xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision b264d69de7dfcb94da9719a59bdd2fd3a8063b6a)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/CodeExtractor.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/BlockFrequency.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <map>
65 #include <set>
66 #include <utility>
67 #include <vector>
68 
69 using namespace llvm;
70 using ProfileCount = Function::ProfileCount;
71 
72 #define DEBUG_TYPE "code-extractor"
73 
74 // Provide a command-line option to aggregate function arguments into a struct
75 // for functions produced by the code extractor. This is useful when converting
76 // extracted functions to pthread-based code, as only one argument (void*) can
77 // be passed in to pthread_create().
78 static cl::opt<bool>
79 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
80                  cl::desc("Aggregate arguments to code-extracted functions"));
81 
82 /// Test whether a block is valid for extraction.
83 static bool isBlockValidForExtraction(const BasicBlock &BB,
84                                       const SetVector<BasicBlock *> &Result,
85                                       bool AllowVarArgs, bool AllowAlloca) {
86   // taking the address of a basic block moved to another function is illegal
87   if (BB.hasAddressTaken())
88     return false;
89 
90   // don't hoist code that uses another basicblock address, as it's likely to
91   // lead to unexpected behavior, like cross-function jumps
92   SmallPtrSet<User const *, 16> Visited;
93   SmallVector<User const *, 16> ToVisit;
94 
95   for (Instruction const &Inst : BB)
96     ToVisit.push_back(&Inst);
97 
98   while (!ToVisit.empty()) {
99     User const *Curr = ToVisit.pop_back_val();
100     if (!Visited.insert(Curr).second)
101       continue;
102     if (isa<BlockAddress const>(Curr))
103       return false; // even a reference to self is likely to be not compatible
104 
105     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
106       continue;
107 
108     for (auto const &U : Curr->operands()) {
109       if (auto *UU = dyn_cast<User>(U))
110         ToVisit.push_back(UU);
111     }
112   }
113 
114   // If explicitly requested, allow vastart and alloca. For invoke instructions
115   // verify that extraction is valid.
116   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
117     if (isa<AllocaInst>(I)) {
118        if (!AllowAlloca)
119          return false;
120        continue;
121     }
122 
123     if (const auto *II = dyn_cast<InvokeInst>(I)) {
124       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
125       // must be a part of the subgraph which is being extracted.
126       if (auto *UBB = II->getUnwindDest())
127         if (!Result.count(UBB))
128           return false;
129       continue;
130     }
131 
132     // All catch handlers of a catchswitch instruction as well as the unwind
133     // destination must be in the subgraph.
134     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
135       if (auto *UBB = CSI->getUnwindDest())
136         if (!Result.count(UBB))
137           return false;
138       for (auto *HBB : CSI->handlers())
139         if (!Result.count(const_cast<BasicBlock*>(HBB)))
140           return false;
141       continue;
142     }
143 
144     // Make sure that entire catch handler is within subgraph. It is sufficient
145     // to check that catch return's block is in the list.
146     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
147       for (const auto *U : CPI->users())
148         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
149           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
150             return false;
151       continue;
152     }
153 
154     // And do similar checks for cleanup handler - the entire handler must be
155     // in subgraph which is going to be extracted. For cleanup return should
156     // additionally check that the unwind destination is also in the subgraph.
157     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
158       for (const auto *U : CPI->users())
159         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
160           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
161             return false;
162       continue;
163     }
164     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
165       if (auto *UBB = CRI->getUnwindDest())
166         if (!Result.count(UBB))
167           return false;
168       continue;
169     }
170 
171     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
172       if (const Function *F = CI->getCalledFunction()) {
173         auto IID = F->getIntrinsicID();
174         if (IID == Intrinsic::vastart) {
175           if (AllowVarArgs)
176             continue;
177           else
178             return false;
179         }
180 
181         // Currently, we miscompile outlined copies of eh_typid_for. There are
182         // proposals for fixing this in llvm.org/PR39545.
183         if (IID == Intrinsic::eh_typeid_for)
184           return false;
185       }
186     }
187   }
188 
189   return true;
190 }
191 
192 /// Build a set of blocks to extract if the input blocks are viable.
193 static SetVector<BasicBlock *>
194 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
195                         bool AllowVarArgs, bool AllowAlloca) {
196   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
197   SetVector<BasicBlock *> Result;
198 
199   // Loop over the blocks, adding them to our set-vector, and aborting with an
200   // empty set if we encounter invalid blocks.
201   for (BasicBlock *BB : BBs) {
202     // If this block is dead, don't process it.
203     if (DT && !DT->isReachableFromEntry(BB))
204       continue;
205 
206     if (!Result.insert(BB))
207       llvm_unreachable("Repeated basic blocks in extraction input");
208   }
209 
210   for (auto *BB : Result) {
211     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
212       return {};
213 
214     // Make sure that the first block is not a landing pad.
215     if (BB == Result.front()) {
216       if (BB->isEHPad()) {
217         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
218         return {};
219       }
220       continue;
221     }
222 
223     // All blocks other than the first must not have predecessors outside of
224     // the subgraph which is being extracted.
