1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/Verifier.h" 55 #include "llvm/Support/BlockFrequency.h" 56 #include "llvm/Support/BranchProbability.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <map> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 using namespace llvm::PatternMatch; 72 using ProfileCount = Function::ProfileCount; 73 74 #define DEBUG_TYPE "code-extractor" 75 76 // Provide a command-line option to aggregate function arguments into a struct 77 // for functions produced by the code extractor. This is useful when converting 78 // extracted functions to pthread-based code, as only one argument (void*) can 79 // be passed in to pthread_create(). 80 static cl::opt<bool> 81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 82 cl::desc("Aggregate arguments to code-extracted functions")); 83 84 /// Test whether a block is valid for extraction. 85 static bool isBlockValidForExtraction(const BasicBlock &BB, 86 const SetVector<BasicBlock *> &Result, 87 bool AllowVarArgs, bool AllowAlloca) { 88 // taking the address of a basic block moved to another function is illegal 89 if (BB.hasAddressTaken()) 90 return false; 91 92 // don't hoist code that uses another basicblock address, as it's likely to 93 // lead to unexpected behavior, like cross-function jumps 94 SmallPtrSet<User const *, 16> Visited; 95 SmallVector<User const *, 16> ToVisit; 96 97 for (Instruction const &Inst : BB) 98 ToVisit.push_back(&Inst); 99 100 while (!ToVisit.empty()) { 101 User const *Curr = ToVisit.pop_back_val(); 102 if (!Visited.insert(Curr).second) 103 continue; 104 if (isa<BlockAddress const>(Curr)) 105 return false; // even a reference to self is likely to be not compatible 106 107 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 108 continue; 109 110 for (auto const &U : Curr->operands()) { 111 if (auto *UU = dyn_cast<User>(U)) 112 ToVisit.push_back(UU); 113 } 114 } 115 116 // If explicitly requested, allow vastart and alloca. For invoke instructions 117 // verify that extraction is valid. 118 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 119 if (isa<AllocaInst>(I)) { 120 if (!AllowAlloca) 121 return false; 122 continue; 123 } 124 125 if (const auto *II = dyn_cast<InvokeInst>(I)) { 126 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 127 // must be a part of the subgraph which is being extracted. 128 if (auto *UBB = II->getUnwindDest()) 129 if (!Result.count(UBB)) 130 return false; 131 continue; 132 } 133 134 // All catch handlers of a catchswitch instruction as well as the unwind 135 // destination must be in the subgraph. 136 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 137 if (auto *UBB = CSI->getUnwindDest()) 138 if (!Result.count(UBB)) 139 return false; 140 for (const auto *HBB : CSI->handlers()) 141 if (!Result.count(const_cast<BasicBlock*>(HBB))) 142 return false; 143 continue; 144 } 145 146 // Make sure that entire catch handler is within subgraph. It is sufficient 147 // to check that catch return's block is in the list. 148 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 149 for (const auto *U : CPI->users()) 150 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 151 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 152 return false; 153 continue; 154 } 155 156 // And do similar checks for cleanup handler - the entire handler must be 157 // in subgraph which is going to be extracted. For cleanup return should 158 // additionally check that the unwind destination is also in the subgraph. 159 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 160 for (const auto *U : CPI->users()) 161 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 162 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 163 return false; 164 continue; 165 } 166 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 167 if (auto *UBB = CRI->getUnwindDest()) 168 if (!Result.count(UBB)) 169 return false; 170 continue; 171 } 172 173 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 174 if (const Function *F = CI->getCalledFunction()) { 175 auto IID = F->getIntrinsicID(); 176 if (IID == Intrinsic::vastart) { 177 if (AllowVarArgs) 178 continue; 179 else 180 return false; 181 } 182 183 // Currently, we miscompile outlined copies of eh_typid_for. There are 184 // proposals for fixing this in llvm.org/PR39545. 185 if (IID == Intrinsic::eh_typeid_for) 186 return false; 187 } 188 } 189 } 190 191 return true; 192 } 193 194 /// Build a set of blocks to extract if the input blocks are viable. 195 static SetVector<BasicBlock *> 196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 197 bool AllowVarArgs, bool AllowAlloca) { 198 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 199 SetVector<BasicBlock *> Result; 200 201 // Loop over the blocks, adding them to our set-vector, and aborting with an 202 // empty set if we encounter invalid blocks. 203 for (BasicBlock *BB : BBs) { 204 // If this block is dead, don't process it. 205 if (DT && !DT->isReachableFromEntry(BB)) 206 continue; 207 208 if (!Result.insert(BB)) 209 llvm_unreachable("Repeated basic blocks in extraction input"); 210 } 211 212 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 213 << '\n'); 214 215 for (auto *BB : Result) { 216 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 217 return {}; 218 219 // Make sure that the first block is not a landing pad. 220 if (BB == Result.front()) { 221 if (BB->isEHPad()) { 222 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 223 return {}; 224 } 225 continue; 226 } 227 228 // All blocks other than the first must not have predecessors outside of 229 // the subgraph which is being extracted. 230 for (auto *PBB : predecessors(BB)) 231 if (!Result.count(PBB)) { 232 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 233 "outside the region except for the first block!\n" 234 << "Problematic source BB: " << BB->getName() << "\n" 235 << "Problematic destination BB: " << PBB->getName() 236 << "\n"); 237 return {}; 238 } 239 } 240 241 return Result; 242 } 243 244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 245 bool AggregateArgs, BlockFrequencyInfo *BFI, 246 BranchProbabilityInfo *BPI, AssumptionCache *AC, 247 bool AllowVarArgs, bool AllowAlloca, 248 BasicBlock *AllocationBlock, std::string Suffix, 249 bool ArgsInZeroAddressSpace) 250 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 251 BPI(BPI), AC(AC), AllocationBlock(AllocationBlock), 252 AllowVarArgs(AllowVarArgs), 253 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 254 Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {} 255 256 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 257 BlockFrequencyInfo *BFI, 258 BranchProbabilityInfo *BPI, AssumptionCache *AC, 259 std::string Suffix) 260 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 261 BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false), 262 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 263 /* AllowVarArgs */ false, 264 /* AllowAlloca */ false)), 265 Suffix(Suffix) {} 266 267 /// definedInRegion - Return true if the specified value is defined in the 268 /// extracted region. 269 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 270 if (Instruction *I = dyn_cast<Instruction>(V)) 271 if (Blocks.count(I->getParent())) 272 return true; 273 return false; 274 } 275 276 /// definedInCaller - Return true if the specified value is defined in the 277 /// function being code extracted, but not in the region being extracted. 278 /// These values must be passed in as live-ins to the function. 279 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 280 if (isa<Argument>(V)) return true; 281 if (Instruction *I = dyn_cast<Instruction>(V)) 282 if (!Blocks.count(I->getParent())) 283 return true; 284 return false; 285 } 286 287 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 288 BasicBlock *CommonExitBlock = nullptr; 289 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 290 for (auto *Succ : successors(Block)) { 291 // Internal edges, ok. 292 if (Blocks.count(Succ)) 293 continue; 294 if (!CommonExitBlock) { 295 CommonExitBlock = Succ; 296 continue; 297 } 298 if (CommonExitBlock != Succ) 299 return true; 300 } 301 return false; 302 }; 303 304 if (any_of(Blocks, hasNonCommonExitSucc)) 305 return nullptr; 306 307 return CommonExitBlock; 308 } 309 310 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 311 for (BasicBlock &BB : F) { 312 for (Instruction &II : BB.instructionsWithoutDebug()) 313 if (auto *AI = dyn_cast<AllocaInst>(&II)) 314 Allocas.push_back(AI); 315 316 findSideEffectInfoForBlock(BB); 317 } 318 } 319 320 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 321 for (Instruction &II : BB.instructionsWithoutDebug()) { 322 unsigned Opcode = II.getOpcode(); 323 Value *MemAddr = nullptr; 324 switch (Opcode) { 325 case Instruction::Store: 326 case Instruction::Load: { 327 if (Opcode == Instruction::Store) { 328 StoreInst *SI = cast<StoreInst>(&II); 329 MemAddr = SI->getPointerOperand(); 330 } else { 331 LoadInst *LI = cast<LoadInst>(&II); 332 MemAddr = LI->getPointerOperand(); 333 } 334 // Global variable can not be aliased with locals. 