1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/Module.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Analysis/Dominators.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/Verifier.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Compiler.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include <algorithm> 35 #include <set> 36 using namespace llvm; 37 38 // Provide a command-line option to aggregate function arguments into a struct 39 // for functions produced by the code extractor. This is useful when converting 40 // extracted functions to pthread-based code, as only one argument (void*) can 41 // be passed in to pthread_create(). 42 static cl::opt<bool> 43 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 44 cl::desc("Aggregate arguments to code-extracted functions")); 45 46 namespace { 47 class VISIBILITY_HIDDEN CodeExtractor { 48 typedef std::vector<Value*> Values; 49 std::set<BasicBlock*> BlocksToExtract; 50 DominatorTree* DT; 51 bool AggregateArgs; 52 unsigned NumExitBlocks; 53 const Type *RetTy; 54 public: 55 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false) 56 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} 57 58 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 59 60 bool isEligible(const std::vector<BasicBlock*> &code); 61 62 private: 63 /// definedInRegion - Return true if the specified value is defined in the 64 /// extracted region. 65 bool definedInRegion(Value *V) const { 66 if (Instruction *I = dyn_cast<Instruction>(V)) 67 if (BlocksToExtract.count(I->getParent())) 68 return true; 69 return false; 70 } 71 72 /// definedInCaller - Return true if the specified value is defined in the 73 /// function being code extracted, but not in the region being extracted. 74 /// These values must be passed in as live-ins to the function. 75 bool definedInCaller(Value *V) const { 76 if (isa<Argument>(V)) return true; 77 if (Instruction *I = dyn_cast<Instruction>(V)) 78 if (!BlocksToExtract.count(I->getParent())) 79 return true; 80 return false; 81 } 82 83 void severSplitPHINodes(BasicBlock *&Header); 84 void splitReturnBlocks(); 85 void findInputsOutputs(Values &inputs, Values &outputs); 86 87 Function *constructFunction(const Values &inputs, 88 const Values &outputs, 89 BasicBlock *header, 90 BasicBlock *newRootNode, BasicBlock *newHeader, 91 Function *oldFunction, Module *M); 92 93 void moveCodeToFunction(Function *newFunction); 94 95 void emitCallAndSwitchStatement(Function *newFunction, 96 BasicBlock *newHeader, 97 Values &inputs, 98 Values &outputs); 99 100 }; 101 } 102 103 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 104 /// region, we need to split the entry block of the region so that the PHI node 105 /// is easier to deal with. 106 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 107 bool HasPredsFromRegion = false; 108 unsigned NumPredsOutsideRegion = 0; 109 110 if (Header != &Header->getParent()->getEntryBlock()) { 111 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 112 if (!PN) return; // No PHI nodes. 113 114 // If the header node contains any PHI nodes, check to see if there is more 115 // than one entry from outside the region. If so, we need to sever the 116 // header block into two. 117 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 118 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 119 HasPredsFromRegion = true; 120 else 121 ++NumPredsOutsideRegion; 122 123 // If there is one (or fewer) predecessor from outside the region, we don't 124 // need to do anything special. 125 if (NumPredsOutsideRegion <= 1) return; 126 } 127 128 // Otherwise, we need to split the header block into two pieces: one 129 // containing PHI nodes merging values from outside of the region, and a 130 // second that contains all of the code for the block and merges back any 131 // incoming values from inside of the region. 132 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI(); 133 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 134 Header->getName()+".ce"); 135 136 // We only want to code extract the second block now, and it becomes the new 137 // header of the region. 138 BasicBlock *OldPred = Header; 139 BlocksToExtract.erase(OldPred); 140 BlocksToExtract.insert(NewBB); 141 Header = NewBB; 142 143 // Okay, update dominator sets. The blocks that dominate the new one are the 144 // blocks that dominate TIBB plus the new block itself. 