1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/Verifier.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <map> 69 #include <set> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 using namespace llvm::PatternMatch; 75 using ProfileCount = Function::ProfileCount; 76 77 #define DEBUG_TYPE "code-extractor" 78 79 // Provide a command-line option to aggregate function arguments into a struct 80 // for functions produced by the code extractor. This is useful when converting 81 // extracted functions to pthread-based code, as only one argument (void*) can 82 // be passed in to pthread_create(). 83 static cl::opt<bool> 84 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 85 cl::desc("Aggregate arguments to code-extracted functions")); 86 87 /// Test whether a block is valid for extraction. 88 static bool isBlockValidForExtraction(const BasicBlock &BB, 89 const SetVector<BasicBlock *> &Result, 90 bool AllowVarArgs, bool AllowAlloca) { 91 // taking the address of a basic block moved to another function is illegal 92 if (BB.hasAddressTaken()) 93 return false; 94 95 // don't hoist code that uses another basicblock address, as it's likely to 96 // lead to unexpected behavior, like cross-function jumps 97 SmallPtrSet<User const *, 16> Visited; 98 SmallVector<User const *, 16> ToVisit; 99 100 for (Instruction const &Inst : BB) 101 ToVisit.push_back(&Inst); 102 103 while (!ToVisit.empty()) { 104 User const *Curr = ToVisit.pop_back_val(); 105 if (!Visited.insert(Curr).second) 106 continue; 107 if (isa<BlockAddress const>(Curr)) 108 return false; // even a reference to self is likely to be not compatible 109 110 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 111 continue; 112 113 for (auto const &U : Curr->operands()) { 114 if (auto *UU = dyn_cast<User>(U)) 115 ToVisit.push_back(UU); 116 } 117 } 118 119 // If explicitly requested, allow vastart and alloca. For invoke instructions 120 // verify that extraction is valid. 121 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 122 if (isa<AllocaInst>(I)) { 123 if (!AllowAlloca) 124 return false; 125 continue; 126 } 127 128 if (const auto *II = dyn_cast<InvokeInst>(I)) { 129 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 130 // must be a part of the subgraph which is being extracted. 131 if (auto *UBB = II->getUnwindDest()) 132 if (!Result.count(UBB)) 133 return false; 134 continue; 135 } 136 137 // All catch handlers of a catchswitch instruction as well as the unwind 138 // destination must be in the subgraph. 139 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 140 if (auto *UBB = CSI->getUnwindDest()) 141 if (!Result.count(UBB)) 142 return false; 143 for (auto *HBB : CSI->handlers()) 144 if (!Result.count(const_cast<BasicBlock*>(HBB))) 145 return false; 146 continue; 147 } 148 149 // Make sure that entire catch handler is within subgraph. It is sufficient 150 // to check that catch return's block is in the list. 151 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 152 for (const auto *U : CPI->users()) 153 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 154 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 155 return false; 156 continue; 157 } 158 159 // And do similar checks for cleanup handler - the entire handler must be 160 // in subgraph which is going to be extracted. For cleanup return should 161 // additionally check that the unwind destination is also in the subgraph. 162 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 163 for (const auto *U : CPI->users()) 164 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 165 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 166 return false; 167 continue; 168 } 169 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 170 if (auto *UBB = CRI->getUnwindDest()) 171 if (!Result.count(UBB)) 172 return false; 173 continue; 174 } 175 176 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 177 if (const Function *F = CI->getCalledFunction()) { 178 auto IID = F->getIntrinsicID(); 179 if (IID == Intrinsic::vastart) { 180 if (AllowVarArgs) 181 continue; 182 else 183 return false; 184 } 185 186 // Currently, we miscompile outlined copies of eh_typid_for. There are 187 // proposals for fixing this in llvm.org/PR39545. 188 if (IID == Intrinsic::eh_typeid_for) 189 return false; 190 } 191 } 192 } 193 194 return true; 195 } 196 197 /// Build a set of blocks to extract if the input blocks are viable. 198 static SetVector<BasicBlock *> 199 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 200 bool AllowVarArgs, bool AllowAlloca) { 201 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 202 SetVector<BasicBlock *> Result; 203 204 // Loop over the blocks, adding them to our set-vector, and aborting with an 205 // empty set if we encounter invalid blocks. 206 for (BasicBlock *BB : BBs) { 207 // If this block is dead, don't process it. 208 if (DT && !DT->isReachableFromEntry(BB)) 209 continue; 210 211 if (!Result.insert(BB)) 212 llvm_unreachable("Repeated basic blocks in extraction input"); 213 } 214 215 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 216 << '\n'); 217 218 for (auto *BB : Result) { 219 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 220 return {}; 221 222 // Make sure that the first block is not a landing pad. 223 if (BB == Result.front()) { 224 if (BB->isEHPad()) { 225 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 226 return {}; 227 } 228 continue; 229 } 230 231 // All blocks other than the first must not have predecessors outside of 232 // the subgraph which is being extracted. 233 for (auto *PBB : predecessors(BB)) 234 if (!Result.count(PBB)) { 235 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 236 "outside the region except for the first block!\n" 237 << "Problematic source BB: " << BB->getName() << "\n" 238 << "Problematic destination BB: " << PBB->getName() 239 << "\n"); 240 return {}; 241 } 242 } 243 244 return Result; 245 } 246 247 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 248 bool AggregateArgs, BlockFrequencyInfo *BFI, 249 BranchProbabilityInfo *BPI, AssumptionCache *AC, 250 bool AllowVarArgs, bool AllowAlloca, 251 std::string Suffix) 252 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 253 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs), 254 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 255 Suffix(Suffix) {} 256 257 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 258 BlockFrequencyInfo *BFI, 259 BranchProbabilityInfo *BPI, AssumptionCache *AC, 260 std::string Suffix) 261 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 262 BPI(BPI), AC(AC), AllowVarArgs(false), 263 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 264 /* AllowVarArgs */ false, 265 /* AllowAlloca */ false)), 266 Suffix(Suffix) {} 267 268 /// definedInRegion - Return true if the specified value is defined in the 269 /// extracted region. 270 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 271 if (Instruction *I = dyn_cast<Instruction>(V)) 272 if (Blocks.count(I->getParent())) 273 return true; 274 return false; 275 } 276 277 /// definedInCaller - Return true if the specified value is defined in the 278 /// function being code extracted, but not in the region being extracted. 279 /// These values must be passed in as live-ins to the function. 