335 if (isa<Constant>(MemAddr)) 336 break; 337 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 338 if (!isa<AllocaInst>(Base)) { 339 SideEffectingBlocks.insert(&BB); 340 return; 341 } 342 BaseMemAddrs[&BB].insert(Base); 343 break; 344 } 345 default: { 346 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 347 if (IntrInst) { 348 if (IntrInst->isLifetimeStartOrEnd()) 349 break; 350 SideEffectingBlocks.insert(&BB); 351 return; 352 } 353 // Treat all the other cases conservatively if it has side effects. 354 if (II.mayHaveSideEffects()) { 355 SideEffectingBlocks.insert(&BB); 356 return; 357 } 358 } 359 } 360 } 361 } 362 363 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 364 BasicBlock &BB, AllocaInst *Addr) const { 365 if (SideEffectingBlocks.count(&BB)) 366 return true; 367 auto It = BaseMemAddrs.find(&BB); 368 if (It != BaseMemAddrs.end()) 369 return It->second.count(Addr); 370 return false; 371 } 372 373 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 374 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 375 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 376 Function *Func = (*Blocks.begin())->getParent(); 377 for (BasicBlock &BB : *Func) { 378 if (Blocks.count(&BB)) 379 continue; 380 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 381 return false; 382 } 383 return true; 384 } 385 386 BasicBlock * 387 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 388 BasicBlock *SinglePredFromOutlineRegion = nullptr; 389 assert(!Blocks.count(CommonExitBlock) && 390 "Expect a block outside the region!"); 391 for (auto *Pred : predecessors(CommonExitBlock)) { 392 if (!Blocks.count(Pred)) 393 continue; 394 if (!SinglePredFromOutlineRegion) { 395 SinglePredFromOutlineRegion = Pred; 396 } else if (SinglePredFromOutlineRegion != Pred) { 397 SinglePredFromOutlineRegion = nullptr; 398 break; 399 } 400 } 401 402 if (SinglePredFromOutlineRegion) 403 return SinglePredFromOutlineRegion; 404 405 #ifndef NDEBUG 406 auto getFirstPHI = [](BasicBlock *BB) { 407 BasicBlock::iterator I = BB->begin(); 408 PHINode *FirstPhi = nullptr; 409 while (I != BB->end()) { 410 PHINode *Phi = dyn_cast<PHINode>(I); 411 if (!Phi) 412 break; 413 if (!FirstPhi) { 414 FirstPhi = Phi; 415 break; 416 } 417 } 418 return FirstPhi; 419 }; 420 // If there are any phi nodes, the single pred either exists or has already 421 // be created before code extraction. 422 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 423 #endif 424 425 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 426 CommonExitBlock->getFirstNonPHI()->getIterator()); 427 428 for (BasicBlock *Pred : 429 llvm::make_early_inc_range(predecessors(CommonExitBlock))) { 430 if (Blocks.count(Pred)) 431 continue; 432 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 433 } 434 // Now add the old exit block to the outline region. 435 Blocks.insert(CommonExitBlock); 436 OldTargets.push_back(NewExitBlock); 437 return CommonExitBlock; 438 } 439 440 // Find the pair of life time markers for address 'Addr' that are either 441 // defined inside the outline region or can legally be shrinkwrapped into the 442 // outline region. If there are not other untracked uses of the address, return 443 // the pair of markers if found; otherwise return a pair of nullptr. 444 CodeExtractor::LifetimeMarkerInfo 445 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 446 Instruction *Addr, 447 BasicBlock *ExitBlock) const { 448 LifetimeMarkerInfo Info; 449 450 for (User *U : Addr->users()) { 451 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 452 if (IntrInst) { 453 // We don't model addresses with multiple start/end markers, but the 454 // markers do not need to be in the region. 455 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 456 if (Info.LifeStart) 457 return {}; 458 Info.LifeStart = IntrInst; 459 continue; 460 } 461 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 462 if (Info.LifeEnd) 463 return {}; 464 Info.LifeEnd = IntrInst; 465 continue; 466 } 467 // At this point, permit debug uses outside of the region. 468 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 469 if (isa<DbgInfoIntrinsic>(IntrInst)) 470 continue; 471 } 472 // Find untracked uses of the address, bail. 473 if (!definedInRegion(Blocks, U)) 474 return {}; 475 } 476 477 if (!Info.LifeStart || !Info.LifeEnd) 478 return {}; 479 480 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 481 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 482 // Do legality check. 483 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 484 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 485 return {}; 486 487 // Check to see if we have a place to do hoisting, if not, bail. 488 if (Info.HoistLifeEnd && !ExitBlock) 489 return {}; 490 491 return Info; 492 } 493 494 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 495 ValueSet &SinkCands, ValueSet &HoistCands, 496 BasicBlock *&ExitBlock) const { 497 Function *Func = (*Blocks.begin())->getParent(); 498 ExitBlock = getCommonExitBlock(Blocks); 499 500 auto moveOrIgnoreLifetimeMarkers = 501 [&](const LifetimeMarkerInfo &LMI) -> bool { 502 if (!LMI.LifeStart) 503 return false; 504 if (LMI.SinkLifeStart) { 505 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 506 << "\n"); 507 SinkCands.insert(LMI.LifeStart); 508 } 509 if (LMI.HoistLifeEnd) { 510 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 511 HoistCands.insert(LMI.LifeEnd); 512 } 513 return true; 514 }; 515 516 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 517 // this is much faster than walking all the instructions. 518 for (AllocaInst *AI : CEAC.getAllocas()) { 519 BasicBlock *BB = AI->getParent(); 520 if (Blocks.count(BB)) 521 continue; 522 523 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 524 // check whether it is actually still in the original function. 525 Function *AIFunc = BB->getParent(); 526 if (AIFunc != Func) 527 continue; 528 529 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 530 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 531 if (Moved) { 532 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 533 SinkCands.insert(AI); 534 continue; 535 } 536 537 // Find bitcasts in the outlined region that have lifetime marker users 538 // outside that region. Replace the lifetime marker use with an 539 // outside region bitcast to avoid unnecessary alloca/reload instructions 540 // and extra lifetime markers. 541 SmallVector<Instruction *, 2> LifetimeBitcastUsers; 542 for (User *U : AI->users()) { 543 if (!definedInRegion(Blocks, U)) 544 continue; 545 546 if (U->stripInBoundsConstantOffsets() != AI) 547 continue; 548 549 Instruction *Bitcast = cast<Instruction>(U); 550 for (User *BU : Bitcast->users()) { 551 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU); 552 if (!IntrInst) 553 continue; 554 555 if (!IntrInst->isLifetimeStartOrEnd()) 556 continue; 557 558 if (definedInRegion(Blocks, IntrInst)) 559 continue; 560 561 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast" 562 << *Bitcast << " in out-of-region lifetime marker " 563 << *IntrInst << "\n"); 564 LifetimeBitcastUsers.push_back(IntrInst); 565 } 566 } 567 568 for (Instruction *I : LifetimeBitcastUsers) { 569 Module *M = AIFunc->getParent(); 570 LLVMContext &Ctx = M->getContext(); 571 auto *Int8PtrTy = PointerType::getUnqual(Ctx); 572 CastInst *CastI = 573 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I->getIterator()); 574 I->replaceUsesOfWith(I->getOperand(1), CastI); 575 } 576 577 // Follow any bitcasts. 