruction *Term = TheCall->getParent()->getTerminator();
1103 
1104   // Emit lifetime markers for the pointers given in \p Objects. Insert the
1105   // markers before the call if \p InsertBefore, and after the call otherwise.
1106   auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects,
1107                            bool InsertBefore) {
1108     for (Value *Mem : Objects) {
1109       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1110                                             TheCall->getFunction()) &&
1111              "Input memory not defined in original function");
1112 
1113       Function *Func = Intrinsic::getDeclaration(M, MarkerFunc, Mem->getType());
1114       auto Marker = CallInst::Create(Func, {NegativeOne, Mem});
1115       if (InsertBefore)
1116         Marker->insertBefore(TheCall);
1117       else
1118         Marker->insertBefore(Term);
1119     }
1120   };
1121 
1122   if (!LifetimesStart.empty()) {
1123     insertMarkers(Intrinsic::lifetime_start, LifetimesStart,
1124                   /*InsertBefore=*/true);
1125   }
1126 
1127   if (!LifetimesEnd.empty()) {
1128     insertMarkers(Intrinsic::lifetime_end, LifetimesEnd,
1129                   /*InsertBefore=*/false);
1130   }
1131 }
1132 
1133 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1134 /// the call instruction, splitting any PHI nodes in the header block as
1135 /// necessary.
1136 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1137                                                     BasicBlock *codeReplacer,
1138                                                     ValueSet &inputs,
1139                                                     ValueSet &outputs) {
1140   // Emit a call to the new function, passing in: *pointer to struct (if
1141   // aggregating parameters), or plan inputs and allocated memory for outputs
1142   std::vector<Value *> params, ReloadOutputs, Reloads;
1143   ValueSet StructValues;
1144 
1145   Module *M = newFunction->getParent();
1146   LLVMContext &Context = M->getContext();
1147   const DataLayout &DL = M->getDataLayout();
1148   CallInst *call = nullptr;
1149 
1150   // Add inputs as params, or to be filled into the struct
1151   unsigned ScalarInputArgNo = 0;
1152   SmallVector<unsigned, 1> SwiftErrorArgs;
1153   for (Value *input : inputs) {
1154     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1155       StructValues.insert(input);
1156     else {
1157       params.push_back(input);
1158       if (input->isSwiftError())
1159         SwiftErrorArgs.push_back(ScalarInputArgNo);
1160     }
1161     ++ScalarInputArgNo;
1162   }
1163 
1164   // Create allocas for the outputs
1165   unsigned ScalarOutputArgNo = 0;
1166   for (Value *output : outputs) {
1167     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1168       StructValues.insert(output);
1169     } else {
1170       AllocaInst *alloca =
1171         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1172                        nullptr, output->getName() + ".loc",
1173                        &codeReplacer->getParent()->front().front());
1174       ReloadOutputs.push_back(alloca);
1175       params.push_back(alloca);
1176       ++ScalarOutputArgNo;
1177     }
1178   }
1179 
1180   StructType *StructArgTy = nullptr;
1181   AllocaInst *Struct = nullptr;
1182   unsigned NumAggregatedInputs = 0;
1183   if (AggregateArgs && !StructValues.empty()) {
1184     std::vector<Type *> ArgTypes;
1185     for (Value *V : StructValues)
1186       ArgTypes.push_back(V->getType());
1187 
1188     // Allocate a struct at the beginning of this function
1189     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1190     Struct = new AllocaInst(
1191         StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg",
1192         AllocationBlock ? &*AllocationBlock->getFirstInsertionPt()
1193                         : &codeReplacer->getParent()->front().front());
1194 
1195     if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) {
1196       auto *StructSpaceCast = new AddrSpaceCastInst(
1197           Struct, PointerType ::get(Context, 0), "structArg.ascast");
1198       StructSpaceCast->insertAfter(Struct);
1199       params.push_back(StructSpaceCast);
1200     } else {
1201       params.push_back(Struct);
1202     }
1203     // Store aggregated inputs in the struct.