145 if (DT) 146 DT->splitBlock(NewBB); 147 148 // Okay, now we need to adjust the PHI nodes and any branches from within the 149 // region to go to the new header block instead of the old header block. 150 if (HasPredsFromRegion) { 151 PHINode *PN = cast<PHINode>(OldPred->begin()); 152 // Loop over all of the predecessors of OldPred that are in the region, 153 // changing them to branch to NewBB instead. 154 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 155 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 156 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 157 TI->replaceUsesOfWith(OldPred, NewBB); 158 } 159 160 // Okay, everthing within the region is now branching to the right block, we 161 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 162 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 163 PHINode *PN = cast<PHINode>(AfterPHIs); 164 // Create a new PHI node in the new region, which has an incoming value 165 // from OldPred of PN. 166 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce", 167 NewBB->begin()); 168 NewPN->addIncoming(PN, OldPred); 169 170 // Loop over all of the incoming value in PN, moving them to NewPN if they 171 // are from the extracted region. 172 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 173 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 174 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 175 PN->removeIncomingValue(i); 176 --i; 177 } 178 } 179 } 180 } 181 } 182 183 void CodeExtractor::splitReturnBlocks() { 184 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), 185 E = BlocksToExtract.end(); I != E; ++I) 186 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) 187 (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 188 } 189 190 // findInputsOutputs - Find inputs to, outputs from the code region. 191 // 192 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 193 std::set<BasicBlock*> ExitBlocks; 194 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 195 ce = BlocksToExtract.end(); ci != ce; ++ci) { 196 BasicBlock *BB = *ci; 197 198 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 199 // If a used value is defined outside the region, it's an input. If an 200 // instruction is used outside the region, it's an output. 201 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 202 if (definedInCaller(*O)) 203 inputs.push_back(*O); 204 205 // Consider uses of this instruction (outputs). 206 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 207 UI != E; ++UI) 208 if (!definedInRegion(*UI)) { 209 outputs.push_back(I); 210 break; 211 } 212 } // for: insts 213 214 // Keep track of the exit blocks from the region. 215 TerminatorInst *TI = BB->getTerminator(); 216 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 217 if (!BlocksToExtract.count(TI->getSuccessor(i))) 218 ExitBlocks.insert(TI->getSuccessor(i)); 219 } // for: basic blocks 220 221 NumExitBlocks = ExitBlocks.size(); 222 223 // Eliminate duplicates. 224 std::sort(inputs.begin(), inputs.end()); 225 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end()); 226 std::sort(outputs.begin(), outputs.end()); 227 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end()); 228 } 229 230 /// constructFunction - make a function based on inputs and outputs, as follows: 231 /// f(in0, ..., inN, out0, ..., outN) 232 /// 233 Function *CodeExtractor::constructFunction(const Values &inputs, 234 const Values &outputs, 235 BasicBlock *header, 236 BasicBlock *newRootNode, 237 BasicBlock *newHeader, 238 Function *oldFunction, 239 Module *M) { 240 DEBUG(errs() << "inputs: " << inputs.size() << "\n"); 241 DEBUG(errs() << "outputs: " << outputs.size() << "\n"); 242 243 // This function returns unsigned, outputs will go back by reference. 244 switch (NumExitBlocks) { 245 case 0: 246 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 247 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 248 default: RetTy = Type::getInt16Ty(header->getContext()); break; 249 } 250 251 std::vector<const Type*> paramTy; 252 253 // Add the types of the input values to the function's argument list 254 for (Values::const_iterator i = inputs.begin(), 255 e = inputs.end(); i != e; ++i) { 256 const Value *value = *i; 257 DEBUG(errs() << "value used in func: " << *value << "\n"); 258 paramTy.push_back(value->getType()); 259 } 260 261 // Add the types of the output values to the function's argument list. 262 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 263 I != E; ++I) { 264 DEBUG(errs() << "instr used in func: " << **I << "\n"); 265 if (AggregateArgs) 266 