578 SmallVector<Instruction *, 2> Bitcasts; 579 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 580 for (User *U : AI->users()) { 581 if (U->stripInBoundsConstantOffsets() == AI) { 582 Instruction *Bitcast = cast<Instruction>(U); 583 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 584 if (LMI.LifeStart) { 585 Bitcasts.push_back(Bitcast); 586 BitcastLifetimeInfo.push_back(LMI); 587 continue; 588 } 589 } 590 591 // Found unknown use of AI. 592 if (!definedInRegion(Blocks, U)) { 593 Bitcasts.clear(); 594 break; 595 } 596 } 597 598 // Either no bitcasts reference the alloca or there are unknown uses. 599 if (Bitcasts.empty()) 600 continue; 601 602 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 603 SinkCands.insert(AI); 604 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 605 Instruction *BitcastAddr = Bitcasts[I]; 606 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 607 assert(LMI.LifeStart && 608 "Unsafe to sink bitcast without lifetime markers"); 609 moveOrIgnoreLifetimeMarkers(LMI); 610 if (!definedInRegion(Blocks, BitcastAddr)) { 611 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 612 << "\n"); 613 SinkCands.insert(BitcastAddr); 614 } 615 } 616 } 617 } 618 619 bool CodeExtractor::isEligible() const { 620 if (Blocks.empty()) 621 return false; 622 BasicBlock *Header = *Blocks.begin(); 623 Function *F = Header->getParent(); 624 625 // For functions with varargs, check that varargs handling is only done in the 626 // outlined function, i.e vastart and vaend are only used in outlined blocks. 627 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 628 auto containsVarArgIntrinsic = [](const Instruction &I) { 629 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 630 if (const Function *Callee = CI->getCalledFunction()) 631 return Callee->getIntrinsicID() == Intrinsic::vastart || 632 Callee->getIntrinsicID() == Intrinsic::vaend; 633 return false; 634 }; 635 636 for (auto &BB : *F) { 637 if (Blocks.count(&BB)) 638 continue; 639 if (llvm::any_of(BB, containsVarArgIntrinsic)) 640 return false; 641 } 642 } 643 return true; 644 } 645 646 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 647 const ValueSet &SinkCands) const { 648 for (BasicBlock *BB : Blocks) { 649 // If a used value is defined outside the region, it's an input. If an 650 // instruction is used outside the region, it's an output. 651 for (Instruction &II : *BB) { 652 for (auto &OI : II.operands()) { 653 Value *V = OI; 654 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 655 Inputs.insert(V); 656 } 657 658 for (User *U : II.users()) 659 if (!definedInRegion(Blocks, U)) { 660 Outputs.insert(&II); 661 break; 662 } 663 } 664 } 665 } 666 667 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 668 /// of the region, we need to split the entry block of the region so that the 669 /// PHI node is easier to deal with. 670 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 671 unsigned NumPredsFromRegion = 0; 672 unsigned NumPredsOutsideRegion = 0; 673 674 if (Header != &Header->getParent()->getEntryBlock()) { 675 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 676 if (!PN) return; // No PHI nodes. 677 678 // If the header node contains any PHI nodes, check to see if there is more 679 // than one entry from outside the region. If so, we need to sever the 680 // header block into two. 681 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 682 if (Blocks.count(PN->getIncomingBlock(i))) 683 ++NumPredsFromRegion; 684 else 685 ++NumPredsOutsideRegion; 686 687 // If there is one (or fewer) predecessor from outside the region, we don't 688 // need to do anything special. 689 if (NumPredsOutsideRegion <= 1) return; 690 } 691 692 // Otherwise, we need to split the header block into two pieces: one 693 // containing PHI nodes merging values from outside of the region, and a 694 // second that contains all of the code for the block and merges back any 695 // incoming values from inside of the region. 696 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 697 698 // We only want to code extract the second block now, and it becomes the new 699 // header of the region. 700 BasicBlock *OldPred = Header; 701 Blocks.remove(OldPred); 702 Blocks.insert(NewBB); 703 Header = NewBB; 704 705 // Okay, now we need to adjust the PHI nodes and any branches from within the 706 // region to go to the new header block instead of the old header block. 707 if (NumPredsFromRegion) { 708 PHINode *PN = cast<PHINode>(OldPred->begin()); 709 // Loop over all of the predecessors of OldPred that are in the region, 710 // changing them to branch to NewBB instead. 711 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 712 if (Blocks.count(PN->getIncomingBlock(i))) { 713 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 714 TI->replaceUsesOfWith(OldPred, NewBB); 715 } 716 717 // Okay, everything within the region is now branching to the right block, we 718 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 719 BasicBlock::iterator AfterPHIs; 720 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 721 PHINode *PN = cast<PHINode>(AfterPHIs); 722 // Create a new PHI node in the new region, which has an incoming value 723 // from OldPred of PN. 724 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 725 PN->getName() + ".ce"); 726 NewPN->insertBefore(NewBB->begin()); 727 PN->replaceAllUsesWith(NewPN); 728 NewPN->addIncoming(PN, OldPred); 729 730 // Loop over all of the incoming value in PN, moving them to NewPN if they 731 // are from the extracted region. 732 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 733 if (Blocks.count(PN->getIncomingBlock(i))) { 734 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 735 PN->removeIncomingValue(i); 736 --i; 737 } 738 } 739 } 740 } 741 } 742 743 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 744 /// outlined region, we split these PHIs on two: one with inputs from region 745 /// and other with remaining incoming blocks; then first PHIs are placed in 746 /// outlined region. 747 void CodeExtractor::severSplitPHINodesOfExits( 748 const SetVector<BasicBlock *> &Exits) { 749 for (BasicBlock *ExitBB : Exits) { 750 BasicBlock *NewBB = nullptr; 751 752 for (PHINode &PN : ExitBB->phis()) { 753 // Find all incoming values from the outlining region. 754 SmallVector<unsigned, 2> IncomingVals; 755 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 756 if (Blocks.count(PN.getIncomingBlock(i))) 757 IncomingVals.push_back(i); 758 759 // Do not process PHI if there is one (or fewer) predecessor from region. 760 // If PHI has exactly one predecessor from region, only this one incoming 761 // will be replaced on codeRepl block, so it should be safe to skip PHI. 762 if (IncomingVals.size() <= 1) 763 continue; 764 765 // Create block for new PHIs and add it to the list of outlined if it 766 // wasn't done before. 767 if (!NewBB) { 768 NewBB = BasicBlock::Create(ExitBB->getContext(), 769 ExitBB->getName() + ".split", 770 ExitBB->getParent(), ExitBB); 771 NewBB->IsNewDbgInfoFormat = ExitBB->IsNewDbgInfoFormat; 772 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB)); 773 for (BasicBlock *PredBB : Preds) 774 if (Blocks.count(PredBB)) 775 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 776 BranchInst::Create(ExitBB, NewBB); 777 Blocks.insert(NewBB); 778 } 779 780 // Split this PHI. 781 PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(), 782 PN.getName() + ".ce"); 783 NewPN->insertBefore(NewBB->getFirstNonPHIIt()); 784 for (unsigned i : IncomingVals) 785 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 786 for (unsigned i : reverse(IncomingVals)) 787 PN.removeIncomingValue(i, false); 788 PN.addIncoming(NewPN, NewBB); 789 } 790 } 791 } 792 793 void CodeExtractor::splitReturnBlocks() { 794 for (BasicBlock *Block : Blocks) 795 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 796 BasicBlock *New = 797 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 798 if (DT) { 799 // Old dominates New. New node dominates all other nodes dominated 800 // by Old. 801 DomTreeNode *OldNode = DT->getNode(Block); 802 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 803 OldNode->end()); 804 805 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 806 807 for (DomTreeNode *I : Children) 808 DT->changeImmediateDominator(I, NewNode); 809 } 810 } 811 } 812 813 /// constructFunction - make a function based on inputs and outputs, as follows: 814 /// f(in0, ..., inN, out0, ..., outN) 815 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 816 const ValueSet &outputs, 817 BasicBlock *header, 818 BasicBlock *newRootNode, 819 BasicBlock *newHeader, 820 Function *oldFunction, 821 Module *M) { 822 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 823 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 824 825 // This function returns unsigned, outputs will go back by reference. 