1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/Module.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Analysis/Dominators.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/Verifier.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Compiler.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include <algorithm> 35 #include <set> 36 using namespace llvm; 37 38 // Provide a command-line option to aggregate function arguments into a struct 39 // for functions produced by the code extractor. This is useful when converting 40 // extracted functions to pthread-based code, as only one argument (void*) can 41 // be passed in to pthread_create(). 42 static cl::opt<bool> 43 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 44 cl::desc("Aggregate arguments to code-extracted functions")); 45 46 namespace { 47 class VISIBILITY_HIDDEN CodeExtractor { 48 typedef std::vector<Value*> Values; 49 std::set<BasicBlock*> BlocksToExtract; 50 DominatorTree* DT; 51 bool AggregateArgs; 52 unsigned NumExitBlocks; 53 const Type *RetTy; 54 public: 55 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false) 56 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} 57 58 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 59 60 bool isEligible(const std::vector<BasicBlock*> &code); 61 62 private: 63 /// definedInRegion - Return true if the specified value is defined in the 64 /// extracted region. 65 bool definedInRegion(Value *V) const { 66 if (Instruction *I = dyn_cast<Instruction>(V)) 67 if (BlocksToExtract.count(I->getParent())) 68 return true; 69 return false; 70 } 71 72 /// definedInCaller - Return true if the specified value is defined in the 73 /// function being code extracted, but not in the region being extracted. 74 /// These values must be passed in as live-ins to the function. 75 bool definedInCaller(Value *V) const { 76 if (isa<Argument>(V)) return true; 77 if (Instruction *I = dyn_cast<Instruction>(V)) 78 if (!BlocksToExtract.count(I->getParent())) 79 return true; 80 return false; 81 } 82 83 void severSplitPHINodes(BasicBlock *&Header); 84 void splitReturnBlocks(); 85 void findInputsOutputs(Values &inputs, Values &outputs); 86 87 Function *constructFunction(const Values &inputs, 88 const Values &outputs, 89 BasicBlock *header, 90 BasicBlock *newRootNode, BasicBlock *newHeader, 91 Function *oldFunction, Module *M); 92 93 void moveCodeToFunction(Function *newFunction); 94 95 void emitCallAndSwitchStatement(Function *newFunction, 96 BasicBlock *newHeader, 97 Values &inputs, 98 Values &outputs); 99 100 }; 101 } 102 103 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 104 /// region, we need to split the entry block of the region so that the PHI node 105 /// is easier to deal with. 106 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 107 bool HasPredsFromRegion = false; 108 unsigned NumPredsOutsideRegion = 0; 109 110 if (Header != &Header->getParent()->getEntryBlock()) { 111 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 112 if (!PN) return; // No PHI nodes. 113 114 // If the header node contains any PHI nodes, check to see if there is more 115 // than one entry from outside the region. If so, we need to sever the 116 // header block into two. 117 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 118 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 119 HasPredsFromRegion = true; 120 else 121 ++NumPredsOutsideRegion; 122 123 // If there is one (or fewer) predecessor from outside the region, we don't 124 // need to do anything special. 125 if (NumPredsOutsideRegion <= 1) return; 126 } 127 128 // Otherwise, we need to split the header block into two pieces: one 129 // containing PHI nodes merging values from outside of the region, and a 130 // second that contains all of the code for the block and merges back any 131 // incoming values from inside of the region. 132 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI(); 133 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 134 Header->getName()+".ce"); 135 136 // We only want to code extract the second block now, and it becomes the new 137 // header of the region. 138 BasicBlock *OldPred = Header; 139 BlocksToExtract.erase(OldPred); 140 BlocksToExtract.insert(NewBB); 141 Header = NewBB; 142 143 // Okay, update dominator sets. The blocks that dominate the new one are the 144 // blocks that dominate TIBB plus the new block itself. 145 if (DT) 146 DT->splitBlock(NewBB); 147 148 // Okay, now we need to adjust the PHI nodes and any branches from within the 149 // region to go to the new header block instead of the old header block. 