1204     for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1205       if (inputs.contains(StructValues[i])) {
1206         Value *Idx[2];
1207         Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1208         Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1209         GetElementPtrInst *GEP = GetElementPtrInst::Create(
1210             StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1211         GEP->insertInto(codeReplacer, codeReplacer->end());
1212         new StoreInst(StructValues[i], GEP, codeReplacer);
1213         NumAggregatedInputs++;
1214       }
1215     }
1216   }
1217 
1218   // Emit the call to the function
1219   call = CallInst::Create(newFunction, params,
1220                           NumExitBlocks > 1 ? "targetBlock" : "");
1221   // Add debug location to the new call, if the original function has debug
1222   // info. In that case, the terminator of the entry block of the extracted
1223   // function contains the first debug location of the extracted function,
1224   // set in extractCodeRegion.
1225   if (codeReplacer->getParent()->getSubprogram()) {
1226     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1227       call->setDebugLoc(DL);
1228   }
1229   call->insertInto(codeReplacer, codeReplacer->end());
1230 
1231   // Set swifterror parameter attributes.
1232   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1233     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1234     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1235   }
1236 
1237   // Reload the outputs passed in by reference, use the struct if output is in
1238   // the aggregate or reload from the scalar argument.
1239   for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1240                 aggIdx = NumAggregatedInputs;
1241        i != e; ++i) {
1242     Value *Output = nullptr;
1243     if (AggregateArgs && StructValues.contains(outputs[i])) {
1244       Value *Idx[2];
1245       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1246       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1247       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1248           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1249       GEP->insertInto(codeReplacer, codeReplacer->end());
1250       Output = GEP;
1251       ++aggIdx;
1252     } else {
1253       Output = ReloadOutputs[scalarIdx];
1254       ++scalarIdx;
1255     }
1256     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1257                                   outputs[i]->getName() + ".reload",
1258                                   codeReplacer);
1259     Reloads.push_back(load);
1260     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1261     for (User *U : Users) {
1262       Instruction *inst = cast<Instruction>(U);
1263       if (!Blocks.count(inst->getParent()))
1264         inst->replaceUsesOfWith(outputs[i], load);
1265     }
1266   }
1267 
1268   // Now we can emit a switch statement using the call as a value.
1269   SwitchInst *TheSwitch =
1270       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1271                          codeReplacer, 0, codeReplacer);
1272 
1273   // Since there may be multiple exits from the original region, make the new
1274   // function return an unsigned, switch on that number.  This loop iterates
1275   // over all of the blocks in the extracted region, updating any terminator
1276   // instructions in the to-be-extracted region that branch to blocks that are
1277   // not in the region to be extracted.
1278   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1279 
1280   // Iterate over the previously collected targets, and create new blocks inside
1281   // the function to branch to.
1282   unsigned switchVal = 0;
1283   for (BasicBlock *OldTarget : OldTargets) {
1284     if (Blocks.count(OldTarget))
1285       continue;
1286     BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1287     if (NewTarget)
1288       continue;
1289 
1290     // If we don't already have an exit stub for this non-extracted
1291     // destination, create one now!
1292     NewTarget = BasicBlock::Create(Context,
1293                                     OldTarget->getName() + ".exitStub",
1294                                     newFunction);
1295     unsigned SuccNum = switchVal++;
1296 
1297     Value *brVal = nullptr;
1298     assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1299     switch (NumExitBlocks) {
1300     case 0:
1301     case 1: break;  // No value needed.
1302     case 2:         // Conditional branch, return a bool
1303       brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1304       break;
1305     default:
1306       brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1307       break;
1308     }
1309 
1310     ReturnInst::Create(Context, brVal, NewTarget);
1311 
1312     // Update the switch instruction.