826 switch (NumExitBlocks) { 827 case 0: 828 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 829 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 830 default: RetTy = Type::getInt16Ty(header->getContext()); break; 831 } 832 833 std::vector<Type *> ParamTy; 834 std::vector<Type *> AggParamTy; 835 ValueSet StructValues; 836 const DataLayout &DL = M->getDataLayout(); 837 838 // Add the types of the input values to the function's argument list 839 for (Value *value : inputs) { 840 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 841 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) { 842 AggParamTy.push_back(value->getType()); 843 StructValues.insert(value); 844 } else 845 ParamTy.push_back(value->getType()); 846 } 847 848 // Add the types of the output values to the function's argument list. 849 for (Value *output : outputs) { 850 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 851 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 852 AggParamTy.push_back(output->getType()); 853 StructValues.insert(output); 854 } else 855 ParamTy.push_back( 856 PointerType::get(output->getType(), DL.getAllocaAddrSpace())); 857 } 858 859 assert( 860 (ParamTy.size() + AggParamTy.size()) == 861 (inputs.size() + outputs.size()) && 862 "Number of scalar and aggregate params does not match inputs, outputs"); 863 assert((StructValues.empty() || AggregateArgs) && 864 "Expeced StructValues only with AggregateArgs set"); 865 866 // Concatenate scalar and aggregate params in ParamTy. 867 size_t NumScalarParams = ParamTy.size(); 868 StructType *StructTy = nullptr; 869 if (AggregateArgs && !AggParamTy.empty()) { 870 StructTy = StructType::get(M->getContext(), AggParamTy); 871 ParamTy.push_back(PointerType::get( 872 StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace())); 873 } 874 875 LLVM_DEBUG({ 876 dbgs() << "Function type: " << *RetTy << " f("; 877 for (Type *i : ParamTy) 878 dbgs() << *i << ", "; 879 dbgs() << ")\n"; 880 }); 881 882 FunctionType *funcType = FunctionType::get( 883 RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg()); 884 885 std::string SuffixToUse = 886 Suffix.empty() 887 ? (header->getName().empty() ? "extracted" : header->getName().str()) 888 : Suffix; 889 // Create the new function 890 Function *newFunction = Function::Create( 891 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 892 oldFunction->getName() + "." + SuffixToUse, M); 893 newFunction->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat; 894 895 // Inherit all of the target dependent attributes and white-listed 896 // target independent attributes. 897 // (e.g. If the extracted region contains a call to an x86.sse 898 // instruction we need to make sure that the extracted region has the 899 // "target-features" attribute allowing it to be lowered. 900 // FIXME: This should be changed to check to see if a specific 901 // attribute can not be inherited. 902 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) { 903 if (Attr.isStringAttribute()) { 904 if (Attr.getKindAsString() == "thunk") 905 continue; 906 } else 907 switch (Attr.getKindAsEnum()) { 908 // Those attributes cannot be propagated safely. Explicitly list them 909 // here so we get a warning if new attributes are added. 910 case Attribute::AllocSize: 911 case Attribute::Builtin: 912 case Attribute::Convergent: 913 case Attribute::JumpTable: 914 case Attribute::Naked: 915 case Attribute::NoBuiltin: 916 case Attribute::NoMerge: 917 case Attribute::NoReturn: 918 case Attribute::NoSync: 919 case Attribute::ReturnsTwice: 920 case Attribute::Speculatable: 921 case Attribute::StackAlignment: 922 case Attribute::WillReturn: 923 case Attribute::AllocKind: 924 case Attribute::PresplitCoroutine: 925 case Attribute::Memory: 926 case Attribute::NoFPClass: 927 case Attribute::CoroDestroyOnlyWhenComplete: 928 continue; 929 // Those attributes should be safe to propagate to the extracted function. 930 case Attribute::AlwaysInline: 931 case Attribute::Cold: 932 case Attribute::DisableSanitizerInstrumentation: 933 case Attribute::FnRetThunkExtern: 934 case Attribute::Hot: 935 case Attribute::HybridPatchable: 936 case Attribute::NoRecurse: 937 case Attribute::InlineHint: 938 case Attribute::MinSize: 939 case Attribute::NoCallback: 940 case Attribute::NoDuplicate: 941 case Attribute::NoFree: 942 case Attribute::NoImplicitFloat: 943 case Attribute::NoInline: 944 case Attribute::NonLazyBind: 945 case Attribute::NoRedZone: 946 case Attribute::NoUnwind: 947 case Attribute::NoSanitizeBounds: 948 case Attribute::NoSanitizeCoverage: 949 case Attribute::NullPointerIsValid: 950 case Attribute::OptimizeForDebugging: 951 case Attribute::OptForFuzzing: 952 case Attribute::OptimizeNone: 953 case Attribute::OptimizeForSize: 954 case Attribute::SafeStack: 955 case Attribute::ShadowCallStack: 956 case Attribute::SanitizeAddress: 957 case Attribute::SanitizeMemory: 958 case Attribute::SanitizeNumericalStability: 959 case Attribute::SanitizeThread: 960 case Attribute::SanitizeHWAddress: 961 case Attribute::SanitizeMemTag: 962 case Attribute::SanitizeRealtime: 963 case Attribute::SpeculativeLoadHardening: 964 case Attribute::StackProtect: 965 case Attribute::StackProtectReq: 966 case Attribute::StackProtectStrong: 967 case Attribute::StrictFP: 968 case Attribute::UWTable: 969 case Attribute::VScaleRange: 970 case Attribute::NoCfCheck: 971 case Attribute::MustProgress: 972 case Attribute::NoProfile: 973 case Attribute::SkipProfile: 974 break; 975 // These attributes cannot be applied to functions. 976 case Attribute::Alignment: 977 case Attribute::AllocatedPointer: 978 case Attribute::AllocAlign: 979 case Attribute::ByVal: 980 case Attribute::Dereferenceable: 981 case Attribute::DereferenceableOrNull: 982 case Attribute::ElementType: 983 case Attribute::InAlloca: 984 case Attribute::InReg: 985 case Attribute::Nest: 986 case Attribute::NoAlias: 987 case Attribute::NoCapture: 988 case Attribute::NoUndef: 989 case Attribute::NonNull: 990 case Attribute::Preallocated: 991 case Attribute::ReadNone: 992 case Attribute::ReadOnly: 993 case Attribute::Returned: 994 case Attribute::SExt: 995 case Attribute::StructRet: 996 case Attribute::SwiftError: 997 case Attribute::SwiftSelf: 998 case Attribute::SwiftAsync: 999 case Attribute::ZExt: 1000 case Attribute::ImmArg: 1001 case Attribute::ByRef: 1002 case Attribute::WriteOnly: 1003 case Attribute::Writable: 1004 case Attribute::DeadOnUnwind: 1005 case Attribute::Range: 1006 case Attribute::Initializes: 1007 // These are not really attributes. 1008 case Attribute::None: 1009 case Attribute::EndAttrKinds: 1010 case Attribute::EmptyKey: 1011 case Attribute::TombstoneKey: 1012 llvm_unreachable("Not a function attribute"); 1013 } 1014 1015 newFunction->addFnAttr(Attr); 1016 } 1017 1018 if (NumExitBlocks == 0) { 1019 // Mark the new function `noreturn` if applicable. Terminators which resume 1020 // exception propagation are treated as returning instructions. This is to 1021 // avoid inserting traps after calls to outlined functions which unwind. 1022 if (none_of(Blocks, [](const BasicBlock *BB) { 1023 const Instruction *Term = BB->getTerminator(); 1024 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1025 })) 1026 newFunction->setDoesNotReturn(); 1027 } 1028 1029 newFunction->insert(newFunction->end(), newRootNode); 1030 1031 // Create scalar and aggregate iterators to name all of the arguments we 1032 // inserted. 1033 Function::arg_iterator ScalarAI = newFunction->arg_begin(); 1034 Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams); 1035 1036 // Rewrite all users of the inputs in the extracted region to use the 1037 // arguments (or appropriate addressing into struct) instead. 1038 for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) { 1039 Value *RewriteVal; 1040 if (AggregateArgs && StructValues.contains(inputs[i])) { 1041 Value *Idx[2]; 1042 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 1043 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx); 1044 BasicBlock::iterator TI = newFunction->begin()->getTerminator()->getIterator(); 1045 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1046 StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI); 1047 RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP, 1048 "loadgep_" + inputs[i]->getName(), TI); 1049 ++aggIdx; 1050 } else 1051 RewriteVal = &*ScalarAI++; 1052 1053 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 1054 for (User *use : Users) 1055 if (Instruction *inst = dyn_cast<Instruction>(use)) 1056 if (Blocks.count(inst->getParent())) 1057 inst->replaceUsesOfWith(inputs[i], RewriteVal); 1058 } 1059 1060 // Set names for input and output arguments. 