225     for (auto *PBB : predecessors(BB))
226       if (!Result.count(PBB)) {
227         LLVM_DEBUG(
228             dbgs() << "No blocks in this region may have entries from "
229                       "outside the region except for the first block!\n");
230         return {};
231       }
232   }
233 
234   return Result;
235 }
236 
237 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
238                              bool AggregateArgs, BlockFrequencyInfo *BFI,
239                              BranchProbabilityInfo *BPI, bool AllowVarArgs,
240                              bool AllowAlloca, std::string Suffix)
241     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
242       BPI(BPI), AllowVarArgs(AllowVarArgs),
243       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
244       Suffix(Suffix) {}
245 
246 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
247                              BlockFrequencyInfo *BFI,
248                              BranchProbabilityInfo *BPI, std::string Suffix)
249     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250       BPI(BPI), AllowVarArgs(false),
251       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
252                                      /* AllowVarArgs */ false,
253                                      /* AllowAlloca */ false)),
254       Suffix(Suffix) {}
255 
256 /// definedInRegion - Return true if the specified value is defined in the
257 /// extracted region.
258 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
259   if (Instruction *I = dyn_cast<Instruction>(V))
260     if (Blocks.count(I->getParent()))
261       return true;
262   return false;
263 }
264 
265 /// definedInCaller - Return true if the specified value is defined in the
266 /// function being code extracted, but not in the region being extracted.
267 /// These values must be passed in as live-ins to the function.
268 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
269   if (isa<Argument>(V)) return true;
270   if (Instruction *I = dyn_cast<Instruction>(V))
271     if (!Blocks.count(I->getParent()))
272       return true;
273   return false;
274 }
275 
276 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
277   BasicBlock *CommonExitBlock = nullptr;
278   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
279     for (auto *Succ : successors(Block)) {
280       // Internal edges, ok.
281       if (Blocks.count(Succ))
282         continue;
283       if (!CommonExitBlock) {
284         CommonExitBlock = Succ;
285         continue;
286       }
287       if (CommonExitBlock == Succ)
288         continue;
289 
290       return true;
291     }
292     return false;
293   };
294 
295   if (any_of(Blocks, hasNonCommonExitSucc))
296     return nullptr;
297 
298   return CommonExitBlock;
299 }
300 
301 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
302     Instruction *Addr) const {
303   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
304   Function *Func = (*Blocks.begin())->getParent();
305   for (BasicBlock &BB : *Func) {
306     if (Blocks.count(&BB))
307       continue;
308     for (Instruction &II : BB) {
309       if (isa<DbgInfoIntrinsic>(II))
310         continue;
311 
312       unsigned Opcode = II.getOpcode();
313       Value *MemAddr = nullptr;
314       switch (Opcode) {
315       case Instruction::Store:
316       case Instruction::Load: {
317         if (Opcode == Instruction::Store) {
318           StoreInst *SI = cast<StoreInst>(&II);
319           MemAddr = SI->getPointerOperand();
320         } else {
321           LoadInst *LI = cast<LoadInst>(&II);
322           MemAddr = LI->getPointerOperand();
323         }
324         // Global variable can not be aliased with locals.
325         if (dyn_cast<Constant>(MemAddr))
326           break;
327         Value *Base = MemAddr->stripInBoundsConstantOffsets();
328         if (!dyn_cast<AllocaInst>(Base) || Base == AI)
329           return false;
330         break;
331       }
332       default: {
333         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
334         if (IntrInst) {
335           if (IntrInst->isLifetimeStartOrEnd())
336             break;
337           return false;
338         }
339         // Treat all the other cases conservatively if it has side effects.
340         if (II.mayHaveSideEffects())
341           return false;
342       }
343       }
344     }
345   }
346 
347   return true;
348 }
349 
350 BasicBlock *
351 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
352   BasicBlock *SinglePredFromOutlineRegion = nullptr;
353   assert(!Blocks.count(CommonExitBlock) &&
354          "Expect a block outside the region!");
355   for (auto *Pred : predecessors(CommonExitBlock)) {
356     if (!Blocks.count(Pred))
357       continue;
358     if (!SinglePredFromOutlineRegion) {
359       SinglePredFromOutlineRegion = Pred;
360     } else if (SinglePredFromOutlineRegion != Pred) {
361       SinglePredFromOutlineRegion = nullptr;
362       break;
363     }
364   }
365 
366   if (SinglePredFromOutlineRegion)
367     return SinglePredFromOutlineRegion;
368 
369 #ifndef NDEBUG
370   auto getFirstPHI = [](BasicBlock *BB) {
371     BasicBlock::iterator I = BB->begin();
372     PHINode *FirstPhi = nullptr;
373     while (I != BB->end()) {
374       PHINode *Phi = dyn_cast<PHINode>(I);
375       if (!Phi)
376         break;
377       if (!FirstPhi) {
378         FirstPhi = Phi;
379         break;
380       }
381     }
382     return FirstPhi;
383   };
384   // If there are any phi nodes, the single pred either exists or has already
385   // be created before code extraction.
386   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
387 #endif
388 
389   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
390       CommonExitBlock->getFirstNonPHI()->getIterator());
391 
392   for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
393        PI != PE;) {
394     BasicBlock *Pred = *PI++;
395     if (Blocks.count(Pred))
396       continue;
397     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
398   }
399   // Now add the old exit block to the outline region.
400   Blocks.insert(CommonExitBlock);
401   return CommonExitBlock;
402 }
403 
404 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands,
405                                 BasicBlock *&ExitBlock) const {
406   Function *Func = (*Blocks.begin())->getParent();
407   ExitBlock = getCommonExitBlock(Blocks);
408 
409   for (BasicBlock &BB : *Func) {
410     if (Blocks.count(&BB))
411       continue;
412     for (Instruction &II : BB) {
413       auto *AI = dyn_cast<AllocaInst>(&II);
414       if (!AI)
415         continue;
416 
417       // Find the pair of life time markers for address 'Addr' that are either
418       // defined inside the outline region or can legally be shrinkwrapped into
419       // the outline region. If there are not other untracked uses of the
420       // address, return the pair of markers if found; otherwise return a pair
421       // of nullptr.