1313     TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1314                                         SuccNum),
1315                         OldTarget);
1316   }
1317 
1318   for (BasicBlock *Block : Blocks) {
1319     Instruction *TI = Block->getTerminator();
1320     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1321       if (Blocks.count(TI->getSuccessor(i)))
1322         continue;
1323       BasicBlock *OldTarget = TI->getSuccessor(i);
1324       // add a new basic block which returns the appropriate value
1325       BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1326       assert(NewTarget && "Unknown target block!");
1327 
1328       // rewrite the original branch instruction with this new target
1329       TI->setSuccessor(i, NewTarget);
1330    }
1331   }
1332 
1333   // Store the arguments right after the definition of output value.
1334   // This should be proceeded after creating exit stubs to be ensure that invoke
1335   // result restore will be placed in the outlined function.
1336   Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1337   std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1338   Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1339   std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1340 
1341   for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1342        ++i) {
1343     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1344     if (!OutI)
1345       continue;
1346 
1347     // Find proper insertion point.
1348     BasicBlock::iterator InsertPt;
1349     // In case OutI is an invoke, we insert the store at the beginning in the
1350     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1351     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1352       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1353     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1354       InsertPt = Phi->getParent()->getFirstInsertionPt();
1355     else
1356       InsertPt = std::next(OutI->getIterator());
1357 
1358     Instruction *InsertBefore = &*InsertPt;
1359     assert((InsertBefore->getFunction() == newFunction ||
1360             Blocks.count(InsertBefore->getParent())) &&
1361            "InsertPt should be in new function");
1362     if (AggregateArgs && StructValues.contains(outputs[i])) {
1363       assert(AggOutputArgBegin != newFunction->arg_end() &&
1364              "Number of aggregate output arguments should match "
1365              "the number of defined values");
1366       Value *Idx[2];
1367       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1368       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1369       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1370           StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1371           InsertBefore);
1372       new StoreInst(outputs[i], GEP, InsertBefore);
1373       ++aggIdx;
1374       // Since there should be only one struct argument aggregating
1375       // all the output values, we shouldn't increment AggOutputArgBegin, which
1376       // always points to the struct argument, in this case.
1377     } else {
1378       assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1379              "Number of scalar output arguments should match "
1380              "the number of defined values");
1381       new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore);
1382       ++ScalarOutputArgBegin;
1383     }
1384   }
1385 
1386   // Now that we've done the deed, simplify the switch instruction.
1387   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1388   switch (NumExitBlocks) {
1389   case 0:
1390     // There are no successors (the block containing the switch itself), which
1391     // means that previously this was the last part of the function, and hence
1392     // this should be rewritten as a `ret'
1393 
1394     // Check if the function should return a value
1395     if (OldFnRetTy->isVoidTy()) {
1396       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1397     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1398       // return what we have
1399       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1400     } else {
1401       // Otherwise we must have code extracted an unwind or something, just
1402       // return whatever we want.
1403       ReturnInst::Create(Context,
1404                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1405     }
1406 
1407     TheSwitch->eraseFromParent();
1408     break;
1409   case 1:
1410     // Only a single destination, change the switch into an unconditional
1411     // branch.
1412     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1413     TheSwitch->eraseFromParent();
1414     break;
1415   case 2:
1416     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1417                        call, TheSwitch);
1418     TheSwitch->eraseFromParent();
1419     break;
1420   default:
1421     // Otherwise, make the default destination of the switch instruction be one
1422     // of the other successors.
1423     TheSwitch->setCondition(call);
1424     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1425     // Remove redundant case
1426     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1427     break;
1428   }
1429 
1430   // Insert lifetime markers around the reloads of any output values. The
1431   // allocas output values are stored in are only in-use in the codeRepl block.
1432   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1433 
1434   return call;
1435 }
1436 
1437 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1438   auto newFuncIt = newFunction->front().getIterator();
1439   for (BasicBlock *Block : Blocks) {
1440     // Delete the basic block from the old function, and the list of blocks
1441     Block->removeFromParent();
1442 
1443     // Insert this basic block into the new function
1444     // Insert the original blocks after the entry block created
1445     // for the new function. The entry block may be followed
1446     // by a set of exit blocks at this point, but these exit
1447     // blocks better be placed at the end of the new function.