1061 if (NumScalarParams) { 1062 ScalarAI = newFunction->arg_begin(); 1063 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI) 1064 if (!StructValues.contains(inputs[i])) 1065 ScalarAI->setName(inputs[i]->getName()); 1066 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI) 1067 if (!StructValues.contains(outputs[i])) 1068 ScalarAI->setName(outputs[i]->getName() + ".out"); 1069 } 1070 1071 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 1072 // within the new function. This must be done before we lose track of which 1073 // blocks were originally in the code region. 1074 std::vector<User *> Users(header->user_begin(), header->user_end()); 1075 for (auto &U : Users) 1076 // The BasicBlock which contains the branch is not in the region 1077 // modify the branch target to a new block 1078 if (Instruction *I = dyn_cast<Instruction>(U)) 1079 if (I->isTerminator() && I->getFunction() == oldFunction && 1080 !Blocks.count(I->getParent())) 1081 I->replaceUsesOfWith(header, newHeader); 1082 1083 return newFunction; 1084 } 1085 1086 /// Erase lifetime.start markers which reference inputs to the extraction 1087 /// region, and insert the referenced memory into \p LifetimesStart. 1088 /// 1089 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 1090 /// of allocas which will be moved from the caller function into the extracted 1091 /// function (\p SunkAllocas). 1092 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 1093 const SetVector<Value *> &SunkAllocas, 1094 SetVector<Value *> &LifetimesStart) { 1095 for (BasicBlock *BB : Blocks) { 1096 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 1097 auto *II = dyn_cast<IntrinsicInst>(&I); 1098 if (!II || !II->isLifetimeStartOrEnd()) 1099 continue; 1100 1101 // Get the memory operand of the lifetime marker. If the underlying 1102 // object is a sunk alloca, or is otherwise defined in the extraction 1103 // region, the lifetime marker must not be erased. 1104 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1105 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1106 continue; 1107 1108 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1109 LifetimesStart.insert(Mem); 1110 II->eraseFromParent(); 1111 } 1112 } 1113 } 1114 1115 /// Insert lifetime start/end markers surrounding the call to the new function 1116 /// for objects defined in the caller. 1117 static void insertLifetimeMarkersSurroundingCall( 1118 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1119 CallInst *TheCall) { 1120 LLVMContext &Ctx = M->getContext(); 1121 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1122 Instruction *Term = TheCall->getParent()->getTerminator(); 1123 1124 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1125 // markers before the call if \p InsertBefore, and after the call otherwise. 1126 auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects, 1127 bool InsertBefore) { 1128 for (Value *Mem : Objects) { 1129 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1130 TheCall->getFunction()) && 1131 "Input memory not defined in original function"); 1132 1133 Function *Func = Intrinsic::getDeclaration(M, MarkerFunc, Mem->getType()); 1134 auto Marker = CallInst::Create(Func, {NegativeOne, Mem}); 1135 if (InsertBefore) 1136 Marker->insertBefore(TheCall); 1137 else 1138 Marker->insertBefore(Term); 1139 } 1140 }; 1141 1142 if (!LifetimesStart.empty()) { 1143 insertMarkers(Intrinsic::lifetime_start, LifetimesStart, 1144 /*InsertBefore=*/true); 1145 } 1146 1147 if (!LifetimesEnd.empty()) { 1148 insertMarkers(Intrinsic::lifetime_end, LifetimesEnd, 1149 /*InsertBefore=*/false); 1150 } 1151 } 1152 1153 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1154 /// the call instruction, splitting any PHI nodes in the header block as 1155 /// necessary. 1156 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1157 BasicBlock *codeReplacer, 1158 ValueSet &inputs, 1159 ValueSet &outputs) { 1160 // Emit a call to the new function, passing in: *pointer to struct (if 1161 // aggregating parameters), or plan inputs and allocated memory for outputs 1162 std::vector<Value *> params, ReloadOutputs, Reloads; 1163 ValueSet StructValues; 1164 1165 Module *M = newFunction->getParent(); 1166 LLVMContext &Context = M->getContext(); 1167 const DataLayout &DL = M->getDataLayout(); 1168 CallInst *call = nullptr; 1169 1170 // Add inputs as params, or to be filled into the struct 1171 unsigned ScalarInputArgNo = 0; 1172 SmallVector<unsigned, 1> SwiftErrorArgs; 1173 for (Value *input : inputs) { 1174 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input)) 1175 StructValues.insert(input); 1176 else { 1177 params.push_back(input); 1178 if (input->isSwiftError()) 1179 SwiftErrorArgs.push_back(ScalarInputArgNo); 1180 } 1181 ++ScalarInputArgNo; 1182 } 1183 1184 // Create allocas for the outputs 1185 unsigned ScalarOutputArgNo = 0; 1186 for (Value *output : outputs) { 1187 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 1188 StructValues.insert(output); 1189 } else { 1190 AllocaInst *alloca = 1191 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1192 nullptr, output->getName() + ".loc", 1193 codeReplacer->getParent()->front().begin()); 1194 ReloadOutputs.push_back(alloca); 1195 params.push_back(alloca); 1196 ++ScalarOutputArgNo; 1197 } 1198 } 1199 1200 StructType *StructArgTy = nullptr; 1201 AllocaInst *Struct = nullptr; 1202 unsigned NumAggregatedInputs = 0; 1203 if (AggregateArgs && !StructValues.empty()) { 1204 std::vector<Type *> ArgTypes; 1205 for (Value *V : StructValues) 1206 ArgTypes.push_back(V->getType()); 1207 1208 // Allocate a struct at the beginning of this function 1209 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1210 Struct = new AllocaInst( 1211 StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg", 1212 AllocationBlock ? AllocationBlock->getFirstInsertionPt() 1213 : codeReplacer->getParent()->front().begin()); 1214 1215 if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) { 1216 auto *StructSpaceCast = new AddrSpaceCastInst( 1217 Struct, PointerType ::get(Context, 0), "structArg.ascast"); 1218 StructSpaceCast->insertAfter(Struct); 1219 params.push_back(StructSpaceCast); 1220 } else { 1221 params.push_back(Struct); 1222 } 1223 // Store aggregated inputs in the struct. 1224 for (unsigned i = 0, e = StructValues.size(); i != e; ++i) { 1225 if (inputs.contains(StructValues[i])) { 1226 Value *Idx[2]; 1227 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1228 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1229 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1230 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1231 GEP->insertInto(codeReplacer, codeReplacer->end()); 1232 new StoreInst(StructValues[i], GEP, codeReplacer); 1233 NumAggregatedInputs++; 1234 } 1235 } 1236 } 1237 1238 // Emit the call to the function 1239 call = CallInst::Create(newFunction, params, 1240 NumExitBlocks > 1 ? "targetBlock" : ""); 1241 // Add debug location to the new call, if the original function has debug 1242 // info. In that case, the terminator of the entry block of the extracted 1243 // function contains the first debug location of the extracted function, 1244 // set in extractCodeRegion. 1245 if (codeReplacer->getParent()->getSubprogram()) { 1246 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1247 call->setDebugLoc(DL); 1248 } 1249 call->insertInto(codeReplacer, codeReplacer->end()); 1250 1251 // Set swifterror parameter attributes. 1252 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1253 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1254 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1255 } 1256 1257 // Reload the outputs passed in by reference, use the struct if output is in 1258 // the aggregate or reload from the scalar argument. 1259 for (unsigned i = 0, e = outputs.size(), scalarIdx = 0, 1260 aggIdx = NumAggregatedInputs; 1261 i != e; ++i) { 1262 Value *Output = nullptr; 1263 if (AggregateArgs && StructValues.contains(outputs[i])) { 1264 Value *Idx[2]; 1265 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1266 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1267 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1268 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1269 GEP->insertInto(codeReplacer, codeReplacer->end()); 1270 Output = GEP; 1271 ++aggIdx; 1272 } else { 1273 Output = ReloadOutputs[scalarIdx]; 1274 ++scalarIdx; 1275 } 1276 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1277 outputs[i]->getName() + ".reload", 1278 codeReplacer); 1279 Reloads.push_back(load); 1280 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1281 for (User *U : Users) { 1282 Instruction *inst = cast<Instruction>(U); 1283 if (!Blocks.count(inst->getParent())) 1284 inst->replaceUsesOfWith(outputs[i], load); 1285 } 1286 } 1287 1288 // Now we can emit a switch statement using the call as a value. 