150 if (HasPredsFromRegion) { 151 PHINode *PN = cast<PHINode>(OldPred->begin()); 152 // Loop over all of the predecessors of OldPred that are in the region, 153 // changing them to branch to NewBB instead. 154 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 155 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 156 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 157 TI->replaceUsesOfWith(OldPred, NewBB); 158 } 159 160 // Okay, everthing within the region is now branching to the right block, we 161 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 162 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 163 PHINode *PN = cast<PHINode>(AfterPHIs); 164 // Create a new PHI node in the new region, which has an incoming value 165 // from OldPred of PN. 166 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce", 167 NewBB->begin()); 168 NewPN->addIncoming(PN, OldPred); 169 170 // Loop over all of the incoming value in PN, moving them to NewPN if they 171 // are from the extracted region. 172 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 173 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 174 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 175 PN->removeIncomingValue(i); 176 --i; 177 } 178 } 179 } 180 } 181 } 182 183 void CodeExtractor::splitReturnBlocks() { 184 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), 185 E = BlocksToExtract.end(); I != E; ++I) 186 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) { 187 BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 188 if (DT) { 189 // Old dominates New. New node domiantes all other nodes dominated 190 //by Old. 191 DomTreeNode *OldNode = DT->getNode(*I); 192 std::vector<DomTreeNode *> Children; 193 for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end(); 194 DI != DE; ++DI) 195 Children.push_back(*DI); 196 197 DomTreeNode *NewNode = DT->addNewBlock(New, *I); 198 199 for (std::vector<DomTreeNode *>::iterator I = Children.begin(), 200 E = Children.end(); I != E; ++I) 201 DT->changeImmediateDominator(*I, NewNode); 202 } 203 } 204 } 205 206 // findInputsOutputs - Find inputs to, outputs from the code region. 207 // 208 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 209 std::set<BasicBlock*> ExitBlocks; 210 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 211 ce = BlocksToExtract.end(); ci != ce; ++ci) { 212 BasicBlock *BB = *ci; 213 214 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 215 // If a used value is defined outside the region, it's an input. If an 216 // instruction is used outside the region, it's an output. 217 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 218 if (definedInCaller(*O)) 219 inputs.push_back(*O); 220 221 // Consider uses of this instruction (outputs). 222 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 223 UI != E; ++UI) 224 if (!definedInRegion(*UI)) { 225 outputs.push_back(I); 226 break; 227 } 228 } // for: insts 229 230 // Keep track of the exit blocks from the region. 231 TerminatorInst *TI = BB->getTerminator(); 232 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 233 if (!BlocksToExtract.count(TI->getSuccessor(i))) 234 ExitBlocks.insert(TI->getSuccessor(i)); 235 } // for: basic blocks 236 237 NumExitBlocks = ExitBlocks.size(); 238 239 // Eliminate duplicates. 240 std::sort(inputs.begin(), inputs.end()); 241 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end()); 242 std::sort(outputs.begin(), outputs.end()); 243 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end()); 244 } 245 246 /// constructFunction - make a function based on inputs and outputs, as follows: 247 /// f(in0, ..., inN, out0, ..., outN) 248 /// 249 Function *CodeExtractor::constructFunction(const Values &inputs, 250 const Values &outputs, 251 BasicBlock *header, 252 BasicBlock *newRootNode, 253 BasicBlock *newHeader, 254 Function *oldFunction, 255 Module *M) { 256 DEBUG(errs() << "inputs: " << inputs.size() << "\n"); 257 DEBUG(errs() << "outputs: " << outputs.size() << "\n"); 258 259 // This function returns unsigned, outputs will go back by reference. 