paramTy.push_back((*I)->getType()); 267 else 268 paramTy.push_back(PointerType::getUnqual((*I)->getType())); 269 } 270 271 DEBUG(errs() << "Function type: " << *RetTy << " f("); 272 for (std::vector<const Type*>::iterator i = paramTy.begin(), 273 e = paramTy.end(); i != e; ++i) 274 DEBUG(errs() << **i << ", "); 275 DEBUG(errs() << ")\n"); 276 277 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 278 PointerType *StructPtr = 279 PointerType::getUnqual(StructType::get(M->getContext(), paramTy)); 280 paramTy.clear(); 281 paramTy.push_back(StructPtr); 282 } 283 const FunctionType *funcType = 284 FunctionType::get(RetTy, paramTy, false); 285 286 // Create the new function 287 Function *newFunction = Function::Create(funcType, 288 GlobalValue::InternalLinkage, 289 oldFunction->getName() + "_" + 290 header->getName(), M); 291 // If the old function is no-throw, so is the new one. 292 if (oldFunction->doesNotThrow()) 293 newFunction->setDoesNotThrow(true); 294 295 newFunction->getBasicBlockList().push_back(newRootNode); 296 297 // Create an iterator to name all of the arguments we inserted. 298 Function::arg_iterator AI = newFunction->arg_begin(); 299 300 // Rewrite all users of the inputs in the extracted region to use the 301 // arguments (or appropriate addressing into struct) instead. 302 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 303 Value *RewriteVal; 304 if (AggregateArgs) { 305 Value *Idx[2]; 306 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 307 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 308 TerminatorInst *TI = newFunction->begin()->getTerminator(); 309 GetElementPtrInst *GEP = 310 GetElementPtrInst::Create(AI, Idx, Idx+2, 311 "gep_" + inputs[i]->getName(), TI); 312 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 313 } else 314 RewriteVal = AI++; 315 316 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 317 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 318 use != useE; ++use) 319 if (Instruction* inst = dyn_cast<Instruction>(*use)) 320 if (BlocksToExtract.count(inst->getParent())) 321 inst->replaceUsesOfWith(inputs[i], RewriteVal); 322 } 323 324 // Set names for input and output arguments. 325 if (!AggregateArgs) { 326 AI = newFunction->arg_begin(); 327 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 328 AI->setName(inputs[i]->getName()); 329 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 330 AI->setName(outputs[i]->getName()+".out"); 331 } 332 333 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 334 // within the new function. This must be done before we lose track of which 335 // blocks were originally in the code region. 336 std::vector<User*> Users(header->use_begin(), header->use_end()); 337 for (unsigned i = 0, e = Users.size(); i != e; ++i) 338 // The BasicBlock which contains the branch is not in the region 339 // modify the branch target to a new block 340 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 341 if (!BlocksToExtract.count(TI->getParent()) && 342 TI->getParent()->getParent() == oldFunction) 343 TI->replaceUsesOfWith(header, newHeader); 344 345 return newFunction; 346 } 347 348 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 349 /// the call instruction, splitting any PHI nodes in the header block as 350 /// necessary. 351 void CodeExtractor:: 352 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 353 Values &inputs, Values &outputs) { 354 // Emit a call to the new function, passing in: *pointer to struct (if 355 // aggregating parameters), or plan inputs and allocated memory for outputs 356 std::vector<Value*> params, StructValues, ReloadOutputs; 357 358 LLVMContext &Context = newFunction->getContext(); 359 360 // Add inputs as params, or to be filled into the struct 361 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 362 if (AggregateArgs) 363 StructValues.push_back(*i); 364 else 365 params.push_back(*i); 366 367 // Create allocas for the outputs 368 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 369 if (AggregateArgs) { 370 StructValues.push_back(*i); 371 } else { 372 AllocaInst *alloca = 373 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 374 codeReplacer->getParent()->begin()->begin()); 375 ReloadOutputs.push_back(alloca); 376 params.push_back(alloca); 377 } 378 } 379 380 AllocaInst *Struct = 0; 381 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 382 std::vector<const Type*> ArgTypes; 383 for (Values::iterator v = StructValues.begin(), 384 ve = StructValues.end(); v != ve; ++v) 385 