1289 SwitchInst *TheSwitch = 1290 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1291 codeReplacer, 0, codeReplacer); 1292 1293 // Since there may be multiple exits from the original region, make the new 1294 // function return an unsigned, switch on that number. This loop iterates 1295 // over all of the blocks in the extracted region, updating any terminator 1296 // instructions in the to-be-extracted region that branch to blocks that are 1297 // not in the region to be extracted. 1298 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1299 1300 // Iterate over the previously collected targets, and create new blocks inside 1301 // the function to branch to. 1302 unsigned switchVal = 0; 1303 for (BasicBlock *OldTarget : OldTargets) { 1304 if (Blocks.count(OldTarget)) 1305 continue; 1306 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1307 if (NewTarget) 1308 continue; 1309 1310 // If we don't already have an exit stub for this non-extracted 1311 // destination, create one now! 1312 NewTarget = BasicBlock::Create(Context, 1313 OldTarget->getName() + ".exitStub", 1314 newFunction); 1315 unsigned SuccNum = switchVal++; 1316 1317 Value *brVal = nullptr; 1318 assert(NumExitBlocks < 0xffff && "too many exit blocks for switch"); 1319 switch (NumExitBlocks) { 1320 case 0: 1321 case 1: break; // No value needed. 1322 case 2: // Conditional branch, return a bool 1323 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1324 break; 1325 default: 1326 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1327 break; 1328 } 1329 1330 ReturnInst::Create(Context, brVal, NewTarget); 1331 1332 // Update the switch instruction. 1333 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1334 SuccNum), 1335 OldTarget); 1336 } 1337 1338 for (BasicBlock *Block : Blocks) { 1339 Instruction *TI = Block->getTerminator(); 1340 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1341 if (Blocks.count(TI->getSuccessor(i))) 1342 continue; 1343 BasicBlock *OldTarget = TI->getSuccessor(i); 1344 // add a new basic block which returns the appropriate value 1345 BasicBlock *NewTarget = ExitBlockMap[OldTarget]; 1346 assert(NewTarget && "Unknown target block!"); 1347 1348 // rewrite the original branch instruction with this new target 1349 TI->setSuccessor(i, NewTarget); 1350 } 1351 } 1352 1353 // Store the arguments right after the definition of output value. 1354 // This should be proceeded after creating exit stubs to be ensure that invoke 1355 // result restore will be placed in the outlined function. 1356 Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin(); 1357 std::advance(ScalarOutputArgBegin, ScalarInputArgNo); 1358 Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin(); 1359 std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo); 1360 1361 for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e; 1362 ++i) { 1363 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1364 if (!OutI) 1365 continue; 1366 1367 // Find proper insertion point. 1368 BasicBlock::iterator InsertPt; 1369 // In case OutI is an invoke, we insert the store at the beginning in the 1370 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1371 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1372 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1373 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1374 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1375 else 1376 InsertPt = std::next(OutI->getIterator()); 1377 1378 assert((InsertPt->getFunction() == newFunction || 1379 Blocks.count(InsertPt->getParent())) && 1380 "InsertPt should be in new function"); 1381 if (AggregateArgs && StructValues.contains(outputs[i])) { 1382 assert(AggOutputArgBegin != newFunction->arg_end() && 1383 "Number of aggregate output arguments should match " 1384 "the number of defined values"); 1385 Value *Idx[2]; 1386 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1387 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1388 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1389 StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(), 1390 InsertPt); 1391 new StoreInst(outputs[i], GEP, InsertPt); 1392 ++aggIdx; 1393 // Since there should be only one struct argument aggregating 1394 // all the output values, we shouldn't increment AggOutputArgBegin, which 1395 // always points to the struct argument, in this case. 1396 } else { 1397 assert(ScalarOutputArgBegin != newFunction->arg_end() && 1398 "Number of scalar output arguments should match " 1399 "the number of defined values"); 1400 new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertPt); 1401 ++ScalarOutputArgBegin; 1402 } 1403 } 1404 1405 // Now that we've done the deed, simplify the switch instruction. 1406 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1407 switch (NumExitBlocks) { 1408 case 0: 1409 // There are no successors (the block containing the switch itself), which 1410 // means that previously this was the last part of the function, and hence 1411 // this should be rewritten as a `ret` or `unreachable`. 1412 if (newFunction->doesNotReturn()) { 1413 // If fn is no return, end with an unreachable terminator. 1414 (void)new UnreachableInst(Context, TheSwitch->getIterator()); 1415 } else if (OldFnRetTy->isVoidTy()) { 1416 // We have no return value. 1417 ReturnInst::Create(Context, nullptr, 1418 TheSwitch->getIterator()); // Return void 1419 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1420 // return what we have 1421 ReturnInst::Create(Context, TheSwitch->getCondition(), 1422 TheSwitch->getIterator()); 1423 } else { 1424 // Otherwise we must have code extracted an unwind or something, just 1425 // return whatever we want. 1426 ReturnInst::Create(Context, Constant::getNullValue(OldFnRetTy), 1427 TheSwitch->getIterator()); 1428 } 1429 1430 TheSwitch->eraseFromParent(); 1431 break; 1432 case 1: 1433 // Only a single destination, change the switch into an unconditional 1434 // branch. 1435 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getIterator()); 1436 TheSwitch->eraseFromParent(); 1437 break; 1438 case 2: 1439 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1440 call, TheSwitch->getIterator()); 1441 TheSwitch->eraseFromParent(); 1442 break; 1443 default: 1444 // Otherwise, make the default destination of the switch instruction be one 1445 // of the other successors. 1446 TheSwitch->setCondition(call); 1447 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1448 // Remove redundant case 1449 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1450 break; 1451 } 1452 1453 // Insert lifetime markers around the reloads of any output values. The 1454 // allocas output values are stored in are only in-use in the codeRepl block. 1455 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1456 1457 return call; 1458 } 1459 1460 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1461 auto newFuncIt = newFunction->front().getIterator(); 1462 for (BasicBlock *Block : Blocks) { 1463 // Delete the basic block from the old function, and the list of blocks 1464 Block->removeFromParent(); 1465 1466 // Insert this basic block into the new function 1467 // Insert the original blocks after the entry block created 1468 // for the new function. The entry block may be followed 1469 // by a set of exit blocks at this point, but these exit 1470 // blocks better be placed at the end of the new function. 1471 newFuncIt = newFunction->insert(std::next(newFuncIt), Block); 1472 } 1473 } 1474 1475 void CodeExtractor::calculateNewCallTerminatorWeights( 1476 BasicBlock *CodeReplacer, 1477 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1478 BranchProbabilityInfo *BPI) { 1479 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1480 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1481 1482 // Update the branch weights for the exit block. 1483 Instruction *TI = CodeReplacer->getTerminator(); 1484 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1485 1486 // Block Frequency distribution with dummy node. 1487 Distribution BranchDist; 1488 1489 SmallVector<BranchProbability, 4> EdgeProbabilities( 1490 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1491 1492 // Add each of the frequencies of the successors. 