260 switch (NumExitBlocks) { 261 case 0: 262 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 263 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 264 default: RetTy = Type::getInt16Ty(header->getContext()); break; 265 } 266 267 std::vector<const Type*> paramTy; 268 269 // Add the types of the input values to the function's argument list 270 for (Values::const_iterator i = inputs.begin(), 271 e = inputs.end(); i != e; ++i) { 272 const Value *value = *i; 273 DEBUG(errs() << "value used in func: " << *value << "\n"); 274 paramTy.push_back(value->getType()); 275 } 276 277 // Add the types of the output values to the function's argument list. 278 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 279 I != E; ++I) { 280 DEBUG(errs() << "instr used in func: " << **I << "\n"); 281 if (AggregateArgs) 282 paramTy.push_back((*I)->getType()); 283 else 284 paramTy.push_back(PointerType::getUnqual((*I)->getType())); 285 } 286 287 DEBUG(errs() << "Function type: " << *RetTy << " f("); 288 for (std::vector<const Type*>::iterator i = paramTy.begin(), 289 e = paramTy.end(); i != e; ++i) 290 DEBUG(errs() << **i << ", "); 291 DEBUG(errs() << ")\n"); 292 293 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 294 PointerType *StructPtr = 295 PointerType::getUnqual(StructType::get(M->getContext(), paramTy)); 296 paramTy.clear(); 297 paramTy.push_back(StructPtr); 298 } 299 const FunctionType *funcType = 300 FunctionType::get(RetTy, paramTy, false); 301 302 // Create the new function 303 Function *newFunction = Function::Create(funcType, 304 GlobalValue::InternalLinkage, 305 oldFunction->getName() + "_" + 306 header->getName(), M); 307 // If the old function is no-throw, so is the new one. 308 if (oldFunction->doesNotThrow()) 309 newFunction->setDoesNotThrow(true); 310 311 newFunction->getBasicBlockList().push_back(newRootNode); 312 313 // Create an iterator to name all of the arguments we inserted. 314 Function::arg_iterator AI = newFunction->arg_begin(); 315 316 // Rewrite all users of the inputs in the extracted region to use the 317 // arguments (or appropriate addressing into struct) instead. 318 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 319 Value *RewriteVal; 320 if (AggregateArgs) { 321 Value *Idx[2]; 322 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 323 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 324 TerminatorInst *TI = newFunction->begin()->getTerminator(); 325 GetElementPtrInst *GEP = 326 GetElementPtrInst::Create(AI, Idx, Idx+2, 327 "gep_" + inputs[i]->getName(), TI); 328 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 329 } else 330 RewriteVal = AI++; 331 332 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 333 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 334 use != useE; ++use) 335 if (Instruction* inst = dyn_cast<Instruction>(*use)) 336 if (BlocksToExtract.count(inst->getParent())) 337 inst->replaceUsesOfWith(inputs[i], RewriteVal); 338 } 339 340 // Set names for input and output arguments. 341 if (!AggregateArgs) { 342 AI = newFunction->arg_begin(); 343 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 344 AI->setName(inputs[i]->getName()); 345 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 346 AI->setName(outputs[i]->getName()+".out"); 347 } 348 349 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 350 // within the new function. This must be done before we lose track of which 351 // blocks were originally in the code region. 352 std::vector<User*> Users(header->use_begin(), header->use_end()); 353 for (unsigned i = 0, e = Users.size(); i != e; ++i) 354 // The BasicBlock which contains the branch is not in the region 355 // modify the branch target to a new block 356 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 357 if (!BlocksToExtract.count(TI->getParent()) && 358 TI->getParent()->getParent() == oldFunction) 359 TI->replaceUsesOfWith(header, newHeader); 360 361 return newFunction; 362 } 363 364 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 365 /// the call instruction, splitting any PHI nodes in the header block as 366 /// necessary. 367 void CodeExtractor:: 368 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 369 Values &inputs, Values &outputs) { 370 // Emit a call to the new function, passing in: *pointer to struct (if 371 // aggregating parameters), or plan inputs and allocated memory for outputs 372 std::vector<Value*> params, StructValues, ReloadOutputs; 373 374 LLVMContext &Context = newFunction->getContext(); 375 376 // Add inputs as params, or to be filled into the struct 377 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 378 if (AggregateArgs) 379 StructValues.push_back(*i); 380 else 381 params.push_back(*i); 382 383 // Create allocas for the outputs 384 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 385 if (AggregateArgs) { 386 StructValues.push_back(*i); 387 } else { 388 AllocaInst *alloca = 389 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 390 codeReplacer->getParent()->begin()->begin()); 391 ReloadOutputs.push_back(alloca); 392 