422       auto GetLifeTimeMarkers =
423           [&](Instruction *Addr, bool &SinkLifeStart,
424               bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> {
425         Instruction *LifeStart = nullptr, *LifeEnd = nullptr;
426 
427         for (User *U : Addr->users()) {
428           IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
429           if (IntrInst) {
430             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
431               // Do not handle the case where AI has multiple start markers.
432               if (LifeStart)
433                 return std::make_pair<Instruction *>(nullptr, nullptr);
434               LifeStart = IntrInst;
435             }
436             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
437               if (LifeEnd)
438                 return std::make_pair<Instruction *>(nullptr, nullptr);
439               LifeEnd = IntrInst;
440             }
441             continue;
442           }
443           // Find untracked uses of the address, bail.
444           if (!definedInRegion(Blocks, U))
445             return std::make_pair<Instruction *>(nullptr, nullptr);
446         }
447 
448         if (!LifeStart || !LifeEnd)
449           return std::make_pair<Instruction *>(nullptr, nullptr);
450 
451         SinkLifeStart = !definedInRegion(Blocks, LifeStart);
452         HoistLifeEnd = !definedInRegion(Blocks, LifeEnd);
453         // Do legality Check.
454         if ((SinkLifeStart || HoistLifeEnd) &&
455             !isLegalToShrinkwrapLifetimeMarkers(Addr))
456           return std::make_pair<Instruction *>(nullptr, nullptr);
457 
458         // Check to see if we have a place to do hoisting, if not, bail.
459         if (HoistLifeEnd && !ExitBlock)
460           return std::make_pair<Instruction *>(nullptr, nullptr);
461 
462         return std::make_pair(LifeStart, LifeEnd);
463       };
464 
465       bool SinkLifeStart = false, HoistLifeEnd = false;
466       auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd);
467 
468       if (Markers.first) {
469         if (SinkLifeStart)
470           SinkCands.insert(Markers.first);
471         SinkCands.insert(AI);
472         if (HoistLifeEnd)
473           HoistCands.insert(Markers.second);
474         continue;
475       }
476 
477       // Follow the bitcast.
478       Instruction *MarkerAddr = nullptr;
479       for (User *U : AI->users()) {
480         if (U->stripInBoundsConstantOffsets() == AI) {
481           SinkLifeStart = false;
482           HoistLifeEnd = false;
483           Instruction *Bitcast = cast<Instruction>(U);
484           Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd);
485           if (Markers.first) {
486             MarkerAddr = Bitcast;
487             continue;
488           }
489         }
490 
491         // Found unknown use of AI.
492         if (!definedInRegion(Blocks, U)) {
493           MarkerAddr = nullptr;
494           break;
495         }
496       }
497 
498       if (MarkerAddr) {
499         if (SinkLifeStart)
500           SinkCands.insert(Markers.first);
501         if (!definedInRegion(Blocks, MarkerAddr))
502           SinkCands.insert(MarkerAddr);
503         SinkCands.insert(AI);
504         if (HoistLifeEnd)
505           HoistCands.insert(Markers.second);
506       }
507     }
508   }
509 }
510 
511 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
512                                       const ValueSet &SinkCands) const {
513   for (BasicBlock *BB : Blocks) {
514     // If a used value is defined outside the region, it's an input.  If an
515     // instruction is used outside the region, it's an output.
516     for (Instruction &II : *BB) {
517       for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
518            ++OI) {
519         Value *V = *OI;
520         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
521           Inputs.insert(V);
522       }
523 
524       for (User *U : II.users())
525         if (!definedInRegion(Blocks, U)) {
526           Outputs.insert(&II);
527           break;
528         }
529     }
530   }
531 }
532 
533 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
534 /// of the region, we need to split the entry block of the region so that the
535 /// PHI node is easier to deal with.
536 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
537   unsigned NumPredsFromRegion = 0;
538   unsigned NumPredsOutsideRegion = 0;
539 
540   if (Header != &Header->getParent()->getEntryBlock()) {
541     PHINode *PN = dyn_cast<PHINode>(Header->begin());
542     if (!PN) return;  // No PHI nodes.
543 
544     // If the header node contains any PHI nodes, check to see if there is more
545     // than one entry from outside the region.  If so, we need to sever the
546     // header block into two.
547     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
548       if (Blocks.count(PN->getIncomingBlock(i)))
549         ++NumPredsFromRegion;
550       else
551         ++NumPredsOutsideRegion;
552 
553     // If there is one (or fewer) predecessor from outside the region, we don't
554     // need to do anything special.
555     if (NumPredsOutsideRegion <= 1) return;
556   }
557 
558   // Otherwise, we need to split the header block into two pieces: one
559   // containing PHI nodes merging values from outside of the region, and a
560   // second that contains all of the code for the block and merges back any
561   // incoming values from inside of the region.
562   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
563 
564   // We only want to code extract the second block now, and it becomes the new
565   // header of the region.
566   BasicBlock *OldPred = Header;
567   Blocks.remove(OldPred);
568   Blocks.insert(NewBB);
569   Header = NewBB;
570 
571   // Okay, now we need to adjust the PHI nodes and any branches from within the
572   // region to go to the new header block instead of the old header block.
573   if (NumPredsFromRegion) {
574     PHINode *PN = cast<PHINode>(OldPred->begin());
575     // Loop over all of the predecessors of OldPred that are in the region,
576     // changing them to branch to NewBB instead.