1493 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1494 BlockNode ExitNode(i); 1495 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1496 if (ExitFreq != 0) 1497 BranchDist.addExit(ExitNode, ExitFreq); 1498 else 1499 EdgeProbabilities[i] = BranchProbability::getZero(); 1500 } 1501 1502 // Check for no total weight. 1503 if (BranchDist.Total == 0) { 1504 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1505 return; 1506 } 1507 1508 // Normalize the distribution so that they can fit in unsigned. 1509 BranchDist.normalize(); 1510 1511 // Create normalized branch weights and set the metadata. 1512 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1513 const auto &Weight = BranchDist.Weights[I]; 1514 1515 // Get the weight and update the current BFI. 1516 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1517 BranchProbability BP(Weight.Amount, BranchDist.Total); 1518 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1519 } 1520 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1521 TI->setMetadata( 1522 LLVMContext::MD_prof, 1523 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1524 } 1525 1526 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1527 /// \p F. 1528 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1529 for (Instruction &I : instructions(F)) { 1530 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1531 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords; 1532 findDbgUsers(DbgUsers, &I, &DbgVariableRecords); 1533 for (DbgVariableIntrinsic *DVI : DbgUsers) 1534 if (DVI->getFunction() != &F) 1535 DVI->eraseFromParent(); 1536 for (DbgVariableRecord *DVR : DbgVariableRecords) 1537 if (DVR->getFunction() != &F) 1538 DVR->eraseFromParent(); 1539 } 1540 } 1541 1542 /// Fix up the debug info in the old and new functions by pointing line 1543 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1544 /// intrinsics which point to values outside of the new function. 1545 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1546 CallInst &TheCall) { 1547 DISubprogram *OldSP = OldFunc.getSubprogram(); 1548 LLVMContext &Ctx = OldFunc.getContext(); 1549 1550 if (!OldSP) { 1551 // Erase any debug info the new function contains. 1552 stripDebugInfo(NewFunc); 1553 // Make sure the old function doesn't contain any non-local metadata refs. 1554 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1555 return; 1556 } 1557 1558 // Create a subprogram for the new function. Leave out a description of the 1559 // function arguments, as the parameters don't correspond to anything at the 1560 // source level. 1561 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1562 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, 1563 OldSP->getUnit()); 1564 auto SPType = 1565 DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt)); 1566 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1567 DISubprogram::SPFlagOptimized | 1568 DISubprogram::SPFlagLocalToUnit; 1569 auto NewSP = DIB.createFunction( 1570 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1571 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1572 NewFunc.setSubprogram(NewSP); 1573 1574 auto IsInvalidLocation = [&NewFunc](Value *Location) { 1575 // Location is invalid if it isn't a constant or an instruction, or is an 1576 // instruction but isn't in the new function. 1577 if (!Location || 1578 (!isa<Constant>(Location) && !isa<Instruction>(Location))) 1579 return true; 1580 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1581 return LocationInst && LocationInst->getFunction() != &NewFunc; 1582 }; 1583 1584 // Debug intrinsics in the new function need to be updated in one of two 1585 // ways: 1586 // 1) They need to be deleted, because they describe a value in the old 1587 // function. 1588 // 2) They need to point to fresh metadata, e.g. because they currently 1589 // point to a variable in the wrong scope. 1590 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1591 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1592 SmallVector<DbgVariableRecord *, 4> DVRsToDelete; 1593 DenseMap<const MDNode *, MDNode *> Cache; 1594 1595 auto GetUpdatedDIVariable = [&](DILocalVariable *OldVar) { 1596 DINode *&NewVar = RemappedMetadata[OldVar]; 1597 if (!NewVar) { 1598 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram( 1599 *OldVar->getScope(), *NewSP, Ctx, Cache); 1600 NewVar = DIB.createAutoVariable( 1601 NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1602 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1603 OldVar->getAlignInBits()); 1604 } 1605 return cast<DILocalVariable>(NewVar); 1606 }; 1607 1608 auto UpdateDbgLabel = [&](auto *LabelRecord) { 1609 // Point the label record to a fresh label within the new function if 1610 // the record was not inlined from some other function. 1611 if (LabelRecord->getDebugLoc().getInlinedAt()) 1612 return; 1613 DILabel *OldLabel = LabelRecord->getLabel(); 1614 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1615 if (!NewLabel) { 1616 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram( 1617 *OldLabel->getScope(), *NewSP, Ctx, Cache); 1618 NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(), 1619 OldLabel->getFile(), OldLabel->getLine()); 1620 } 1621 LabelRecord->setLabel(cast<DILabel>(NewLabel)); 1622 }; 1623 1624 auto UpdateDbgRecordsOnInst = [&](Instruction &I) -> void { 1625 for (DbgRecord &DR : I.getDbgRecordRange()) { 1626 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1627 UpdateDbgLabel(DLR); 1628 continue; 1629 } 1630 1631 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1632 // Apply the two updates that dbg.values get: invalid operands, and 1633 // variable metadata fixup. 1634 if (any_of(DVR.location_ops(), IsInvalidLocation)) { 1635 DVRsToDelete.push_back(&DVR); 1636 continue; 1637 } 1638 if (DVR.isDbgAssign() && IsInvalidLocation(DVR.getAddress())) { 1639 DVRsToDelete.push_back(&DVR); 1640 continue; 1641 } 1642 if (!DVR.getDebugLoc().getInlinedAt()) 1643 DVR.setVariable(GetUpdatedDIVariable(DVR.getVariable())); 1644 } 1645 }; 1646 1647 for (Instruction &I : instructions(NewFunc)) { 1648 UpdateDbgRecordsOnInst(I); 1649 1650 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1651 if (!DII) 1652 continue; 1653 1654 // Point the intrinsic to a fresh label within the new function if the 1655 // intrinsic was not inlined from some other function. 1656 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1657 UpdateDbgLabel(DLI); 1658 continue; 1659 } 1660 1661 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1662 // If any of the used locations are invalid, delete the intrinsic. 1663 if (any_of(DVI->location_ops(), IsInvalidLocation)) { 1664 DebugIntrinsicsToDelete.push_back(DVI); 1665 continue; 1666 } 1667 // DbgAssign intrinsics have an extra Value argument: 1668 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 1669 DAI && IsInvalidLocation(DAI->getAddress())) { 1670 DebugIntrinsicsToDelete.push_back(DVI); 1671 continue; 1672 } 1673 // If the variable was in the scope of the old function, i.e. it was not 1674 // inlined, point the intrinsic to a fresh variable within the new function. 1675 if (!DVI->getDebugLoc().getInlinedAt()) 1676 DVI->setVariable(GetUpdatedDIVariable(DVI->getVariable())); 1677 } 1678 1679 for (auto *DII : DebugIntrinsicsToDelete) 1680 DII->eraseFromParent(); 1681 for (auto *DVR : DVRsToDelete) 1682 DVR->getMarker()->MarkedInstr->dropOneDbgRecord(DVR); 1683 DIB.finalizeSubprogram(NewSP); 1684 1685 // Fix up the scope information attached to the line locations and the 1686 // debug assignment metadata in the new function. 1687 DenseMap<DIAssignID *, DIAssignID *> AssignmentIDMap; 1688 for (Instruction &I : instructions(NewFunc)) { 1689 if (const DebugLoc &DL = I.getDebugLoc()) 1690 I.setDebugLoc( 1691 DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache)); 1692 for (DbgRecord &DR : I.getDbgRecordRange()) 1693 DR.setDebugLoc(DebugLoc::replaceInlinedAtSubprogram(DR.getDebugLoc(), 1694 *NewSP, Ctx, Cache)); 1695 1696 // Loop info metadata may contain line locations. Fix them up. 1697 auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * { 1698 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1699 return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache); 1700 return MD; 1701 }; 1702 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1703 at::remapAssignID(AssignmentIDMap, I); 1704 } 1705 if (!TheCall.getDebugLoc()) 1706 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP)); 1707 1708 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1709 } 1710 1711 Function * 1712 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1713 ValueSet Inputs, Outputs; 1714 return extractCodeRegion(CEAC, Inputs, Outputs); 1715 } 1716 1717 Function * 1718 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC, 1719 ValueSet &inputs, ValueSet &outputs) { 1720 if (!isEligible()) 1721 return nullptr; 1722 1723 // Assumption: this is a single-entry code region, and the header is the first 1724 // block in the region. 