ArgTypes.push_back((*v)->getType()); 386 387 // Allocate a struct at the beginning of this function 388 Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 389 Struct = 390 new AllocaInst(StructArgTy, 0, "structArg", 391 codeReplacer->getParent()->begin()->begin()); 392 params.push_back(Struct); 393 394 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 395 Value *Idx[2]; 396 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 397 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 398 GetElementPtrInst *GEP = 399 GetElementPtrInst::Create(Struct, Idx, Idx + 2, 400 "gep_" + StructValues[i]->getName()); 401 codeReplacer->getInstList().push_back(GEP); 402 StoreInst *SI = new StoreInst(StructValues[i], GEP); 403 codeReplacer->getInstList().push_back(SI); 404 } 405 } 406 407 // Emit the call to the function 408 CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(), 409 NumExitBlocks > 1 ? "targetBlock" : ""); 410 codeReplacer->getInstList().push_back(call); 411 412 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 413 unsigned FirstOut = inputs.size(); 414 if (!AggregateArgs) 415 std::advance(OutputArgBegin, inputs.size()); 416 417 // Reload the outputs passed in by reference 418 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 419 Value *Output = 0; 420 if (AggregateArgs) { 421 Value *Idx[2]; 422 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 423 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 424 GetElementPtrInst *GEP 425 = GetElementPtrInst::Create(Struct, Idx, Idx + 2, 426 "gep_reload_" + outputs[i]->getName()); 427 codeReplacer->getInstList().push_back(GEP); 428 Output = GEP; 429 } else { 430 Output = ReloadOutputs[i]; 431 } 432 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 433 codeReplacer->getInstList().push_back(load); 434 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 435 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 436 Instruction *inst = cast<Instruction>(Users[u]); 437 if (!BlocksToExtract.count(inst->getParent())) 438 inst->replaceUsesOfWith(outputs[i], load); 439 } 440 } 441 442 // Now we can emit a switch statement using the call as a value. 443 SwitchInst *TheSwitch = 444 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 445 codeReplacer, 0, codeReplacer); 446 447 // Since there may be multiple exits from the original region, make the new 448 // function return an unsigned, switch on that number. This loop iterates 449 // over all of the blocks in the extracted region, updating any terminator 450 // instructions in the to-be-extracted region that branch to blocks that are 451 // not in the region to be extracted. 452 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 453 454 unsigned switchVal = 0; 455 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 456 e = BlocksToExtract.end(); i != e; ++i) { 457 TerminatorInst *TI = (*i)->getTerminator(); 458 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 459 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 460 BasicBlock *OldTarget = TI->getSuccessor(i); 461 // add a new basic block which returns the appropriate value 462 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 463 if (!NewTarget) { 464 // If we don't already have an exit stub for this non-extracted 465 // destination, create one now! 466 NewTarget = BasicBlock::Create(Context, 467 OldTarget->getName() + ".exitStub", 468 newFunction); 469 unsigned SuccNum = switchVal++; 470 471 Value *brVal = 0; 472 switch (NumExitBlocks) { 473 case 0: 474 case 1: break; // No value needed. 475 case 2: // Conditional branch, return a bool 476 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 477 break; 478 default: 479 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 480 break; 481 } 482 483 ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget); 484 485 // Update the switch instruction. 486 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 487 SuccNum), 488 OldTarget); 489 490 // Restore values just before we exit 491 Function::arg_iterator OAI = OutputArgBegin; 492 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 493 // For an invoke, the normal destination is the only one that is 494 // dominated by the result of the invocation 495 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 496 497 bool DominatesDef = true; 498 499 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 500 DefBlock = Invoke->getNormalDest(); 501 502 // Make sure we are looking at the original successor block, not 503 // at a newly inserted exit block, which won't be in the dominator 504 // info. 505 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 506 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 507 if (DefBlock == I->second) { 508 DefBlock = I->first; 509 break; 510 } 511 512 // In the extract block case, if the block we are extracting ends 513 // with an invoke instruction, make sure that we don't emit a 514 // store of the invoke value for the unwind block. 