1448     newFuncIt = newFunction->insert(std::next(newFuncIt), Block);
1449   }
1450 }
1451 
1452 void CodeExtractor::calculateNewCallTerminatorWeights(
1453     BasicBlock *CodeReplacer,
1454     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1455     BranchProbabilityInfo *BPI) {
1456   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1457   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1458 
1459   // Update the branch weights for the exit block.
1460   Instruction *TI = CodeReplacer->getTerminator();
1461   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1462 
1463   // Block Frequency distribution with dummy node.
1464   Distribution BranchDist;
1465 
1466   SmallVector<BranchProbability, 4> EdgeProbabilities(
1467       TI->getNumSuccessors(), BranchProbability::getUnknown());
1468 
1469   // Add each of the frequencies of the successors.
1470   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1471     BlockNode ExitNode(i);
1472     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1473     if (ExitFreq != 0)
1474       BranchDist.addExit(ExitNode, ExitFreq);
1475     else
1476       EdgeProbabilities[i] = BranchProbability::getZero();
1477   }
1478 
1479   // Check for no total weight.
1480   if (BranchDist.Total == 0) {
1481     BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1482     return;
1483   }
1484 
1485   // Normalize the distribution so that they can fit in unsigned.
1486   BranchDist.normalize();
1487 
1488   // Create normalized branch weights and set the metadata.
1489   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1490     const auto &Weight = BranchDist.Weights[I];
1491 
1492     // Get the weight and update the current BFI.
1493     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1494     BranchProbability BP(Weight.Amount, BranchDist.Total);
1495     EdgeProbabilities[Weight.TargetNode.Index] = BP;
1496   }
1497   BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1498   TI->setMetadata(
1499       LLVMContext::MD_prof,
1500       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1501 }
1502 
1503 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1504 /// \p F.
1505 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1506   for (Instruction &I : instructions(F)) {
1507     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1508     findDbgUsers(DbgUsers, &I);
1509     for (DbgVariableIntrinsic *DVI : DbgUsers)
1510       if (DVI->getFunction() != &F)
1511         DVI->eraseFromParent();
1512   }
1513 }
1514 
1515 /// Fix up the debug info in the old and new functions by pointing line
1516 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1517 /// intrinsics which point to values outside of the new function.
1518 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1519                                          CallInst &TheCall) {
1520   DISubprogram *OldSP = OldFunc.getSubprogram();
1521   LLVMContext &Ctx = OldFunc.getContext();
1522 
1523   if (!OldSP) {
1524     // Erase any debug info the new function contains.
1525     stripDebugInfo(NewFunc);
1526     // Make sure the old function doesn't contain any non-local metadata refs.
1527     eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1528     return;
1529   }
1530 
1531   // Create a subprogram for the new function. Leave out a description of the
1532   // function arguments, as the parameters don't correspond to anything at the
1533   // source level.
1534   assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1535   DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1536                 OldSP->getUnit());
1537   auto SPType =
1538       DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt));
1539   DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1540                                     DISubprogram::SPFlagOptimized |
1541                                     DISubprogram::SPFlagLocalToUnit;
1542   auto NewSP = DIB.createFunction(
1543       OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1544       /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1545   NewFunc.setSubprogram(NewSP);
1546 
1547   // Debug intrinsics in the new function need to be updated in one of two
1548   // ways:
1549   //  1) They need to be deleted, because they describe a value in the old
1550   //     function.
1551   //  2) They need to point to fresh metadata, e.g. because they currently
1552   //     point to a variable in the wrong scope.
1553   SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1554   SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1555   DenseMap<const MDNode *, MDNode *> Cache;
1556   for (Instruction &I : instructions(NewFunc)) {
1557     auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1558     if (!DII)
1559       continue;
1560 
1561     // Point the intrinsic to a fresh label within the new function if the
1562     // intrinsic was not inlined from some other function.