280 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 281 if (isa<Argument>(V)) return true; 282 if (Instruction *I = dyn_cast<Instruction>(V)) 283 if (!Blocks.count(I->getParent())) 284 return true; 285 return false; 286 } 287 288 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 289 BasicBlock *CommonExitBlock = nullptr; 290 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 291 for (auto *Succ : successors(Block)) { 292 // Internal edges, ok. 293 if (Blocks.count(Succ)) 294 continue; 295 if (!CommonExitBlock) { 296 CommonExitBlock = Succ; 297 continue; 298 } 299 if (CommonExitBlock != Succ) 300 return true; 301 } 302 return false; 303 }; 304 305 if (any_of(Blocks, hasNonCommonExitSucc)) 306 return nullptr; 307 308 return CommonExitBlock; 309 } 310 311 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 312 for (BasicBlock &BB : F) { 313 for (Instruction &II : BB.instructionsWithoutDebug()) 314 if (auto *AI = dyn_cast<AllocaInst>(&II)) 315 Allocas.push_back(AI); 316 317 findSideEffectInfoForBlock(BB); 318 } 319 } 320 321 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 322 for (Instruction &II : BB.instructionsWithoutDebug()) { 323 unsigned Opcode = II.getOpcode(); 324 Value *MemAddr = nullptr; 325 switch (Opcode) { 326 case Instruction::Store: 327 case Instruction::Load: { 328 if (Opcode == Instruction::Store) { 329 StoreInst *SI = cast<StoreInst>(&II); 330 MemAddr = SI->getPointerOperand(); 331 } else { 332 LoadInst *LI = cast<LoadInst>(&II); 333 MemAddr = LI->getPointerOperand(); 334 } 335 // Global variable can not be aliased with locals. 336 if (dyn_cast<Constant>(MemAddr)) 337 break; 338 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 339 if (!isa<AllocaInst>(Base)) { 340 SideEffectingBlocks.insert(&BB); 341 return; 342 } 343 BaseMemAddrs[&BB].insert(Base); 344 break; 345 } 346 default: { 347 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 348 if (IntrInst) { 349 if (IntrInst->isLifetimeStartOrEnd()) 350 break; 351 SideEffectingBlocks.insert(&BB); 352 return; 353 } 354 // Treat all the other cases conservatively if it has side effects. 355 if (II.mayHaveSideEffects()) { 356 SideEffectingBlocks.insert(&BB); 357 return; 358 } 359 } 360 } 361 } 362 } 363 364 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 365 BasicBlock &BB, AllocaInst *Addr) const { 366 if (SideEffectingBlocks.count(&BB)) 367 return true; 368 auto It = BaseMemAddrs.find(&BB); 369 if (It != BaseMemAddrs.end()) 370 return It->second.count(Addr); 371 return false; 372 } 373 374 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 375 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 376 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 377 Function *Func = (*Blocks.begin())->getParent(); 378 for (BasicBlock &BB : *Func) { 379 if (Blocks.count(&BB)) 380 continue; 381 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 382 return false; 383 } 384 return true; 385 } 386 387 BasicBlock * 388 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 389 BasicBlock *SinglePredFromOutlineRegion = nullptr; 390 assert(!Blocks.count(CommonExitBlock) && 391 "Expect a block outside the region!"); 392 for (auto *Pred : predecessors(CommonExitBlock)) { 393 if (!Blocks.count(Pred)) 394 continue; 395 if (!SinglePredFromOutlineRegion) { 396 SinglePredFromOutlineRegion = Pred; 397 } else if (SinglePredFromOutlineRegion != Pred) { 398 SinglePredFromOutlineRegion = nullptr; 399 break; 400 } 401 } 402 403 if (SinglePredFromOutlineRegion) 404 return SinglePredFromOutlineRegion; 405 406 #ifndef NDEBUG 407 auto getFirstPHI = [](BasicBlock *BB) { 408 BasicBlock::iterator I = BB->begin(); 409 PHINode *FirstPhi = nullptr; 410 while (I != BB->end()) { 411 PHINode *Phi = dyn_cast<PHINode>(I); 412 if (!Phi) 413 break; 414 if (!FirstPhi) { 415 FirstPhi = Phi; 416 break; 417 } 418 } 419 return FirstPhi; 420 }; 421 // If there are any phi nodes, the single pred either exists or has already 422 // be created before code extraction. 423 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 424 #endif 425 426 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 427 CommonExitBlock->getFirstNonPHI()->getIterator()); 428 429 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); 430 PI != PE;) { 431 BasicBlock *Pred = *PI++; 432 if (Blocks.count(Pred)) 433 continue; 434 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 435 } 436 // Now add the old exit block to the outline region. 437 Blocks.insert(CommonExitBlock); 438 return CommonExitBlock; 439 } 440 441 // Find the pair of life time markers for address 'Addr' that are either 442 // defined inside the outline region or can legally be shrinkwrapped into the 443 // outline region. If there are not other untracked uses of the address, return 444 // the pair of markers if found; otherwise return a pair of nullptr. 445 CodeExtractor::LifetimeMarkerInfo 446 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 447 Instruction *Addr, 448 BasicBlock *ExitBlock) const { 449 LifetimeMarkerInfo Info; 450 451 for (User *U : Addr->users()) { 452 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 453 if (IntrInst) { 454 // We don't model addresses with multiple start/end markers, but the 455 // markers do not need to be in the region. 456 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 457 if (Info.LifeStart) 458 return {}; 459 Info.LifeStart = IntrInst; 460 continue; 461 } 462 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 463 if (Info.LifeEnd) 464 return {}; 465 Info.LifeEnd = IntrInst; 466 continue; 467 } 468 // At this point, permit debug uses outside of the region. 469 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 470 if (isa<DbgInfoIntrinsic>(IntrInst)) 471 continue; 472 } 473 // Find untracked uses of the address, bail. 474 if (!definedInRegion(Blocks, U)) 475 return {}; 476 } 477 478 if (!Info.LifeStart || !Info.LifeEnd) 479 return {}; 480 481 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 482 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 483 // Do legality check. 484 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 485 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 486 return {}; 487 488 // Check to see if we have a place to do hoisting, if not, bail. 489 if (Info.HoistLifeEnd && !ExitBlock) 490 return {}; 491 492 return Info; 493 } 494 495 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 496 ValueSet &SinkCands, ValueSet &HoistCands, 497 BasicBlock *&ExitBlock) const { 498 Function *Func = (*Blocks.begin())->getParent(); 499 ExitBlock = getCommonExitBlock(Blocks); 500 501 auto moveOrIgnoreLifetimeMarkers = 502 [&](const LifetimeMarkerInfo &LMI) -> bool { 503 if (!LMI.LifeStart) 504 return false; 505 if (LMI.SinkLifeStart) { 506 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 507 << "\n"); 508 SinkCands.insert(LMI.LifeStart); 509 } 510 if (LMI.HoistLifeEnd) { 511 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 512 HoistCands.insert(LMI.LifeEnd); 513 } 514 return true; 515 }; 516 517 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 518 // this is much faster than walking all the instructions. 519 for (AllocaInst *AI : CEAC.getAllocas()) { 520 BasicBlock *BB = AI->getParent(); 521 if (Blocks.count(BB)) 522 continue; 523 524 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 525 // check whether it is actually still in the original function. 526 Function *AIFunc = BB->getParent(); 527 if (AIFunc != Func) 528 continue; 529 530 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 531 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 532 if (Moved) { 533 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 534 SinkCands.insert(AI); 535 continue; 536 } 537 538 // Follow any bitcasts. 