577     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
578       if (Blocks.count(PN->getIncomingBlock(i))) {
579         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
580         TI->replaceUsesOfWith(OldPred, NewBB);
581       }
582 
583     // Okay, everything within the region is now branching to the right block, we
584     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
585     BasicBlock::iterator AfterPHIs;
586     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
587       PHINode *PN = cast<PHINode>(AfterPHIs);
588       // Create a new PHI node in the new region, which has an incoming value
589       // from OldPred of PN.
590       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
591                                        PN->getName() + ".ce", &NewBB->front());
592       PN->replaceAllUsesWith(NewPN);
593       NewPN->addIncoming(PN, OldPred);
594 
595       // Loop over all of the incoming value in PN, moving them to NewPN if they
596       // are from the extracted region.
597       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
598         if (Blocks.count(PN->getIncomingBlock(i))) {
599           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
600           PN->removeIncomingValue(i);
601           --i;
602         }
603       }
604     }
605   }
606 }
607 
608 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
609 /// outlined region, we split these PHIs on two: one with inputs from region
610 /// and other with remaining incoming blocks; then first PHIs are placed in
611 /// outlined region.
612 void CodeExtractor::severSplitPHINodesOfExits(
613     const SmallPtrSetImpl<BasicBlock *> &Exits) {
614   for (BasicBlock *ExitBB : Exits) {
615     BasicBlock *NewBB = nullptr;
616 
617     for (PHINode &PN : ExitBB->phis()) {
618       // Find all incoming values from the outlining region.
619       SmallVector<unsigned, 2> IncomingVals;
620       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
621         if (Blocks.count(PN.getIncomingBlock(i)))
622           IncomingVals.push_back(i);
623 
624       // Do not process PHI if there is one (or fewer) predecessor from region.
625       // If PHI has exactly one predecessor from region, only this one incoming
626       // will be replaced on codeRepl block, so it should be safe to skip PHI.
627       if (IncomingVals.size() <= 1)
628         continue;
629 
630       // Create block for new PHIs and add it to the list of outlined if it
631       // wasn't done before.
632       if (!NewBB) {
633         NewBB = BasicBlock::Create(ExitBB->getContext(),
634                                    ExitBB->getName() + ".split",
635                                    ExitBB->getParent(), ExitBB);
636         SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
637                                            pred_end(ExitBB));
638         for (BasicBlock *PredBB : Preds)
639           if (Blocks.count(PredBB))
640             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
641         BranchInst::Create(ExitBB, NewBB);
642         Blocks.insert(NewBB);
643       }
644 
645       // Split this PHI.
646       PHINode *NewPN =
647           PHINode::Create(PN.getType(), IncomingVals.size(),
648                           PN.getName() + ".ce", NewBB->getFirstNonPHI());
649       for (unsigned i : IncomingVals)
650         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
651       for (unsigned i : reverse(IncomingVals))
652         PN.removeIncomingValue(i, false);
653       PN.addIncoming(NewPN, NewBB);
654     }
655   }
656 }
657 
658 void CodeExtractor::splitReturnBlocks() {
659   for (BasicBlock *Block : Blocks)
660     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
661       BasicBlock *New =
662           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
663       if (DT) {
664         // Old dominates New. New node dominates all other nodes dominated
665         // by Old.
666         DomTreeNode *OldNode = DT->getNode(Block);
667         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
668                                                OldNode->end());
669 
670         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
671 
672         for (DomTreeNode *I : Children)
673           DT->changeImmediateDominator(I, NewNode);
674       }
675     }
676 }
677 
678 /// constructFunction - make a function based on inputs and outputs, as follows:
679 /// f(in0, ..., inN, out0, ..., outN)
680 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
681                                            const ValueSet &outputs,
682                                            BasicBlock *header,
683                                            BasicBlock *newRootNode,
684                                            BasicBlock *newHeader,
685                                            Function *oldFunction,
686                                            Module *M) {
687   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
688   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
689 
690   // This function returns unsigned, outputs will go back by reference.
691   switch (NumExitBlocks) {
692   case 0:
693   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
694   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
695   default: RetTy = Type::getInt16Ty(header->getContext()); break;
696   }
697 
698   std::vector<Type *> paramTy;
699 
700   // Add the types of the input values to the function's argument list
701   for (Value *value : inputs) {
702     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
703     paramTy.push_back(value->getType());
704   }
705 
706   // Add the types of the output values to the function's argument list.
707   for (Value *output : outputs) {
708     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
709     if (AggregateArgs)
710       paramTy.push_back(output->getType());
711     else
712       paramTy.push_back(PointerType::getUnqual(output->getType()));
713   }
714 
715   LLVM_DEBUG({
716     dbgs() << "Function type: " << *RetTy << " f(";
717     for (Type *i : paramTy)
718       dbgs() << *i << ", ";
719     dbgs() << ")\n";
720   });
721 
722   StructType *StructTy;
723   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
724     StructTy = StructType::get(M->getContext(), paramTy);
725     paramTy.clear();
726     paramTy.push_back(PointerType::getUnqual(StructTy));
727   }
728   FunctionType *funcType =
729                   FunctionType::get(RetTy, paramTy,
730                                     AllowVarArgs && oldFunction->isVarArg());
731 
732   std::string SuffixToUse =
733       Suffix.empty()
734           ? (header->getName().empty() ? "extracted" : header->getName().str())
735           : Suffix;
736   // Create the new function
737   Function *newFunction = Function::Create(
738       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
739       oldFunction->getName() + "." + SuffixToUse, M);
740   // If the old function is no-throw, so is the new one.
741   if (oldFunction->doesNotThrow())
742     newFunction->setDoesNotThrow();
743 
744   // Inherit the uwtable attribute if we need to.