params.push_back(alloca); 393 } 394 } 395 396 AllocaInst *Struct = 0; 397 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 398 std::vector<const Type*> ArgTypes; 399 for (Values::iterator v = StructValues.begin(), 400 ve = StructValues.end(); v != ve; ++v) 401 ArgTypes.push_back((*v)->getType()); 402 403 // Allocate a struct at the beginning of this function 404 Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 405 Struct = 406 new AllocaInst(StructArgTy, 0, "structArg", 407 codeReplacer->getParent()->begin()->begin()); 408 params.push_back(Struct); 409 410 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 411 Value *Idx[2]; 412 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 413 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 414 GetElementPtrInst *GEP = 415 GetElementPtrInst::Create(Struct, Idx, Idx + 2, 416 "gep_" + StructValues[i]->getName()); 417 codeReplacer->getInstList().push_back(GEP); 418 StoreInst *SI = new StoreInst(StructValues[i], GEP); 419 codeReplacer->getInstList().push_back(SI); 420 } 421 } 422 423 // Emit the call to the function 424 CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(), 425 NumExitBlocks > 1 ? "targetBlock" : ""); 426 codeReplacer->getInstList().push_back(call); 427 428 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 429 unsigned FirstOut = inputs.size(); 430 if (!AggregateArgs) 431 std::advance(OutputArgBegin, inputs.size()); 432 433 // Reload the outputs passed in by reference 434 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 435 Value *Output = 0; 436 if (AggregateArgs) { 437 Value *Idx[2]; 438 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 439 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 440 GetElementPtrInst *GEP 441 = GetElementPtrInst::Create(Struct, Idx, Idx + 2, 442 "gep_reload_" + outputs[i]->getName()); 443 codeReplacer->getInstList().push_back(GEP); 444 Output = GEP; 445 } else { 446 Output = ReloadOutputs[i]; 447 } 448 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 449 codeReplacer->getInstList().push_back(load); 450 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 451 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 452 Instruction *inst = cast<Instruction>(Users[u]); 453 if (!BlocksToExtract.count(inst->getParent())) 454 inst->replaceUsesOfWith(outputs[i], load); 455 } 456 } 457 458 // Now we can emit a switch statement using the call as a value. 459 SwitchInst *TheSwitch = 460 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 461 codeReplacer, 0, codeReplacer); 462 463 // Since there may be multiple exits from the original region, make the new 464 // function return an unsigned, switch on that number. This loop iterates 465 // over all of the blocks in the extracted region, updating any terminator 466 // instructions in the to-be-extracted region that branch to blocks that are 467 // not in the region to be extracted. 468 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 469 470 unsigned switchVal = 0; 471 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 472 e = BlocksToExtract.end(); i != e; ++i) { 473 TerminatorInst *TI = (*i)->getTerminator(); 474 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 475 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 476 BasicBlock *OldTarget = TI->getSuccessor(i); 477 // add a new basic block which returns the appropriate value 478 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 479 if (!NewTarget) { 480 // If we don't already have an exit stub for this non-extracted 481 // destination, create one now! 482 NewTarget = BasicBlock::Create(Context, 483 OldTarget->getName() + ".exitStub", 484 newFunction); 485 unsigned SuccNum = switchVal++; 486 487 Value *brVal = 0; 488 switch (NumExitBlocks) { 489 case 0: 490 case 1: break; // No value needed. 491 case 2: // Conditional branch, return a bool 492 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 493 break; 494 default: 495 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 496 break; 497 } 498 499 ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget); 500 501 // Update the switch instruction. 