539 SmallVector<Instruction *, 2> Bitcasts; 540 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 541 for (User *U : AI->users()) { 542 if (U->stripInBoundsConstantOffsets() == AI) { 543 Instruction *Bitcast = cast<Instruction>(U); 544 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 545 if (LMI.LifeStart) { 546 Bitcasts.push_back(Bitcast); 547 BitcastLifetimeInfo.push_back(LMI); 548 continue; 549 } 550 } 551 552 // Found unknown use of AI. 553 if (!definedInRegion(Blocks, U)) { 554 Bitcasts.clear(); 555 break; 556 } 557 } 558 559 // Either no bitcasts reference the alloca or there are unknown uses. 560 if (Bitcasts.empty()) 561 continue; 562 563 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 564 SinkCands.insert(AI); 565 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 566 Instruction *BitcastAddr = Bitcasts[I]; 567 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 568 assert(LMI.LifeStart && 569 "Unsafe to sink bitcast without lifetime markers"); 570 moveOrIgnoreLifetimeMarkers(LMI); 571 if (!definedInRegion(Blocks, BitcastAddr)) { 572 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 573 << "\n"); 574 SinkCands.insert(BitcastAddr); 575 } 576 } 577 } 578 } 579 580 bool CodeExtractor::isEligible() const { 581 if (Blocks.empty()) 582 return false; 583 BasicBlock *Header = *Blocks.begin(); 584 Function *F = Header->getParent(); 585 586 // For functions with varargs, check that varargs handling is only done in the 587 // outlined function, i.e vastart and vaend are only used in outlined blocks. 588 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 589 auto containsVarArgIntrinsic = [](const Instruction &I) { 590 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 591 if (const Function *Callee = CI->getCalledFunction()) 592 return Callee->getIntrinsicID() == Intrinsic::vastart || 593 Callee->getIntrinsicID() == Intrinsic::vaend; 594 return false; 595 }; 596 597 for (auto &BB : *F) { 598 if (Blocks.count(&BB)) 599 continue; 600 if (llvm::any_of(BB, containsVarArgIntrinsic)) 601 return false; 602 } 603 } 604 return true; 605 } 606 607 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 608 const ValueSet &SinkCands) const { 609 for (BasicBlock *BB : Blocks) { 610 // If a used value is defined outside the region, it's an input. If an 611 // instruction is used outside the region, it's an output. 612 for (Instruction &II : *BB) { 613 for (auto &OI : II.operands()) { 614 Value *V = OI; 615 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 616 Inputs.insert(V); 617 } 618 619 for (User *U : II.users()) 620 if (!definedInRegion(Blocks, U)) { 621 Outputs.insert(&II); 622 break; 623 } 624 } 625 } 626 } 627 628 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 629 /// of the region, we need to split the entry block of the region so that the 630 /// PHI node is easier to deal with. 631 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 632 unsigned NumPredsFromRegion = 0; 633 unsigned NumPredsOutsideRegion = 0; 634 635 if (Header != &Header->getParent()->getEntryBlock()) { 636 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 637 if (!PN) return; // No PHI nodes. 638 639 // If the header node contains any PHI nodes, check to see if there is more 640 // than one entry from outside the region. If so, we need to sever the 641 // header block into two. 642 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 643 if (Blocks.count(PN->getIncomingBlock(i))) 644 ++NumPredsFromRegion; 645 else 646 ++NumPredsOutsideRegion; 647 648 // If there is one (or fewer) predecessor from outside the region, we don't 649 // need to do anything special. 650 if (NumPredsOutsideRegion <= 1) return; 651 } 652 653 // Otherwise, we need to split the header block into two pieces: one 654 // containing PHI nodes merging values from outside of the region, and a 655 // second that contains all of the code for the block and merges back any 656 // incoming values from inside of the region. 657 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 658 659 // We only want to code extract the second block now, and it becomes the new 660 // header of the region. 661 BasicBlock *OldPred = Header; 662 Blocks.remove(OldPred); 663 Blocks.insert(NewBB); 664 Header = NewBB; 665 666 // Okay, now we need to adjust the PHI nodes and any branches from within the 667 // region to go to the new header block instead of the old header block. 668 if (NumPredsFromRegion) { 669 PHINode *PN = cast<PHINode>(OldPred->begin()); 670 // Loop over all of the predecessors of OldPred that are in the region, 671 // changing them to branch to NewBB instead. 672 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 673 if (Blocks.count(PN->getIncomingBlock(i))) { 674 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 675 TI->replaceUsesOfWith(OldPred, NewBB); 676 } 677 678 // Okay, everything within the region is now branching to the right block, we 679 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 680 BasicBlock::iterator AfterPHIs; 681 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 682 PHINode *PN = cast<PHINode>(AfterPHIs); 683 // Create a new PHI node in the new region, which has an incoming value 684 // from OldPred of PN. 685 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 686 PN->getName() + ".ce", &NewBB->front()); 687 PN->replaceAllUsesWith(NewPN); 688 NewPN->addIncoming(PN, OldPred); 689 690 // Loop over all of the incoming value in PN, moving them to NewPN if they 691 // are from the extracted region. 692 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 693 if (Blocks.count(PN->getIncomingBlock(i))) { 694 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 695 PN->removeIncomingValue(i); 696 --i; 697 } 698 } 699 } 700 } 701 } 702 703 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 704 /// outlined region, we split these PHIs on two: one with inputs from region 705 /// and other with remaining incoming blocks; then first PHIs are placed in 706 /// outlined region. 707 void CodeExtractor::severSplitPHINodesOfExits( 708 const SmallPtrSetImpl<BasicBlock *> &Exits) { 709 for (BasicBlock *ExitBB : Exits) { 710 BasicBlock *NewBB = nullptr; 711 712 for (PHINode &PN : ExitBB->phis()) { 713 // Find all incoming values from the outlining region. 714 SmallVector<unsigned, 2> IncomingVals; 715 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 716 if (Blocks.count(PN.getIncomingBlock(i))) 717 IncomingVals.push_back(i); 718 719 // Do not process PHI if there is one (or fewer) predecessor from region. 720 // If PHI has exactly one predecessor from region, only this one incoming 721 // will be replaced on codeRepl block, so it should be safe to skip PHI. 722 if (IncomingVals.size() <= 1) 723 continue; 724 725 // Create block for new PHIs and add it to the list of outlined if it 726 // wasn't done before. 