1563     if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1564       if (DLI->getDebugLoc().getInlinedAt())
1565         continue;
1566       DILabel *OldLabel = DLI->getLabel();
1567       DINode *&NewLabel = RemappedMetadata[OldLabel];
1568       if (!NewLabel) {
1569         DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1570             *OldLabel->getScope(), *NewSP, Ctx, Cache);
1571         NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(),
1572                                 OldLabel->getFile(), OldLabel->getLine());
1573       }
1574       DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1575       continue;
1576     }
1577 
1578     auto IsInvalidLocation = [&NewFunc](Value *Location) {
1579       // Location is invalid if it isn't a constant or an instruction, or is an
1580       // instruction but isn't in the new function.
1581       if (!Location ||
1582           (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1583         return true;
1584       Instruction *LocationInst = dyn_cast<Instruction>(Location);
1585       return LocationInst && LocationInst->getFunction() != &NewFunc;
1586     };
1587 
1588     auto *DVI = cast<DbgVariableIntrinsic>(DII);
1589     // If any of the used locations are invalid, delete the intrinsic.
1590     if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1591       DebugIntrinsicsToDelete.push_back(DVI);
1592       continue;
1593     }
1594     // DbgAssign intrinsics have an extra Value argument:
1595     if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
1596         DAI && IsInvalidLocation(DAI->getAddress())) {
1597       DebugIntrinsicsToDelete.push_back(DVI);
1598       continue;
1599     }
1600     // If the variable was in the scope of the old function, i.e. it was not
1601     // inlined, point the intrinsic to a fresh variable within the new function.
1602     if (!DVI->getDebugLoc().getInlinedAt()) {
1603       DILocalVariable *OldVar = DVI->getVariable();
1604       DINode *&NewVar = RemappedMetadata[OldVar];
1605       if (!NewVar) {
1606         DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1607             *OldVar->getScope(), *NewSP, Ctx, Cache);
1608         NewVar = DIB.createAutoVariable(
1609             NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1610             OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1611             OldVar->getAlignInBits());
1612       }
1613       DVI->setVariable(cast<DILocalVariable>(NewVar));
1614     }
1615   }
1616 
1617   for (auto *DII : DebugIntrinsicsToDelete)
1618     DII->eraseFromParent();
1619   DIB.finalizeSubprogram(NewSP);
1620 
1621   // Fix up the scope information attached to the line locations in the new
1622   // function.
1623   for (Instruction &I : instructions(NewFunc)) {
1624     if (const DebugLoc &DL = I.getDebugLoc())
1625       I.setDebugLoc(
1626           DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache));
1627 
1628     // Loop info metadata may contain line locations. Fix them up.
1629     auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * {
1630       if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1631         return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache);
1632       return MD;
1633     };
1634     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1635   }
1636   if (!TheCall.getDebugLoc())
1637     TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1638 
1639   eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1640 }
1641 
1642 Function *
1643 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1644   ValueSet Inputs, Outputs;
1645   return extractCodeRegion(CEAC, Inputs, Outputs);
1646 }
1647 
1648 Function *
1649 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1650                                  ValueSet &inputs, ValueSet &outputs) {
1651   if (!isEligible())
1652     return nullptr;
1653 
1654   // Assumption: this is a single-entry code region, and the header is the first
1655   // block in the region.
1656   BasicBlock *header = *Blocks.begin();
1657   Function *oldFunction = header->getParent();
1658 
1659   // Calculate the entry frequency of the new function before we change the root
1660   //   block.
1661   BlockFrequency EntryFreq;
1662   if (BFI) {
1663     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1664     for (BasicBlock *Pred : predecessors(header)) {
1665       if (Blocks.count(Pred))
1666         continue;
1667       EntryFreq +=
1668           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1669     }
1670   }
1671 
1672   // Remove @llvm.assume calls that will be moved to the new function from the
1673   // old function's assumption cache.