745   if (oldFunction->hasUWTable())
746     newFunction->setHasUWTable();
747 
748   // Inherit all of the target dependent attributes and white-listed
749   // target independent attributes.
750   //  (e.g. If the extracted region contains a call to an x86.sse
751   //  instruction we need to make sure that the extracted region has the
752   //  "target-features" attribute allowing it to be lowered.
753   // FIXME: This should be changed to check to see if a specific
754   //           attribute can not be inherited.
755   for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
756     if (Attr.isStringAttribute()) {
757       if (Attr.getKindAsString() == "thunk")
758         continue;
759     } else
760       switch (Attr.getKindAsEnum()) {
761       // Those attributes cannot be propagated safely. Explicitly list them
762       // here so we get a warning if new attributes are added. This list also
763       // includes non-function attributes.
764       case Attribute::Alignment:
765       case Attribute::AllocSize:
766       case Attribute::ArgMemOnly:
767       case Attribute::Builtin:
768       case Attribute::ByVal:
769       case Attribute::Convergent:
770       case Attribute::Dereferenceable:
771       case Attribute::DereferenceableOrNull:
772       case Attribute::InAlloca:
773       case Attribute::InReg:
774       case Attribute::InaccessibleMemOnly:
775       case Attribute::InaccessibleMemOrArgMemOnly:
776       case Attribute::JumpTable:
777       case Attribute::Naked:
778       case Attribute::Nest:
779       case Attribute::NoAlias:
780       case Attribute::NoBuiltin:
781       case Attribute::NoCapture:
782       case Attribute::NoReturn:
783       case Attribute::None:
784       case Attribute::NonNull:
785       case Attribute::ReadNone:
786       case Attribute::ReadOnly:
787       case Attribute::Returned:
788       case Attribute::ReturnsTwice:
789       case Attribute::SExt:
790       case Attribute::Speculatable:
791       case Attribute::StackAlignment:
792       case Attribute::StructRet:
793       case Attribute::SwiftError:
794       case Attribute::SwiftSelf:
795       case Attribute::WriteOnly:
796       case Attribute::ZExt:
797       case Attribute::EndAttrKinds:
798         continue;
799       // Those attributes should be safe to propagate to the extracted function.
800       case Attribute::AlwaysInline:
801       case Attribute::Cold:
802       case Attribute::NoRecurse:
803       case Attribute::InlineHint:
804       case Attribute::MinSize:
805       case Attribute::NoDuplicate:
806       case Attribute::NoImplicitFloat:
807       case Attribute::NoInline:
808       case Attribute::NonLazyBind:
809       case Attribute::NoRedZone:
810       case Attribute::NoUnwind:
811       case Attribute::OptForFuzzing:
812       case Attribute::OptimizeNone:
813       case Attribute::OptimizeForSize:
814       case Attribute::SafeStack:
815       case Attribute::ShadowCallStack:
816       case Attribute::SanitizeAddress:
817       case Attribute::SanitizeMemory:
818       case Attribute::SanitizeThread:
819       case Attribute::SanitizeHWAddress:
820       case Attribute::SpeculativeLoadHardening:
821       case Attribute::StackProtect:
822       case Attribute::StackProtectReq:
823       case Attribute::StackProtectStrong:
824       case Attribute::StrictFP:
825       case Attribute::UWTable:
826       case Attribute::NoCfCheck:
827         break;
828       }
829 
830     newFunction->addFnAttr(Attr);
831   }
832   newFunction->getBasicBlockList().push_back(newRootNode);
833 
834   // Create an iterator to name all of the arguments we inserted.
835   Function::arg_iterator AI = newFunction->arg_begin();
836 
837   // Rewrite all users of the inputs in the extracted region to use the
838   // arguments (or appropriate addressing into struct) instead.
839   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
840     Value *RewriteVal;
841     if (AggregateArgs) {
842       Value *Idx[2];
843       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
844       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
845       Instruction *TI = newFunction->begin()->getTerminator();
846       GetElementPtrInst *GEP = GetElementPtrInst::Create(
847           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
848       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
849     } else
850       RewriteVal = &*AI++;
851 
852     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
853     for (User *use : Users)
854       if (Instruction *inst = dyn_cast<Instruction>(use))
855         if (Blocks.count(inst->getParent()))
856           inst->replaceUsesOfWith(inputs[i], RewriteVal);
857   }
858 
859   // Set names for input and output arguments.
860   if (!AggregateArgs) {
861     AI = newFunction->arg_begin();
862     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
863       AI->setName(inputs[i]->getName());
864     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
865       AI->setName(outputs[i]->getName()+".out");
866   }
867 
868   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
869   // within the new function. This must be done before we lose track of which
870   // blocks were originally in the code region.
871   std::vector<User *> Users(header->user_begin(), header->user_end());
872   for (unsigned i = 0, e = Users.size(); i != e; ++i)
873     // The BasicBlock which contains the branch is not in the region
874     // modify the branch target to a new block
875     if (Instruction *I = dyn_cast<Instruction>(Users[i]))
876       if (I->isTerminator() && !Blocks.count(I->getParent()) &&
877           I->getParent()->getParent() == oldFunction)
878         I->replaceUsesOfWith(header, newHeader);
879 
880   return newFunction;
881 }
882 
883 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
884 /// the call instruction, splitting any PHI nodes in the header block as
885 /// necessary.