727 if (!NewBB) { 728 NewBB = BasicBlock::Create(ExitBB->getContext(), 729 ExitBB->getName() + ".split", 730 ExitBB->getParent(), ExitBB); 731 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB), 732 pred_end(ExitBB)); 733 for (BasicBlock *PredBB : Preds) 734 if (Blocks.count(PredBB)) 735 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 736 BranchInst::Create(ExitBB, NewBB); 737 Blocks.insert(NewBB); 738 } 739 740 // Split this PHI. 741 PHINode *NewPN = 742 PHINode::Create(PN.getType(), IncomingVals.size(), 743 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 744 for (unsigned i : IncomingVals) 745 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 746 for (unsigned i : reverse(IncomingVals)) 747 PN.removeIncomingValue(i, false); 748 PN.addIncoming(NewPN, NewBB); 749 } 750 } 751 } 752 753 void CodeExtractor::splitReturnBlocks() { 754 for (BasicBlock *Block : Blocks) 755 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 756 BasicBlock *New = 757 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 758 if (DT) { 759 // Old dominates New. New node dominates all other nodes dominated 760 // by Old. 761 DomTreeNode *OldNode = DT->getNode(Block); 762 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 763 OldNode->end()); 764 765 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 766 767 for (DomTreeNode *I : Children) 768 DT->changeImmediateDominator(I, NewNode); 769 } 770 } 771 } 772 773 /// constructFunction - make a function based on inputs and outputs, as follows: 774 /// f(in0, ..., inN, out0, ..., outN) 775 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 776 const ValueSet &outputs, 777 BasicBlock *header, 778 BasicBlock *newRootNode, 779 BasicBlock *newHeader, 780 Function *oldFunction, 781 Module *M) { 782 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 783 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 784 785 // This function returns unsigned, outputs will go back by reference. 786 switch (NumExitBlocks) { 787 case 0: 788 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 789 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 790 default: RetTy = Type::getInt16Ty(header->getContext()); break; 791 } 792 793 std::vector<Type *> paramTy; 794 795 // Add the types of the input values to the function's argument list 796 for (Value *value : inputs) { 797 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 798 paramTy.push_back(value->getType()); 799 } 800 801 // Add the types of the output values to the function's argument list. 802 for (Value *output : outputs) { 803 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 804 if (AggregateArgs) 805 paramTy.push_back(output->getType()); 806 else 807 paramTy.push_back(PointerType::getUnqual(output->getType())); 808 } 809 810 LLVM_DEBUG({ 811 dbgs() << "Function type: " << *RetTy << " f("; 812 for (Type *i : paramTy) 813 dbgs() << *i << ", "; 814 dbgs() << ")\n"; 815 }); 816 817 StructType *StructTy = nullptr; 818 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 819 StructTy = StructType::get(M->getContext(), paramTy); 820 paramTy.clear(); 821 paramTy.push_back(PointerType::getUnqual(StructTy)); 822 } 823 FunctionType *funcType = 824 FunctionType::get(RetTy, paramTy, 825 AllowVarArgs && oldFunction->isVarArg()); 826 827 std::string SuffixToUse = 828 Suffix.empty() 829 ? (header->getName().empty() ? "extracted" : header->getName().str()) 830 : Suffix; 831 // Create the new function 832 Function *newFunction = Function::Create( 833 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 834 oldFunction->getName() + "." + SuffixToUse, M); 835 // If the old function is no-throw, so is the new one. 836 if (oldFunction->doesNotThrow()) 837 newFunction->setDoesNotThrow(); 838 839 // Inherit the uwtable attribute if we need to. 840 if (oldFunction->hasUWTable()) 841 newFunction->setHasUWTable(); 842 843 // Inherit all of the target dependent attributes and white-listed 844 // target independent attributes. 845 // (e.g. If the extracted region contains a call to an x86.sse 846 // instruction we need to make sure that the extracted region has the 847 // "target-features" attribute allowing it to be lowered. 848 // FIXME: This should be changed to check to see if a specific 849 // attribute can not be inherited. 850 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { 851 if (Attr.isStringAttribute()) { 852 if (Attr.getKindAsString() == "thunk") 853 continue; 854 } else 855 switch (Attr.getKindAsEnum()) { 856 // Those attributes cannot be propagated safely. Explicitly list them 857 // here so we get a warning if new attributes are added. This list also 858 // includes non-function attributes. 859 case Attribute::Alignment: 860 case Attribute::AllocSize: 861 case Attribute::ArgMemOnly: 862 case Attribute::Builtin: 863 case Attribute::ByVal: 864 case Attribute::Convergent: 865 case Attribute::Dereferenceable: 866 case Attribute::DereferenceableOrNull: 867 case Attribute::InAlloca: 868 case Attribute::InReg: 869 case Attribute::InaccessibleMemOnly: 870 case Attribute::InaccessibleMemOrArgMemOnly: 871 case Attribute::JumpTable: 872 case Attribute::Naked: 873 case Attribute::Nest: 874 case Attribute::NoAlias: 875 case Attribute::NoBuiltin: 876 case Attribute::NoCapture: 877 case Attribute::NoMerge: 878 case Attribute::NoReturn: 879 case Attribute::NoSync: 880 case Attribute::NoUndef: 881 case Attribute::None: 882 case Attribute::NonNull: 883 case Attribute::Preallocated: 884 case Attribute::ReadNone: 885 case Attribute::ReadOnly: 886 case Attribute::Returned: 887 case Attribute::ReturnsTwice: 888 case Attribute::SExt: 889 case Attribute::Speculatable: 890 case Attribute::StackAlignment: 891 case Attribute::StructRet: 892 case Attribute::SwiftError: 893 case Attribute::SwiftSelf: 894 case Attribute::WillReturn: 895 case Attribute::WriteOnly: 896 case Attribute::ZExt: 897 case Attribute::ImmArg: 898 case Attribute::ByRef: 899 case Attribute::EndAttrKinds: 900 case Attribute::EmptyKey: 901 case Attribute::TombstoneKey: 902 continue; 903 // Those attributes should be safe to propagate to the extracted function. 904 case Attribute::AlwaysInline: 905 case Attribute::Cold: 906 case Attribute::NoRecurse: 907 case Attribute::InlineHint: 908 case Attribute::MinSize: 909 case Attribute::NoDuplicate: 910 case Attribute::NoFree: 911 case Attribute::NoImplicitFloat: 912 case Attribute::NoInline: 913 case Attribute::NonLazyBind: 914 case Attribute::NoRedZone: 915 case Attribute::NoUnwind: 916 case Attribute::NullPointerIsValid: 917 case Attribute::OptForFuzzing: 918 case Attribute::OptimizeNone: 919 case Attribute::OptimizeForSize: 920 case Attribute::SafeStack: 921 case Attribute::ShadowCallStack: 922 case Attribute::SanitizeAddress: 923 case Attribute::SanitizeMemory: 924 case Attribute::SanitizeThread: 925 case Attribute::SanitizeHWAddress: 926 case Attribute::SanitizeMemTag: 927 case Attribute::SpeculativeLoadHardening: 928 case Attribute::NoStackProtect: 929 case Attribute::StackProtect: 930 case Attribute::StackProtectReq: 931 case Attribute::StackProtectStrong: 932 case Attribute::StrictFP: 933 case Attribute::UWTable: 934 case Attribute::NoCfCheck: 935 case Attribute::MustProgress: 936 break; 937 } 938 939 newFunction->addFnAttr(Attr); 940 } 941 newFunction->getBasicBlockList().push_back(newRootNode); 942 943 // Create an iterator to name all of the arguments we inserted. 944 Function::arg_iterator AI = newFunction->arg_begin(); 945 946 // Rewrite all users of the inputs in the extracted region to use the 947 // arguments (or appropriate addressing into struct) instead. 948 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 949 Value *RewriteVal; 950 if (AggregateArgs) { 951 Value *Idx[2]; 952 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 953 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 954 Instruction *TI = newFunction->begin()->getTerminator(); 955 GetElementPtrInst *GEP = GetElementPtrInst::Create( 956 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 957 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP, 958 "loadgep_" + inputs[i]->getName(), TI); 959 } else 960 RewriteVal = &*AI++; 961 962 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 963 for (User *use : Users) 964 if (Instruction *inst = dyn_cast<Instruction>(use)) 965 if (Blocks.count(inst->getParent())) 966 inst->replaceUsesOfWith(inputs[i], RewriteVal); 967 } 968 969 // Set names for input and output arguments. 