515 if (!DT && DefBlock != OldTarget) 516 DominatesDef = false; 517 } 518 519 if (DT) 520 DominatesDef = DT->dominates(DefBlock, OldTarget); 521 522 if (DominatesDef) { 523 if (AggregateArgs) { 524 Value *Idx[2]; 525 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 526 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), 527 FirstOut+out); 528 GetElementPtrInst *GEP = 529 GetElementPtrInst::Create(OAI, Idx, Idx + 2, 530 "gep_" + outputs[out]->getName(), 531 NTRet); 532 new StoreInst(outputs[out], GEP, NTRet); 533 } else { 534 new StoreInst(outputs[out], OAI, NTRet); 535 } 536 } 537 // Advance output iterator even if we don't emit a store 538 if (!AggregateArgs) ++OAI; 539 } 540 } 541 542 // rewrite the original branch instruction with this new target 543 TI->setSuccessor(i, NewTarget); 544 } 545 } 546 547 // Now that we've done the deed, simplify the switch instruction. 548 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 549 switch (NumExitBlocks) { 550 case 0: 551 // There are no successors (the block containing the switch itself), which 552 // means that previously this was the last part of the function, and hence 553 // this should be rewritten as a `ret' 554 555 // Check if the function should return a value 556 if (OldFnRetTy == Type::getVoidTy(Context)) { 557 ReturnInst::Create(Context, 0, TheSwitch); // Return void 558 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 559 // return what we have 560 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 561 } else { 562 // Otherwise we must have code extracted an unwind or something, just 563 // return whatever we want. 564 ReturnInst::Create(Context, 565 Constant::getNullValue(OldFnRetTy), TheSwitch); 566 } 567 568 TheSwitch->eraseFromParent(); 569 break; 570 case 1: 571 // Only a single destination, change the switch into an unconditional 572 // branch. 573 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 574 TheSwitch->eraseFromParent(); 575 break; 576 case 2: 577 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 578 call, TheSwitch); 579 TheSwitch->eraseFromParent(); 580 break; 581 default: 582 // Otherwise, make the default destination of the switch instruction be one 583 // of the other successors. 584 TheSwitch->setOperand(0, call); 585 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 586 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 587 break; 588 } 589 } 590 591 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 592 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 593 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 594 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 595 596 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 597 e = BlocksToExtract.end(); i != e; ++i) { 598 // Delete the basic block from the old function, and the list of blocks 599 oldBlocks.remove(*i); 600 601 // Insert this basic block into the new function 602 newBlocks.push_back(*i); 603 } 604 } 605 606 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 607 /// new function. Returns pointer to the new function. 608 /// 609 /// algorithm: 610 /// 611 /// find inputs and outputs for the region 612 /// 613 /// for inputs: add to function as args, map input instr* to arg# 614 /// for outputs: add allocas for scalars, 615 /// add to func as args, map output instr* to arg# 616 /// 617 /// rewrite func to use argument #s instead of instr* 618 /// 619 /// for each scalar output in the function: at every exit, store intermediate 620 /// computed result back into memory. 621 /// 622 Function *CodeExtractor:: 623 ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 624 if (!isEligible(code)) 625 return 0; 626 627 // 1) Find inputs, outputs 628 // 2) Construct new function 629 // * Add allocas for defs, pass as args by reference 630 // * Pass in uses as args 631 // 3) Move code region, add call instr to func 632 // 633 BlocksToExtract.insert(code.begin(), code.end()); 634 635 Values inputs, outputs; 636 637 // Assumption: this is a single-entry code region, and the header is the first 638 // block in the region. 