886 void CodeExtractor::
887 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
888                            ValueSet &inputs, ValueSet &outputs) {
889   // Emit a call to the new function, passing in: *pointer to struct (if
890   // aggregating parameters), or plan inputs and allocated memory for outputs
891   std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
892 
893   Module *M = newFunction->getParent();
894   LLVMContext &Context = M->getContext();
895   const DataLayout &DL = M->getDataLayout();
896 
897   // Add inputs as params, or to be filled into the struct
898   for (Value *input : inputs)
899     if (AggregateArgs)
900       StructValues.push_back(input);
901     else
902       params.push_back(input);
903 
904   // Create allocas for the outputs
905   for (Value *output : outputs) {
906     if (AggregateArgs) {
907       StructValues.push_back(output);
908     } else {
909       AllocaInst *alloca =
910         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
911                        nullptr, output->getName() + ".loc",
912                        &codeReplacer->getParent()->front().front());
913       ReloadOutputs.push_back(alloca);
914       params.push_back(alloca);
915     }
916   }
917 
918   StructType *StructArgTy = nullptr;
919   AllocaInst *Struct = nullptr;
920   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
921     std::vector<Type *> ArgTypes;
922     for (ValueSet::iterator v = StructValues.begin(),
923            ve = StructValues.end(); v != ve; ++v)
924       ArgTypes.push_back((*v)->getType());
925 
926     // Allocate a struct at the beginning of this function
927     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
928     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
929                             "structArg",
930                             &codeReplacer->getParent()->front().front());
931     params.push_back(Struct);
932 
933     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
934       Value *Idx[2];
935       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
936       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
937       GetElementPtrInst *GEP = GetElementPtrInst::Create(
938           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
939       codeReplacer->getInstList().push_back(GEP);
940       StoreInst *SI = new StoreInst(StructValues[i], GEP);
941       codeReplacer->getInstList().push_back(SI);
942     }
943   }
944 
945   // Emit the call to the function
946   CallInst *call = CallInst::Create(newFunction, params,
947                                     NumExitBlocks > 1 ? "targetBlock" : "");
948   // Add debug location to the new call, if the original function has debug
949   // info. In that case, the terminator of the entry block of the extracted
950   // function contains the first debug location of the extracted function,
951   // set in extractCodeRegion.
952   if (codeReplacer->getParent()->getSubprogram()) {
953     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
954       call->setDebugLoc(DL);
955   }
956   codeReplacer->getInstList().push_back(call);
957 
958   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
959   unsigned FirstOut = inputs.size();
960   if (!AggregateArgs)
961     std::advance(OutputArgBegin, inputs.size());
962 
963   // Reload the outputs passed in by reference.
964   Function::arg_iterator OAI = OutputArgBegin;
965   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
966     Value *Output = nullptr;
967     if (AggregateArgs) {
968       Value *Idx[2];
969       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
970       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
971       GetElementPtrInst *GEP = GetElementPtrInst::Create(
972           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
973       codeReplacer->getInstList().push_back(GEP);
974       Output = GEP;
975     } else {
976       Output = ReloadOutputs[i];
977     }
978     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
979     Reloads.push_back(load);
980     codeReplacer->getInstList().push_back(load);
981     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
982     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
983       Instruction *inst = cast<Instruction>(Users[u]);
984       if (!Blocks.count(inst->getParent()))
985         inst->replaceUsesOfWith(outputs[i], load);
986     }
987 
988     // Store to argument right after the definition of output value.
989     auto *OutI = dyn_cast<Instruction>(outputs[i]);
990     if (!OutI)
991       continue;
992 
993     // Find proper insertion point.
994     BasicBlock::iterator InsertPt;
995     // In case OutI is an invoke, we insert the store at the beginning in the
996     // 'normal destination' BB. Otherwise we insert the store right after OutI.
997     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
998       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
999     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1000       InsertPt = Phi->getParent()->getFirstInsertionPt();
1001     else
1002       InsertPt = std::next(OutI->getIterator());
1003 
1004     assert(OAI != newFunction->arg_end() &&
1005            "Number of output arguments should match "
1006            "the amount of defined values");
1007     if (AggregateArgs) {
1008       Value *Idx[2];
1009       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1010       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1011       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1012           StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), &*InsertPt);
1013       new StoreInst(outputs[i], GEP, &*InsertPt);
1014       // Since there should be only one struct argument aggregating
1015       // all the output values, we shouldn't increment OAI, which always
1016       // points to the struct argument, in this case.
1017     } else {
1018       new StoreInst(outputs[i], &*OAI, &*InsertPt);
1019       ++OAI;
1020     }
1021   }
1022 
1023   // Now we can emit a switch statement using the call as a value.
1024   SwitchInst *TheSwitch =
1025       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1026                          codeReplacer, 0, codeReplacer);
1027 
1028   // Since there may be multiple exits from the original region, make the new
1029   // function return an unsigned, switch on that number.  This loop iterates
1030   // over all of the blocks in the extracted region, updating any terminator
1031   // instructions in the to-be-extracted region that branch to blocks that are
1032   // not in the region to be extracted.
1033   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1034 
1035   unsigned switchVal = 0;
1036   for (BasicBlock *Block : Blocks) {
1037     Instruction *TI = Block->getTerminator();
1038     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1039       if (!Blocks.count(TI->getSuccessor(i))) {
1040         BasicBlock *OldTarget = TI->getSuccessor(i);
1041         // add a new basic block which returns the appropriate value
1042         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1043         if (!NewTarget) {
1044           // If we don't already have an exit stub for this non-extracted
1045           // destination, create one now!
1046           NewTarget = BasicBlock::Create(Context,
1047                                          OldTarget->getName() + ".exitStub",
1048                                          newFunction);
1049           unsigned SuccNum = switchVal++;
1050 
1051           Value *brVal = nullptr;
1052           switch (NumExitBlocks) {
1053           case 0:
1054           case 1: break;  // No value needed.