1674   for (BasicBlock *Block : Blocks) {
1675     for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1676       if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1677         if (AC)
1678           AC->unregisterAssumption(AI);
1679         AI->eraseFromParent();
1680       }
1681     }
1682   }
1683 
1684   // If we have any return instructions in the region, split those blocks so
1685   // that the return is not in the region.
1686   splitReturnBlocks();
1687 
1688   // Calculate the exit blocks for the extracted region and the total exit
1689   // weights for each of those blocks.
1690   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1691   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1692   for (BasicBlock *Block : Blocks) {
1693     for (BasicBlock *Succ : successors(Block)) {
1694       if (!Blocks.count(Succ)) {
1695         // Update the branch weight for this successor.
1696         if (BFI) {
1697           BlockFrequency &BF = ExitWeights[Succ];
1698           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1699         }
1700         ExitBlocks.insert(Succ);
1701       }
1702     }
1703   }
1704   NumExitBlocks = ExitBlocks.size();
1705 
1706   for (BasicBlock *Block : Blocks) {
1707     Instruction *TI = Block->getTerminator();
1708     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1709       if (Blocks.count(TI->getSuccessor(i)))
1710         continue;
1711       BasicBlock *OldTarget = TI->getSuccessor(i);
1712       OldTargets.push_back(OldTarget);
1713     }
1714   }
1715 
1716   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1717   severSplitPHINodesOfEntry(header);
1718   severSplitPHINodesOfExits(ExitBlocks);
1719 
1720   // This takes place of the original loop
1721   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1722                                                 "codeRepl", oldFunction,
1723                                                 header);
1724 
1725   // The new function needs a root node because other nodes can branch to the
1726   // head of the region, but the entry node of a function cannot have preds.
1727   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1728                                                "newFuncRoot");
1729   auto *BranchI = BranchInst::Create(header);
1730   // If the original function has debug info, we have to add a debug location
1731   // to the new branch instruction from the artificial entry block.
1732   // We use the debug location of the first instruction in the extracted
1733   // blocks, as there is no other equivalent line in the source code.
1734   if (oldFunction->getSubprogram()) {
1735     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1736       return any_of(*BB, [&BranchI](const Instruction &I) {
1737         if (!I.getDebugLoc())
1738           return false;
1739         BranchI->setDebugLoc(I.getDebugLoc());
1740         return true;
1741       });
1742     });
1743   }
1744   BranchI->insertInto(newFuncRoot, newFuncRoot->end());
1745 
1746   ValueSet SinkingCands, HoistingCands;
1747   BasicBlock *CommonExit = nullptr;
1748   findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1749   assert(HoistingCands.empty() || CommonExit);
1750 
1751   // Find inputs to, outputs from the code region.
1752   findInputsOutputs(inputs, outputs, SinkingCands);
1753 
1754   // Now sink all instructions which only have non-phi uses inside the region.
1755   // Group the allocas at the start of the block, so that any bitcast uses of
1756   // the allocas are well-defined.
1757   AllocaInst *FirstSunkAlloca = nullptr;
1758   for (auto *II : SinkingCands) {
1759     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1760       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1761       if (!FirstSunkAlloca)
1762         FirstSunkAlloca = AI;
1763     }
1764   }
1765   assert((SinkingCands.empty() || FirstSunkAlloca) &&
1766          "Did not expect a sink candidate without any allocas");
1767   for (auto *II : SinkingCands) {
1768     if (!isa<AllocaInst>(II)) {
1769       cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1770     }
1771   }
1772 
1773   if (!HoistingCands.empty()) {
1774     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1775     Instruction *TI = HoistToBlock->getTerminator();
1776     for (auto *II : HoistingCands)
1777       cast<Instruction>(II)->moveBefore(TI);
1778   }
1779 
1780   // Collect objects which are inputs to the extraction region and also
1781   // referenced by lifetime start markers within it. The effects of these
1782   // markers must be replicated in the calling function to prevent the stack
1783   // coloring pass from merging slots which store input objects.