970 if (!AggregateArgs) { 971 AI = newFunction->arg_begin(); 972 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 973 AI->setName(inputs[i]->getName()); 974 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 975 AI->setName(outputs[i]->getName()+".out"); 976 } 977 978 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 979 // within the new function. This must be done before we lose track of which 980 // blocks were originally in the code region. 981 std::vector<User *> Users(header->user_begin(), header->user_end()); 982 for (auto &U : Users) 983 // The BasicBlock which contains the branch is not in the region 984 // modify the branch target to a new block 985 if (Instruction *I = dyn_cast<Instruction>(U)) 986 if (I->isTerminator() && I->getFunction() == oldFunction && 987 !Blocks.count(I->getParent())) 988 I->replaceUsesOfWith(header, newHeader); 989 990 return newFunction; 991 } 992 993 /// Erase lifetime.start markers which reference inputs to the extraction 994 /// region, and insert the referenced memory into \p LifetimesStart. 995 /// 996 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 997 /// of allocas which will be moved from the caller function into the extracted 998 /// function (\p SunkAllocas). 999 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 1000 const SetVector<Value *> &SunkAllocas, 1001 SetVector<Value *> &LifetimesStart) { 1002 for (BasicBlock *BB : Blocks) { 1003 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1004 auto *II = dyn_cast<IntrinsicInst>(&*It); 1005 ++It; 1006 if (!II || !II->isLifetimeStartOrEnd()) 1007 continue; 1008 1009 // Get the memory operand of the lifetime marker. If the underlying 1010 // object is a sunk alloca, or is otherwise defined in the extraction 1011 // region, the lifetime marker must not be erased. 1012 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1013 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1014 continue; 1015 1016 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1017 LifetimesStart.insert(Mem); 1018 II->eraseFromParent(); 1019 } 1020 } 1021 } 1022 1023 /// Insert lifetime start/end markers surrounding the call to the new function 1024 /// for objects defined in the caller. 1025 static void insertLifetimeMarkersSurroundingCall( 1026 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1027 CallInst *TheCall) { 1028 LLVMContext &Ctx = M->getContext(); 1029 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 1030 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1031 Instruction *Term = TheCall->getParent()->getTerminator(); 1032 1033 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 1034 // needed to satisfy this requirement so they may be reused. 1035 DenseMap<Value *, Value *> Bitcasts; 1036 1037 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1038 // markers before the call if \p InsertBefore, and after the call otherwise. 1039 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 1040 bool InsertBefore) { 1041 for (Value *Mem : Objects) { 1042 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1043 TheCall->getFunction()) && 1044 "Input memory not defined in original function"); 1045 Value *&MemAsI8Ptr = Bitcasts[Mem]; 1046 if (!MemAsI8Ptr) { 1047 if (Mem->getType() == Int8PtrTy) 1048 MemAsI8Ptr = Mem; 1049 else 1050 MemAsI8Ptr = 1051 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 1052 } 1053 1054 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 1055 if (InsertBefore) 1056 Marker->insertBefore(TheCall); 1057 else 1058 Marker->insertBefore(Term); 1059 } 1060 }; 1061 1062 if (!LifetimesStart.empty()) { 1063 auto StartFn = llvm::Intrinsic::getDeclaration( 1064 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 1065 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 1066 } 1067 1068 if (!LifetimesEnd.empty()) { 1069 auto EndFn = llvm::Intrinsic::getDeclaration( 1070 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 1071 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 1072 } 1073 } 1074 1075 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1076 /// the call instruction, splitting any PHI nodes in the header block as 1077 /// necessary. 1078 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1079 BasicBlock *codeReplacer, 1080 ValueSet &inputs, 1081 ValueSet &outputs) { 1082 // Emit a call to the new function, passing in: *pointer to struct (if 1083 // aggregating parameters), or plan inputs and allocated memory for outputs 1084 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 1085 1086 Module *M = newFunction->getParent(); 1087 LLVMContext &Context = M->getContext(); 1088 const DataLayout &DL = M->getDataLayout(); 1089 CallInst *call = nullptr; 1090 1091 // Add inputs as params, or to be filled into the struct 1092 unsigned ArgNo = 0; 1093 SmallVector<unsigned, 1> SwiftErrorArgs; 1094 for (Value *input : inputs) { 1095 if (AggregateArgs) 1096 StructValues.push_back(input); 1097 else { 1098 params.push_back(input); 1099 if (input->isSwiftError()) 1100 SwiftErrorArgs.push_back(ArgNo); 1101 } 1102 ++ArgNo; 1103 } 1104 1105 // Create allocas for the outputs 1106 for (Value *output : outputs) { 1107 if (AggregateArgs) { 1108 StructValues.push_back(output); 1109 } else { 1110 AllocaInst *alloca = 1111 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1112 nullptr, output->getName() + ".loc", 1113 &codeReplacer->getParent()->front().front()); 1114 ReloadOutputs.push_back(alloca); 1115 params.push_back(alloca); 1116 } 1117 } 1118 1119 StructType *StructArgTy = nullptr; 1120 AllocaInst *Struct = nullptr; 1121 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 1122 std::vector<Type *> ArgTypes; 1123 for (ValueSet::iterator v = StructValues.begin(), 1124 ve = StructValues.end(); v != ve; ++v) 1125 ArgTypes.push_back((*v)->getType()); 1126 1127 // Allocate a struct at the beginning of this function 1128 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1129 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 1130 "structArg", 1131 &codeReplacer->getParent()->front().front()); 1132 params.push_back(Struct); 1133 1134 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 1135 Value *Idx[2]; 1136 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1137 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1138 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1139 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1140 codeReplacer->getInstList().push_back(GEP); 1141 new StoreInst(StructValues[i], GEP, codeReplacer); 1142 } 1143 } 1144 1145 // Emit the call to the function 1146 call = CallInst::Create(newFunction, params, 1147 NumExitBlocks > 1 ? "targetBlock" : ""); 1148 // Add debug location to the new call, if the original function has debug 1149 // info. In that case, the terminator of the entry block of the extracted 1150 // function contains the first debug location of the extracted function, 1151 // set in extractCodeRegion. 1152 if (codeReplacer->getParent()->getSubprogram()) { 1153 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1154 call->setDebugLoc(DL); 1155 } 1156 codeReplacer->getInstList().push_back(call); 1157 1158 // Set swifterror parameter attributes. 1159 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1160 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1161 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1162 } 1163 1164 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 1165 unsigned FirstOut = inputs.size(); 1166 if (!AggregateArgs) 1167 std::advance(OutputArgBegin, inputs.size()); 1168 1169 // Reload the outputs passed in by reference. 