1055           case 2:         // Conditional branch, return a bool
1056             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1057             break;
1058           default:
1059             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1060             break;
1061           }
1062 
1063           ReturnInst::Create(Context, brVal, NewTarget);
1064 
1065           // Update the switch instruction.
1066           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1067                                               SuccNum),
1068                              OldTarget);
1069         }
1070 
1071         // rewrite the original branch instruction with this new target
1072         TI->setSuccessor(i, NewTarget);
1073       }
1074   }
1075 
1076   // Now that we've done the deed, simplify the switch instruction.
1077   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1078   switch (NumExitBlocks) {
1079   case 0:
1080     // There are no successors (the block containing the switch itself), which
1081     // means that previously this was the last part of the function, and hence
1082     // this should be rewritten as a `ret'
1083 
1084     // Check if the function should return a value
1085     if (OldFnRetTy->isVoidTy()) {
1086       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1087     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1088       // return what we have
1089       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1090     } else {
1091       // Otherwise we must have code extracted an unwind or something, just
1092       // return whatever we want.
1093       ReturnInst::Create(Context,
1094                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1095     }
1096 
1097     TheSwitch->eraseFromParent();
1098     break;
1099   case 1:
1100     // Only a single destination, change the switch into an unconditional
1101     // branch.
1102     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1103     TheSwitch->eraseFromParent();
1104     break;
1105   case 2:
1106     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1107                        call, TheSwitch);
1108     TheSwitch->eraseFromParent();
1109     break;
1110   default:
1111     // Otherwise, make the default destination of the switch instruction be one
1112     // of the other successors.
1113     TheSwitch->setCondition(call);
1114     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1115     // Remove redundant case
1116     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1117     break;
1118   }
1119 }
1120 
1121 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1122   Function *oldFunc = (*Blocks.begin())->getParent();
1123   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1124   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1125 
1126   for (BasicBlock *Block : Blocks) {
1127     // Delete the basic block from the old function, and the list of blocks
1128     oldBlocks.remove(Block);
1129 
1130     // Insert this basic block into the new function
1131     newBlocks.push_back(Block);
1132   }
1133 }
1134 
1135 void CodeExtractor::calculateNewCallTerminatorWeights(
1136     BasicBlock *CodeReplacer,
1137     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1138     BranchProbabilityInfo *BPI) {
1139   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1140   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1141 
1142   // Update the branch weights for the exit block.
1143   Instruction *TI = CodeReplacer->getTerminator();
1144   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1145 
1146   // Block Frequency distribution with dummy node.
1147   Distribution BranchDist;
1148 
1149   // Add each of the frequencies of the successors.
1150   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1151     BlockNode ExitNode(i);
1152     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1153     if (ExitFreq != 0)
1154       BranchDist.addExit(ExitNode, ExitFreq);
1155     else
1156       BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1157   }
1158 
1159   // Check for no total weight.
1160   if (BranchDist.Total == 0)
1161     return;
1162 
1163   // Normalize the distribution so that they can fit in unsigned.
1164   BranchDist.normalize();
1165 
1166   // Create normalized branch weights and set the metadata.
1167   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1168     const auto &Weight = BranchDist.Weights[I];
1169 
1170     // Get the weight and update the current BFI.
1171     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1172     BranchProbability BP(Weight.Amount, BranchDist.Total);
1173     BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1174   }
1175   TI->setMetadata(
1176       LLVMContext::MD_prof,
1177       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1178 }
1179 
1180 Function *CodeExtractor::extractCodeRegion() {
1181   if (!isEligible())
1182     return nullptr;
1183 
1184   // Assumption: this is a single-entry code region, and the header is the first
1185   // block in the region.
1186   BasicBlock *header = *Blocks.begin();
1187   Function *oldFunction = header->getParent();
1188 
1189   // For functions with varargs, check that varargs handling is only done in the
1190   // outlined function, i.e vastart and vaend are only used in outlined blocks.
1191   if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) {
1192     auto containsVarArgIntrinsic = [](Instruction &I) {
1193       if (const CallInst *CI = dyn_cast<CallInst>(&I))
1194         if (const Function *F = CI->getCalledFunction())
1195           return F->getIntrinsicID() == Intrinsic::vastart ||
1196                  F->getIntrinsicID() == Intrinsic::vaend;
1197       return false;
1198     };
1199 
1200     for (auto &BB : *oldFunction) {
1201       if (Blocks.count(&BB))
1202         continue;
1203       if (llvm::any_of(BB, containsVarArgIntrinsic))
1204         return nullptr;
1205     }
1206   }
1207   ValueSet inputs, outputs, SinkingCands, HoistingCands;
1208   BasicBlock *CommonExit = nullptr;
1209 
1210   // Calculate the entry frequency of the new function before we change the root
1211   //   block.
1212   BlockFrequency EntryFreq;
1213   if (BFI) {
1214     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1215     for (BasicBlock *Pred : predecessors(header)) {
1216       if (Blocks.count(Pred))
1217         continue;
1218       EntryFreq +=
1219           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1220     }
1221   }
1222 
1223   // If we have any return instructions in the region, split those blocks so
1224   // that the return is not in the region.
1225   splitReturnBlocks();
1226 
1227   // Calculate the exit blocks for the extracted region and the total exit
1228   // weights for each of those blocks.
1229   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1230   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1231   for (BasicBlock *Block : Blocks) {
1232     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1233          ++SI) {
1234       if (!Blocks.count(*SI)) {
1235         // Update the branch weight for this successor.