639 BasicBlock *header = code[0]; 640 641 for (unsigned i = 1, e = code.size(); i != e; ++i) 642 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 643 PI != E; ++PI) 644 assert(BlocksToExtract.count(*PI) && 645 "No blocks in this region may have entries from outside the region" 646 " except for the first block!"); 647 648 // If we have to split PHI nodes or the entry block, do so now. 649 severSplitPHINodes(header); 650 651 // If we have any return instructions in the region, split those blocks so 652 // that the return is not in the region. 653 splitReturnBlocks(); 654 655 Function *oldFunction = header->getParent(); 656 657 // This takes place of the original loop 658 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 659 "codeRepl", oldFunction, 660 header); 661 662 // The new function needs a root node because other nodes can branch to the 663 // head of the region, but the entry node of a function cannot have preds. 664 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 665 "newFuncRoot"); 666 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 667 668 // Find inputs to, outputs from the code region. 669 findInputsOutputs(inputs, outputs); 670 671 // Construct new function based on inputs/outputs & add allocas for all defs. 672 Function *newFunction = constructFunction(inputs, outputs, header, 673 newFuncRoot, 674 codeReplacer, oldFunction, 675 oldFunction->getParent()); 676 677 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 678 679 moveCodeToFunction(newFunction); 680 681 // Loop over all of the PHI nodes in the header block, and change any 682 // references to the old incoming edge to be the new incoming edge. 683 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 684 PHINode *PN = cast<PHINode>(I); 685 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 686 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 687 PN->setIncomingBlock(i, newFuncRoot); 688 } 689 690 // Look at all successors of the codeReplacer block. If any of these blocks 691 // had PHI nodes in them, we need to update the "from" block to be the code 692 // replacer, not the original block in the extracted region. 693 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 694 succ_end(codeReplacer)); 695 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 696 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 697 PHINode *PN = cast<PHINode>(I); 698 std::set<BasicBlock*> ProcessedPreds; 699 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 700 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 701 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 702 PN->setIncomingBlock(i, codeReplacer); 703 else { 704 // There were multiple entries in the PHI for this block, now there 705 // is only one, so remove the duplicated entries. 706 PN->removeIncomingValue(i, false); 707 --i; --e; 708 } 709 } 710 } 711 712 //cerr << "NEW FUNCTION: " << *newFunction; 713 // verifyFunction(*newFunction); 714 715 // cerr << "OLD FUNCTION: " << *oldFunction; 716 // verifyFunction(*oldFunction); 717 718 DEBUG(if (verifyFunction(*newFunction)) 719 llvm_report_error("verifyFunction failed!")); 720 return newFunction; 721 } 722 723 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 724 // Deny code region if it contains allocas or vastarts. 725 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 726 BB != e; ++BB) 727 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 728 I != Ie; ++I) 729 if (isa<AllocaInst>(*I)) 730 return false; 731 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 732 if (const Function *F = CI->getCalledFunction()) 733 if (F->getIntrinsicID() == Intrinsic::vastart) 734 return false; 735 return true; 736 } 737 738 739 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 740 /// function 741 /// 742 Function* llvm::ExtractCodeRegion(DominatorTree &DT, 743 const std::vector<BasicBlock*> &code, 744 bool AggregateArgs) { 745 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code); 746 } 747 748 /// ExtractBasicBlock - slurp a natural loop into a brand new function 749 /// 750 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) { 751 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 752 } 753 754 /// ExtractBasicBlock - slurp a basic block into a brand new function 755 /// 756 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 757 std::vector<BasicBlock*> Blocks; 758 Blocks.push_back(BB); 759 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 760 } 761