1170 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1171 Value *Output = nullptr; 1172 if (AggregateArgs) { 1173 Value *Idx[2]; 1174 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1175 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1176 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1177 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1178 codeReplacer->getInstList().push_back(GEP); 1179 Output = GEP; 1180 } else { 1181 Output = ReloadOutputs[i]; 1182 } 1183 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1184 outputs[i]->getName() + ".reload", 1185 codeReplacer); 1186 Reloads.push_back(load); 1187 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1188 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1189 Instruction *inst = cast<Instruction>(Users[u]); 1190 if (!Blocks.count(inst->getParent())) 1191 inst->replaceUsesOfWith(outputs[i], load); 1192 } 1193 } 1194 1195 // Now we can emit a switch statement using the call as a value. 1196 SwitchInst *TheSwitch = 1197 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1198 codeReplacer, 0, codeReplacer); 1199 1200 // Since there may be multiple exits from the original region, make the new 1201 // function return an unsigned, switch on that number. This loop iterates 1202 // over all of the blocks in the extracted region, updating any terminator 1203 // instructions in the to-be-extracted region that branch to blocks that are 1204 // not in the region to be extracted. 1205 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1206 1207 unsigned switchVal = 0; 1208 for (BasicBlock *Block : Blocks) { 1209 Instruction *TI = Block->getTerminator(); 1210 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1211 if (!Blocks.count(TI->getSuccessor(i))) { 1212 BasicBlock *OldTarget = TI->getSuccessor(i); 1213 // add a new basic block which returns the appropriate value 1214 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1215 if (!NewTarget) { 1216 // If we don't already have an exit stub for this non-extracted 1217 // destination, create one now! 1218 NewTarget = BasicBlock::Create(Context, 1219 OldTarget->getName() + ".exitStub", 1220 newFunction); 1221 unsigned SuccNum = switchVal++; 1222 1223 Value *brVal = nullptr; 1224 switch (NumExitBlocks) { 1225 case 0: 1226 case 1: break; // No value needed. 1227 case 2: // Conditional branch, return a bool 1228 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1229 break; 1230 default: 1231 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1232 break; 1233 } 1234 1235 ReturnInst::Create(Context, brVal, NewTarget); 1236 1237 // Update the switch instruction. 1238 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1239 SuccNum), 1240 OldTarget); 1241 } 1242 1243 // rewrite the original branch instruction with this new target 1244 TI->setSuccessor(i, NewTarget); 1245 } 1246 } 1247 1248 // Store the arguments right after the definition of output value. 1249 // This should be proceeded after creating exit stubs to be ensure that invoke 1250 // result restore will be placed in the outlined function. 1251 Function::arg_iterator OAI = OutputArgBegin; 1252 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1253 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1254 if (!OutI) 1255 continue; 1256 1257 // Find proper insertion point. 1258 BasicBlock::iterator InsertPt; 1259 // In case OutI is an invoke, we insert the store at the beginning in the 1260 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1261 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1262 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1263 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1264 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1265 else 1266 InsertPt = std::next(OutI->getIterator()); 1267 1268 Instruction *InsertBefore = &*InsertPt; 1269 assert((InsertBefore->getFunction() == newFunction || 1270 Blocks.count(InsertBefore->getParent())) && 1271 "InsertPt should be in new function"); 1272 assert(OAI != newFunction->arg_end() && 1273 "Number of output arguments should match " 1274 "the amount of defined values"); 1275 if (AggregateArgs) { 1276 Value *Idx[2]; 1277 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1278 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1279 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1280 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), 1281 InsertBefore); 1282 new StoreInst(outputs[i], GEP, InsertBefore); 1283 // Since there should be only one struct argument aggregating 1284 // all the output values, we shouldn't increment OAI, which always 1285 // points to the struct argument, in this case. 1286 } else { 1287 new StoreInst(outputs[i], &*OAI, InsertBefore); 1288 ++OAI; 1289 } 1290 } 1291 1292 // Now that we've done the deed, simplify the switch instruction. 1293 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1294 switch (NumExitBlocks) { 1295 case 0: 1296 // There are no successors (the block containing the switch itself), which 1297 // means that previously this was the last part of the function, and hence 1298 // this should be rewritten as a `ret' 1299 1300 // Check if the function should return a value 1301 if (OldFnRetTy->isVoidTy()) { 1302 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1303 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1304 // return what we have 1305 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1306 } else { 1307 // Otherwise we must have code extracted an unwind or something, just 1308 // return whatever we want. 1309 ReturnInst::Create(Context, 1310 Constant::getNullValue(OldFnRetTy), TheSwitch); 1311 } 1312 1313 TheSwitch->eraseFromParent(); 1314 break; 1315 case 1: 1316 // Only a single destination, change the switch into an unconditional 1317 // branch. 1318 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1319 TheSwitch->eraseFromParent(); 1320 break; 1321 case 2: 1322 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1323 call, TheSwitch); 1324 TheSwitch->eraseFromParent(); 1325 break; 1326 default: 1327 // Otherwise, make the default destination of the switch instruction be one 1328 // of the other successors. 1329 TheSwitch->setCondition(call); 1330 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1331 // Remove redundant case 1332 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1333 break; 1334 } 1335 1336 // Insert lifetime markers around the reloads of any output values. The 1337 // allocas output values are stored in are only in-use in the codeRepl block. 1338 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1339 1340 return call; 1341 } 1342 1343 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1344 Function *oldFunc = (*Blocks.begin())->getParent(); 1345 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1346 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1347 1348 for (BasicBlock *Block : Blocks) { 1349 // Delete the basic block from the old function, and the list of blocks 1350 oldBlocks.remove(Block); 1351 1352 // Insert this basic block into the new function 1353 newBlocks.push_back(Block); 1354 } 1355 } 1356 1357 void CodeExtractor::calculateNewCallTerminatorWeights( 1358 BasicBlock *CodeReplacer, 1359 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1360 BranchProbabilityInfo *BPI) { 1361 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1362 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1363 1364 // Update the branch weights for the exit block. 1365 Instruction *TI = CodeReplacer->getTerminator(); 1366 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1367 1368 // Block Frequency distribution with dummy node. 1369 Distribution BranchDist; 1370 1371 SmallVector<BranchProbability, 4> EdgeProbabilities( 1372 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1373 1374 // Add each of the frequencies of the successors. 