1236         if (BFI) {
1237           BlockFrequency &BF = ExitWeights[*SI];
1238           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1239         }
1240         ExitBlocks.insert(*SI);
1241       }
1242     }
1243   }
1244   NumExitBlocks = ExitBlocks.size();
1245 
1246   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1247   severSplitPHINodesOfEntry(header);
1248   severSplitPHINodesOfExits(ExitBlocks);
1249 
1250   // This takes place of the original loop
1251   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1252                                                 "codeRepl", oldFunction,
1253                                                 header);
1254 
1255   // The new function needs a root node because other nodes can branch to the
1256   // head of the region, but the entry node of a function cannot have preds.
1257   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1258                                                "newFuncRoot");
1259   auto *BranchI = BranchInst::Create(header);
1260   // If the original function has debug info, we have to add a debug location
1261   // to the new branch instruction from the artificial entry block.
1262   // We use the debug location of the first instruction in the extracted
1263   // blocks, as there is no other equivalent line in the source code.
1264   if (oldFunction->getSubprogram()) {
1265     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1266       return any_of(*BB, [&BranchI](const Instruction &I) {
1267         if (!I.getDebugLoc())
1268           return false;
1269         BranchI->setDebugLoc(I.getDebugLoc());
1270         return true;
1271       });
1272     });
1273   }
1274   newFuncRoot->getInstList().push_back(BranchI);
1275 
1276   findAllocas(SinkingCands, HoistingCands, CommonExit);
1277   assert(HoistingCands.empty() || CommonExit);
1278 
1279   // Find inputs to, outputs from the code region.
1280   findInputsOutputs(inputs, outputs, SinkingCands);
1281 
1282   // Now sink all instructions which only have non-phi uses inside the region
1283   for (auto *II : SinkingCands)
1284     cast<Instruction>(II)->moveBefore(*newFuncRoot,
1285                                       newFuncRoot->getFirstInsertionPt());
1286 
1287   if (!HoistingCands.empty()) {
1288     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1289     Instruction *TI = HoistToBlock->getTerminator();
1290     for (auto *II : HoistingCands)
1291       cast<Instruction>(II)->moveBefore(TI);
1292   }
1293 
1294   // Construct new function based on inputs/outputs & add allocas for all defs.
1295   Function *newFunction = constructFunction(inputs, outputs, header,
1296                                             newFuncRoot,
1297                                             codeReplacer, oldFunction,
1298                                             oldFunction->getParent());
1299 
1300   // Update the entry count of the function.
1301   if (BFI) {
1302     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1303     if (Count.hasValue())
1304       newFunction->setEntryCount(
1305           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1306     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1307   }
1308 
1309   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1310 
1311   moveCodeToFunction(newFunction);
1312 
1313   // Propagate personality info to the new function if there is one.
1314   if (oldFunction->hasPersonalityFn())
1315     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1316 
1317   // Update the branch weights for the exit block.
1318   if (BFI && NumExitBlocks > 1)
1319     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1320 
1321   // Loop over all of the PHI nodes in the header and exit blocks, and change
1322   // any references to the old incoming edge to be the new incoming edge.
1323   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1324     PHINode *PN = cast<PHINode>(I);
1325     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1326       if (!Blocks.count(PN->getIncomingBlock(i)))
1327         PN->setIncomingBlock(i, newFuncRoot);
1328   }
1329 
1330   for (BasicBlock *ExitBB : ExitBlocks)
1331     for (PHINode &PN : ExitBB->phis()) {
1332       Value *IncomingCodeReplacerVal = nullptr;
1333       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1334         // Ignore incoming values from outside of the extracted region.
1335         if (!Blocks.count(PN.getIncomingBlock(i)))
1336           continue;
1337 
1338         // Ensure that there is only one incoming value from codeReplacer.
1339         if (!IncomingCodeReplacerVal) {
1340           PN.setIncomingBlock(i, codeReplacer);
1341           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1342         } else
1343           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1344                  "PHI has two incompatbile incoming values from codeRepl");
1345       }
1346     }
1347 
1348   // Erase debug info intrinsics. Variable updates within the new function are
1349   // invisible to debuggers. This could be improved by defining a DISubprogram
1350   // for the new function.
1351   for (BasicBlock &BB : *newFunction) {
1352     auto BlockIt = BB.begin();
1353     // Remove debug info intrinsics from the new function.
1354     while (BlockIt != BB.end()) {
1355       Instruction *Inst = &*BlockIt;
1356       ++BlockIt;
1357       if (isa<DbgInfoIntrinsic>(Inst))
1358         Inst->eraseFromParent();
1359     }
1360     // Remove debug info intrinsics which refer to values in the new function
1361     // from the old function.
1362     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1363     for (Instruction &I : BB)
1364       findDbgUsers(DbgUsers, &I);
1365     for (DbgVariableIntrinsic *DVI : DbgUsers)
1366       DVI->eraseFromParent();
1367   }
1368 
1369   // Mark the new function `noreturn` if applicable. Terminators which resume
1370   // exception propagation are treated as returning instructions. This is to
1371   // avoid inserting traps after calls to outlined functions which unwind.
1372   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1373     const Instruction *Term = BB.getTerminator();
1374     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1375   });
1376   if (doesNotReturn)
1377     newFunction->setDoesNotReturn();
1378 
1379   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1380     newFunction->dump();
1381     report_fatal_error("verification of newFunction failed!");
1382   });
1383   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1384              report_fatal_error("verification of oldFunction failed!"));
1385   return newFunction;
1386 }
1387