502 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 503 SuccNum), 504 OldTarget); 505 506 // Restore values just before we exit 507 Function::arg_iterator OAI = OutputArgBegin; 508 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 509 // For an invoke, the normal destination is the only one that is 510 // dominated by the result of the invocation 511 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 512 513 bool DominatesDef = true; 514 515 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 516 DefBlock = Invoke->getNormalDest(); 517 518 // Make sure we are looking at the original successor block, not 519 // at a newly inserted exit block, which won't be in the dominator 520 // info. 521 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 522 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 523 if (DefBlock == I->second) { 524 DefBlock = I->first; 525 break; 526 } 527 528 // In the extract block case, if the block we are extracting ends 529 // with an invoke instruction, make sure that we don't emit a 530 // store of the invoke value for the unwind block. 531 if (!DT && DefBlock != OldTarget) 532 DominatesDef = false; 533 } 534 535 if (DT) 536 DominatesDef = DT->dominates(DefBlock, OldTarget); 537 538 if (DominatesDef) { 539 if (AggregateArgs) { 540 Value *Idx[2]; 541 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 542 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), 543 FirstOut+out); 544 GetElementPtrInst *GEP = 545 GetElementPtrInst::Create(OAI, Idx, Idx + 2, 546 "gep_" + outputs[out]->getName(), 547 NTRet); 548 new StoreInst(outputs[out], GEP, NTRet); 549 } else { 550 new StoreInst(outputs[out], OAI, NTRet); 551 } 552 } 553 // Advance output iterator even if we don't emit a store 554 if (!AggregateArgs) ++OAI; 555 } 556 } 557 558 // rewrite the original branch instruction with this new target 559 TI->setSuccessor(i, NewTarget); 560 } 561 } 562 563 // Now that we've done the deed, simplify the switch instruction. 564 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 565 switch (NumExitBlocks) { 566 case 0: 567 // There are no successors (the block containing the switch itself), which 568 // means that previously this was the last part of the function, and hence 569 // this should be rewritten as a `ret' 570 571 // Check if the function should return a value 572 if (OldFnRetTy == Type::getVoidTy(Context)) { 573 ReturnInst::Create(Context, 0, TheSwitch); // Return void 574 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 575 // return what we have 576 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 577 } else { 578 // Otherwise we must have code extracted an unwind or something, just 579 // return whatever we want. 580 ReturnInst::Create(Context, 581 Constant::getNullValue(OldFnRetTy), TheSwitch); 582 } 583 584 TheSwitch->eraseFromParent(); 585 break; 586 case 1: 587 // Only a single destination, change the switch into an unconditional 588 // branch. 589 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 590 TheSwitch->eraseFromParent(); 591 break; 592 case 2: 593 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 594 call, TheSwitch); 595 TheSwitch->eraseFromParent(); 596 break; 597 default: 598 // Otherwise, make the default destination of the switch instruction be one 599 // of the other successors. 600 TheSwitch->setOperand(0, call); 601 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 602 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 603 break; 604 } 605 } 606 607 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 608 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 609 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 610 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 611 612 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 613 e = BlocksToExtract.end(); i != e; ++i) { 614 // Delete the basic block from the old function, and the list of blocks 615 oldBlocks.remove(*i); 616 617 // Insert this basic block into the new function 618 newBlocks.push_back(*i); 619 } 620 } 621 622 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 623 /// new function. Returns pointer to the new function. 624 /// 625 /// algorithm: 626 /// 627 /// find inputs and outputs for the region 628 /// 629 /// for inputs: add to function as args, map input instr* to arg# 630 /// for outputs: add allocas for scalars, 631 /// add to func as args, map output instr* to arg# 632 /// 633 /// rewrite func to use argument #s instead of instr* 634 /// 635 /// for each scalar output in the function: at every exit, store intermediate 636 /// computed result back into memory. 637 /// 638 Function *CodeExtractor:: 639 ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 640 if (!isEligible(code)) 641 return 0; 642 643 // 1) Find inputs, outputs 644 // 2) Construct new function 645 // * Add allocas for defs, pass as args by reference 646 // * Pass in uses as args 647 // 3) Move code region, add call instr to func 648 // 649 BlocksToExtract.insert(code.begin(), code.end()); 650 651 Values inputs, outputs; 652 653 // Assumption: this is a single-entry code region, and the header is the first 654 // block in the region. 