1375 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1376 BlockNode ExitNode(i); 1377 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1378 if (ExitFreq != 0) 1379 BranchDist.addExit(ExitNode, ExitFreq); 1380 else 1381 EdgeProbabilities[i] = BranchProbability::getZero(); 1382 } 1383 1384 // Check for no total weight. 1385 if (BranchDist.Total == 0) { 1386 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1387 return; 1388 } 1389 1390 // Normalize the distribution so that they can fit in unsigned. 1391 BranchDist.normalize(); 1392 1393 // Create normalized branch weights and set the metadata. 1394 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1395 const auto &Weight = BranchDist.Weights[I]; 1396 1397 // Get the weight and update the current BFI. 1398 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1399 BranchProbability BP(Weight.Amount, BranchDist.Total); 1400 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1401 } 1402 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1403 TI->setMetadata( 1404 LLVMContext::MD_prof, 1405 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1406 } 1407 1408 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1409 /// \p F. 1410 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1411 for (Instruction &I : instructions(F)) { 1412 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1413 findDbgUsers(DbgUsers, &I); 1414 for (DbgVariableIntrinsic *DVI : DbgUsers) 1415 if (DVI->getFunction() != &F) 1416 DVI->eraseFromParent(); 1417 } 1418 } 1419 1420 /// Fix up the debug info in the old and new functions by pointing line 1421 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1422 /// intrinsics which point to values outside of the new function. 1423 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1424 CallInst &TheCall) { 1425 DISubprogram *OldSP = OldFunc.getSubprogram(); 1426 LLVMContext &Ctx = OldFunc.getContext(); 1427 1428 if (!OldSP) { 1429 // Erase any debug info the new function contains. 1430 stripDebugInfo(NewFunc); 1431 // Make sure the old function doesn't contain any non-local metadata refs. 1432 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1433 return; 1434 } 1435 1436 // Create a subprogram for the new function. Leave out a description of the 1437 // function arguments, as the parameters don't correspond to anything at the 1438 // source level. 1439 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1440 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, 1441 OldSP->getUnit()); 1442 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 1443 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1444 DISubprogram::SPFlagOptimized | 1445 DISubprogram::SPFlagLocalToUnit; 1446 auto NewSP = DIB.createFunction( 1447 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1448 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1449 NewFunc.setSubprogram(NewSP); 1450 1451 // Debug intrinsics in the new function need to be updated in one of two 1452 // ways: 1453 // 1) They need to be deleted, because they describe a value in the old 1454 // function. 1455 // 2) They need to point to fresh metadata, e.g. because they currently 1456 // point to a variable in the wrong scope. 1457 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1458 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1459 for (Instruction &I : instructions(NewFunc)) { 1460 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1461 if (!DII) 1462 continue; 1463 1464 // Point the intrinsic to a fresh label within the new function. 1465 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1466 DILabel *OldLabel = DLI->getLabel(); 1467 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1468 if (!NewLabel) 1469 NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(), 1470 OldLabel->getFile(), OldLabel->getLine()); 1471 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); 1472 continue; 1473 } 1474 1475 // If the location isn't a constant or an instruction, delete the 1476 // intrinsic. 1477 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1478 Value *Location = DVI->getVariableLocation(); 1479 if (!Location || 1480 (!isa<Constant>(Location) && !isa<Instruction>(Location))) { 1481 DebugIntrinsicsToDelete.push_back(DVI); 1482 continue; 1483 } 1484 1485 // If the variable location is an instruction but isn't in the new 1486 // function, delete the intrinsic. 1487 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1488 if (LocationInst && LocationInst->getFunction() != &NewFunc) { 1489 DebugIntrinsicsToDelete.push_back(DVI); 1490 continue; 1491 } 1492 1493 // Point the intrinsic to a fresh variable within the new function. 1494 DILocalVariable *OldVar = DVI->getVariable(); 1495 DINode *&NewVar = RemappedMetadata[OldVar]; 1496 if (!NewVar) 1497 NewVar = DIB.createAutoVariable( 1498 NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1499 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1500 OldVar->getAlignInBits()); 1501 DVI->setArgOperand(1, MetadataAsValue::get(Ctx, NewVar)); 1502 } 1503 for (auto *DII : DebugIntrinsicsToDelete) 1504 DII->eraseFromParent(); 1505 DIB.finalizeSubprogram(NewSP); 1506 1507 // Fix up the scope information attached to the line locations in the new 1508 // function. 1509 for (Instruction &I : instructions(NewFunc)) { 1510 if (const DebugLoc &DL = I.getDebugLoc()) 1511 I.setDebugLoc(DebugLoc::get(DL.getLine(), DL.getCol(), NewSP)); 1512 1513 // Loop info metadata may contain line locations. Fix them up. 1514 auto updateLoopInfoLoc = [&Ctx, 1515 NewSP](const DILocation &Loc) -> DILocation * { 1516 return DILocation::get(Ctx, Loc.getLine(), Loc.getColumn(), NewSP, 1517 nullptr); 1518 }; 1519 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1520 } 1521 if (!TheCall.getDebugLoc()) 1522 TheCall.setDebugLoc(DebugLoc::get(0, 0, OldSP)); 1523 1524 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1525 } 1526 1527 Function * 1528 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1529 if (!isEligible()) 1530 return nullptr; 1531 1532 // Assumption: this is a single-entry code region, and the header is the first 1533 // block in the region. 1534 BasicBlock *header = *Blocks.begin(); 1535 Function *oldFunction = header->getParent(); 1536 1537 // Calculate the entry frequency of the new function before we change the root 1538 // block. 1539 BlockFrequency EntryFreq; 1540 if (BFI) { 1541 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1542 for (BasicBlock *Pred : predecessors(header)) { 1543 if (Blocks.count(Pred)) 1544 continue; 1545 EntryFreq += 1546 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1547 } 1548 } 1549 1550 // Remove @llvm.assume calls that will be moved to the new function from the 1551 // old function's assumption cache. 1552 for (BasicBlock *Block : Blocks) { 1553 for (auto It = Block->begin(), End = Block->end(); It != End;) { 1554 Instruction *I = &*It; 1555 ++It; 1556 1557 if (match(I, m_Intrinsic<Intrinsic::assume>())) { 1558 if (AC) 1559 AC->unregisterAssumption(cast<CallInst>(I)); 1560 I->eraseFromParent(); 1561 } 1562 } 1563 } 1564 1565 // If we have any return instructions in the region, split those blocks so 1566 // that the return is not in the region. 1567 splitReturnBlocks(); 1568 1569 // Calculate the exit blocks for the extracted region and the total exit 1570 // weights for each of those blocks. 1571 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1572 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1573 for (BasicBlock *Block : Blocks) { 1574 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1575 ++SI) { 1576 if (!Blocks.count(*SI)) { 1577 // Update the branch weight for this successor. 