1784   ValueSet LifetimesStart;
1785   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1786 
1787   // Construct new function based on inputs/outputs & add allocas for all defs.
1788   Function *newFunction =
1789       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1790                         oldFunction, oldFunction->getParent());
1791 
1792   // Update the entry count of the function.
1793   if (BFI) {
1794     auto Count = BFI->getProfileCountFromFreq(EntryFreq);
1795     if (Count)
1796       newFunction->setEntryCount(
1797           ProfileCount(*Count, Function::PCT_Real)); // FIXME
1798     BFI->setBlockFreq(codeReplacer, EntryFreq);
1799   }
1800 
1801   CallInst *TheCall =
1802       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1803 
1804   moveCodeToFunction(newFunction);
1805 
1806   // Replicate the effects of any lifetime start/end markers which referenced
1807   // input objects in the extraction region by placing markers around the call.
1808   insertLifetimeMarkersSurroundingCall(
1809       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1810 
1811   // Propagate personality info to the new function if there is one.
1812   if (oldFunction->hasPersonalityFn())
1813     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1814 
1815   // Update the branch weights for the exit block.
1816   if (BFI && NumExitBlocks > 1)
1817     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1818 
1819   // Loop over all of the PHI nodes in the header and exit blocks, and change
1820   // any references to the old incoming edge to be the new incoming edge.
1821   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1822     PHINode *PN = cast<PHINode>(I);
1823     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1824       if (!Blocks.count(PN->getIncomingBlock(i)))
1825         PN->setIncomingBlock(i, newFuncRoot);
1826   }
1827 
1828   for (BasicBlock *ExitBB : ExitBlocks)
1829     for (PHINode &PN : ExitBB->phis()) {
1830       Value *IncomingCodeReplacerVal = nullptr;
1831       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1832         // Ignore incoming values from outside of the extracted region.
1833         if (!Blocks.count(PN.getIncomingBlock(i)))
1834           continue;
1835 
1836         // Ensure that there is only one incoming value from codeReplacer.
1837         if (!IncomingCodeReplacerVal) {
1838           PN.setIncomingBlock(i, codeReplacer);
1839           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1840         } else
1841           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1842                  "PHI has two incompatbile incoming values from codeRepl");
1843       }
1844     }
1845 
1846   fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1847 
1848   // Mark the new function `noreturn` if applicable. Terminators which resume
1849   // exception propagation are treated as returning instructions. This is to
1850   // avoid inserting traps after calls to outlined functions which unwind.
1851   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1852     const Instruction *Term = BB.getTerminator();
1853     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1854   });
1855   if (doesNotReturn)
1856     newFunction->setDoesNotReturn();
1857 
1858   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1859     newFunction->dump();
1860     report_fatal_error("verification of newFunction failed!");
1861   });
1862   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1863              report_fatal_error("verification of oldFunction failed!"));
1864   LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1865                  report_fatal_error("Stale Asumption cache for old Function!"));
1866   return newFunction;
1867 }
1868 
1869 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1870                                           const Function &NewFunc,
1871                                           AssumptionCache *AC) {
1872   for (auto AssumeVH : AC->assumptions()) {
1873     auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1874     if (!I)
1875       continue;
1876 
1877     // There shouldn't be any llvm.assume intrinsics in the new function.
1878     if (I->getFunction() != &OldFunc)
1879       return true;
1880 
1881     // There shouldn't be any stale affected values in the assumption cache
1882     // that were previously in the old function, but that have now been moved
1883     // to the new function.
1884     for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1885       auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1886       if (!AffectedCI)
1887         continue;
1888       if (AffectedCI->getFunction() != &OldFunc)
1889         return true;
1890       auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1891       if (AssumedInst->getFunction() != &OldFunc)
1892         return true;
1893     }
1894   }
1895   return false;
1896 }
1897 
1898 void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1899   ExcludeArgsFromAggregate.insert(Arg);
1900 }
1901