655 BasicBlock *header = code[0]; 656 657 for (unsigned i = 1, e = code.size(); i != e; ++i) 658 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 659 PI != E; ++PI) 660 assert(BlocksToExtract.count(*PI) && 661 "No blocks in this region may have entries from outside the region" 662 " except for the first block!"); 663 664 // If we have to split PHI nodes or the entry block, do so now. 665 severSplitPHINodes(header); 666 667 // If we have any return instructions in the region, split those blocks so 668 // that the return is not in the region. 669 splitReturnBlocks(); 670 671 Function *oldFunction = header->getParent(); 672 673 // This takes place of the original loop 674 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 675 "codeRepl", oldFunction, 676 header); 677 678 // The new function needs a root node because other nodes can branch to the 679 // head of the region, but the entry node of a function cannot have preds. 680 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 681 "newFuncRoot"); 682 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 683 684 // Find inputs to, outputs from the code region. 685 findInputsOutputs(inputs, outputs); 686 687 // Construct new function based on inputs/outputs & add allocas for all defs. 688 Function *newFunction = constructFunction(inputs, outputs, header, 689 newFuncRoot, 690 codeReplacer, oldFunction, 691 oldFunction->getParent()); 692 693 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 694 695 moveCodeToFunction(newFunction); 696 697 // Loop over all of the PHI nodes in the header block, and change any 698 // references to the old incoming edge to be the new incoming edge. 699 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 700 PHINode *PN = cast<PHINode>(I); 701 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 702 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 703 PN->setIncomingBlock(i, newFuncRoot); 704 } 705 706 // Look at all successors of the codeReplacer block. If any of these blocks 707 // had PHI nodes in them, we need to update the "from" block to be the code 708 // replacer, not the original block in the extracted region. 709 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 710 succ_end(codeReplacer)); 711 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 712 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 713 PHINode *PN = cast<PHINode>(I); 714 std::set<BasicBlock*> ProcessedPreds; 715 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 716 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 717 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 718 PN->setIncomingBlock(i, codeReplacer); 719 else { 720 // There were multiple entries in the PHI for this block, now there 721 // is only one, so remove the duplicated entries. 722 PN->removeIncomingValue(i, false); 723 --i; --e; 724 } 725 } 726 } 727 728 //cerr << "NEW FUNCTION: " << *newFunction; 729 // verifyFunction(*newFunction); 730 731 // cerr << "OLD FUNCTION: " << *oldFunction; 732 // verifyFunction(*oldFunction); 733 734 DEBUG(if (verifyFunction(*newFunction)) 735 llvm_report_error("verifyFunction failed!")); 736 return newFunction; 737 } 738 739 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 740 // Deny code region if it contains allocas or vastarts. 741 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 742 BB != e; ++BB) 743 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 744 I != Ie; ++I) 745 if (isa<AllocaInst>(*I)) 746 return false; 747 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 748 if (const Function *F = CI->getCalledFunction()) 749 if (F->getIntrinsicID() == Intrinsic::vastart) 750 return false; 751 return true; 752 } 753 754 755 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 756 /// function 757 /// 758 Function* llvm::ExtractCodeRegion(DominatorTree &DT, 759 const std::vector<BasicBlock*> &code, 760 bool AggregateArgs) { 761 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code); 762 } 763 764 /// ExtractBasicBlock - slurp a natural loop into a brand new function 765 /// 766 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) { 767 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 768 } 769 770 /// ExtractBasicBlock - slurp a basic block into a brand new function 771 /// 772 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 773 std::vector<BasicBlock*> Blocks; 774 Blocks.push_back(BB); 775 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 776 } 777