1578 if (BFI) { 1579 BlockFrequency &BF = ExitWeights[*SI]; 1580 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1581 } 1582 ExitBlocks.insert(*SI); 1583 } 1584 } 1585 } 1586 NumExitBlocks = ExitBlocks.size(); 1587 1588 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1589 severSplitPHINodesOfEntry(header); 1590 severSplitPHINodesOfExits(ExitBlocks); 1591 1592 // This takes place of the original loop 1593 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1594 "codeRepl", oldFunction, 1595 header); 1596 1597 // The new function needs a root node because other nodes can branch to the 1598 // head of the region, but the entry node of a function cannot have preds. 1599 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1600 "newFuncRoot"); 1601 auto *BranchI = BranchInst::Create(header); 1602 // If the original function has debug info, we have to add a debug location 1603 // to the new branch instruction from the artificial entry block. 1604 // We use the debug location of the first instruction in the extracted 1605 // blocks, as there is no other equivalent line in the source code. 1606 if (oldFunction->getSubprogram()) { 1607 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1608 return any_of(*BB, [&BranchI](const Instruction &I) { 1609 if (!I.getDebugLoc()) 1610 return false; 1611 BranchI->setDebugLoc(I.getDebugLoc()); 1612 return true; 1613 }); 1614 }); 1615 } 1616 newFuncRoot->getInstList().push_back(BranchI); 1617 1618 ValueSet inputs, outputs, SinkingCands, HoistingCands; 1619 BasicBlock *CommonExit = nullptr; 1620 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1621 assert(HoistingCands.empty() || CommonExit); 1622 1623 // Find inputs to, outputs from the code region. 1624 findInputsOutputs(inputs, outputs, SinkingCands); 1625 1626 // Now sink all instructions which only have non-phi uses inside the region. 1627 // Group the allocas at the start of the block, so that any bitcast uses of 1628 // the allocas are well-defined. 1629 AllocaInst *FirstSunkAlloca = nullptr; 1630 for (auto *II : SinkingCands) { 1631 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1632 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1633 if (!FirstSunkAlloca) 1634 FirstSunkAlloca = AI; 1635 } 1636 } 1637 assert((SinkingCands.empty() || FirstSunkAlloca) && 1638 "Did not expect a sink candidate without any allocas"); 1639 for (auto *II : SinkingCands) { 1640 if (!isa<AllocaInst>(II)) { 1641 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1642 } 1643 } 1644 1645 if (!HoistingCands.empty()) { 1646 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1647 Instruction *TI = HoistToBlock->getTerminator(); 1648 for (auto *II : HoistingCands) 1649 cast<Instruction>(II)->moveBefore(TI); 1650 } 1651 1652 // Collect objects which are inputs to the extraction region and also 1653 // referenced by lifetime start markers within it. The effects of these 1654 // markers must be replicated in the calling function to prevent the stack 1655 // coloring pass from merging slots which store input objects. 1656 ValueSet LifetimesStart; 1657 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1658 1659 // Construct new function based on inputs/outputs & add allocas for all defs. 1660 Function *newFunction = 1661 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1662 oldFunction, oldFunction->getParent()); 1663 1664 // Update the entry count of the function. 1665 if (BFI) { 1666 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1667 if (Count.hasValue()) 1668 newFunction->setEntryCount( 1669 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1670 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1671 } 1672 1673 CallInst *TheCall = 1674 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1675 1676 moveCodeToFunction(newFunction); 1677 1678 // Replicate the effects of any lifetime start/end markers which referenced 1679 // input objects in the extraction region by placing markers around the call. 1680 insertLifetimeMarkersSurroundingCall( 1681 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1682 1683 // Propagate personality info to the new function if there is one. 1684 if (oldFunction->hasPersonalityFn()) 1685 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1686 1687 // Update the branch weights for the exit block. 1688 if (BFI && NumExitBlocks > 1) 1689 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1690 1691 // Loop over all of the PHI nodes in the header and exit blocks, and change 1692 // any references to the old incoming edge to be the new incoming edge. 1693 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1694 PHINode *PN = cast<PHINode>(I); 1695 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1696 if (!Blocks.count(PN->getIncomingBlock(i))) 1697 PN->setIncomingBlock(i, newFuncRoot); 1698 } 1699 1700 for (BasicBlock *ExitBB : ExitBlocks) 1701 for (PHINode &PN : ExitBB->phis()) { 1702 Value *IncomingCodeReplacerVal = nullptr; 1703 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1704 // Ignore incoming values from outside of the extracted region. 1705 if (!Blocks.count(PN.getIncomingBlock(i))) 1706 continue; 1707 1708 // Ensure that there is only one incoming value from codeReplacer. 1709 if (!IncomingCodeReplacerVal) { 1710 PN.setIncomingBlock(i, codeReplacer); 1711 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1712 } else 1713 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1714 "PHI has two incompatbile incoming values from codeRepl"); 1715 } 1716 } 1717 1718 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1719 1720 // Mark the new function `noreturn` if applicable. Terminators which resume 1721 // exception propagation are treated as returning instructions. This is to 1722 // avoid inserting traps after calls to outlined functions which unwind. 1723 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1724 const Instruction *Term = BB.getTerminator(); 1725 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1726 }); 1727 if (doesNotReturn) 1728 newFunction->setDoesNotReturn(); 1729 1730 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1731 newFunction->dump(); 1732 report_fatal_error("verification of newFunction failed!"); 1733 }); 1734 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1735 report_fatal_error("verification of oldFunction failed!")); 1736 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1737 report_fatal_error("Stale Asumption cache for old Function!")); 1738 return newFunction; 1739 } 1740 1741 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1742 const Function &NewFunc, 1743 AssumptionCache *AC) { 1744 for (auto AssumeVH : AC->assumptions()) { 1745 auto *I = dyn_cast_or_null<CallInst>(AssumeVH); 1746 if (!I) 1747 continue; 1748 1749 // There shouldn't be any llvm.assume intrinsics in the new function. 1750 if (I->getFunction() != &OldFunc) 1751 return true; 1752 1753 // There shouldn't be any stale affected values in the assumption cache 1754 // that were previously in the old function, but that have now been moved 1755 // to the new function. 1756 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1757 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1758 if (!AffectedCI) 1759 continue; 1760 if (AffectedCI->getFunction() != &OldFunc) 1761 return true; 1762 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); 1763 if (AssumedInst->getFunction() != &OldFunc) 1764 return true; 1765 } 1766 } 1767 return false; 1768 } 1769