1725 BasicBlock *header = *Blocks.begin(); 1726 Function *oldFunction = header->getParent(); 1727 1728 // Calculate the entry frequency of the new function before we change the root 1729 // block. 1730 BlockFrequency EntryFreq; 1731 if (BFI) { 1732 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1733 for (BasicBlock *Pred : predecessors(header)) { 1734 if (Blocks.count(Pred)) 1735 continue; 1736 EntryFreq += 1737 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1738 } 1739 } 1740 1741 // Remove @llvm.assume calls that will be moved to the new function from the 1742 // old function's assumption cache. 1743 for (BasicBlock *Block : Blocks) { 1744 for (Instruction &I : llvm::make_early_inc_range(*Block)) { 1745 if (auto *AI = dyn_cast<AssumeInst>(&I)) { 1746 if (AC) 1747 AC->unregisterAssumption(AI); 1748 AI->eraseFromParent(); 1749 } 1750 } 1751 } 1752 1753 // If we have any return instructions in the region, split those blocks so 1754 // that the return is not in the region. 1755 splitReturnBlocks(); 1756 1757 // Calculate the exit blocks for the extracted region and the total exit 1758 // weights for each of those blocks. 1759 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1760 SetVector<BasicBlock *> ExitBlocks; 1761 for (BasicBlock *Block : Blocks) { 1762 for (BasicBlock *Succ : successors(Block)) { 1763 if (!Blocks.count(Succ)) { 1764 // Update the branch weight for this successor. 1765 if (BFI) { 1766 BlockFrequency &BF = ExitWeights[Succ]; 1767 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ); 1768 } 1769 ExitBlocks.insert(Succ); 1770 } 1771 } 1772 } 1773 NumExitBlocks = ExitBlocks.size(); 1774 1775 for (BasicBlock *Block : Blocks) { 1776 for (BasicBlock *OldTarget : successors(Block)) 1777 if (!Blocks.contains(OldTarget)) 1778 OldTargets.push_back(OldTarget); 1779 } 1780 1781 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1782 severSplitPHINodesOfEntry(header); 1783 severSplitPHINodesOfExits(ExitBlocks); 1784 1785 // This takes place of the original loop 1786 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1787 "codeRepl", oldFunction, 1788 header); 1789 codeReplacer->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat; 1790 1791 // The new function needs a root node because other nodes can branch to the 1792 // head of the region, but the entry node of a function cannot have preds. 1793 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1794 "newFuncRoot"); 1795 newFuncRoot->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat; 1796 1797 auto *BranchI = BranchInst::Create(header); 1798 // If the original function has debug info, we have to add a debug location 1799 // to the new branch instruction from the artificial entry block. 1800 // We use the debug location of the first instruction in the extracted 1801 // blocks, as there is no other equivalent line in the source code. 1802 if (oldFunction->getSubprogram()) { 1803 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1804 return any_of(*BB, [&BranchI](const Instruction &I) { 1805 if (!I.getDebugLoc()) 1806 return false; 1807 // Don't use source locations attached to debug-intrinsics: they could 1808 // be from completely unrelated scopes. 1809 if (isa<DbgInfoIntrinsic>(I)) 1810 return false; 1811 BranchI->setDebugLoc(I.getDebugLoc()); 1812 return true; 1813 }); 1814 }); 1815 } 1816 BranchI->insertInto(newFuncRoot, newFuncRoot->end()); 1817 1818 ValueSet SinkingCands, HoistingCands; 1819 BasicBlock *CommonExit = nullptr; 1820 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1821 assert(HoistingCands.empty() || CommonExit); 1822 1823 // Find inputs to, outputs from the code region. 1824 findInputsOutputs(inputs, outputs, SinkingCands); 1825 1826 // Now sink all instructions which only have non-phi uses inside the region. 1827 // Group the allocas at the start of the block, so that any bitcast uses of 1828 // the allocas are well-defined. 1829 AllocaInst *FirstSunkAlloca = nullptr; 1830 for (auto *II : SinkingCands) { 1831 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1832 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1833 if (!FirstSunkAlloca) 1834 FirstSunkAlloca = AI; 1835 } 1836 } 1837 assert((SinkingCands.empty() || FirstSunkAlloca) && 1838 "Did not expect a sink candidate without any allocas"); 1839 for (auto *II : SinkingCands) { 1840 if (!isa<AllocaInst>(II)) { 1841 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1842 } 1843 } 1844 1845 if (!HoistingCands.empty()) { 1846 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1847 Instruction *TI = HoistToBlock->getTerminator(); 1848 for (auto *II : HoistingCands) 1849 cast<Instruction>(II)->moveBefore(TI); 1850 } 1851 1852 // Collect objects which are inputs to the extraction region and also 1853 // referenced by lifetime start markers within it. The effects of these 1854 // markers must be replicated in the calling function to prevent the stack 1855 // coloring pass from merging slots which store input objects. 1856 ValueSet LifetimesStart; 1857 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1858 1859 // Construct new function based on inputs/outputs & add allocas for all defs. 1860 Function *newFunction = 1861 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1862 oldFunction, oldFunction->getParent()); 1863 1864 // Update the entry count of the function. 1865 if (BFI) { 1866 auto Count = BFI->getProfileCountFromFreq(EntryFreq); 1867 if (Count) 1868 newFunction->setEntryCount( 1869 ProfileCount(*Count, Function::PCT_Real)); // FIXME 1870 BFI->setBlockFreq(codeReplacer, EntryFreq); 1871 } 1872 1873 CallInst *TheCall = 1874 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1875 1876 moveCodeToFunction(newFunction); 1877 1878 // Replicate the effects of any lifetime start/end markers which referenced 1879 // input objects in the extraction region by placing markers around the call. 1880 insertLifetimeMarkersSurroundingCall( 1881 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1882 1883 // Propagate personality info to the new function if there is one. 1884 if (oldFunction->hasPersonalityFn()) 1885 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1886 1887 // Update the branch weights for the exit block. 1888 if (BFI && NumExitBlocks > 1) 1889 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1890 1891 // Loop over all of the PHI nodes in the header and exit blocks, and change 1892 // any references to the old incoming edge to be the new incoming edge. 1893 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1894 PHINode *PN = cast<PHINode>(I); 1895 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1896 if (!Blocks.count(PN->getIncomingBlock(i))) 1897 PN->setIncomingBlock(i, newFuncRoot); 1898 } 1899 1900 for (BasicBlock *ExitBB : ExitBlocks) 1901 for (PHINode &PN : ExitBB->phis()) { 1902 Value *IncomingCodeReplacerVal = nullptr; 1903 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1904 // Ignore incoming values from outside of the extracted region. 1905 if (!Blocks.count(PN.getIncomingBlock(i))) 1906 continue; 1907 1908 // Ensure that there is only one incoming value from codeReplacer. 1909 if (!IncomingCodeReplacerVal) { 1910 PN.setIncomingBlock(i, codeReplacer); 1911 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1912 } else 1913 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1914 "PHI has two incompatbile incoming values from codeRepl"); 1915 } 1916 } 1917 1918 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1919 1920 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1921 newFunction->dump(); 1922 report_fatal_error("verification of newFunction failed!"); 1923 }); 1924 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1925 report_fatal_error("verification of oldFunction failed!")); 1926 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1927 report_fatal_error("Stale Asumption cache for old Function!")); 1928 return newFunction; 1929 } 1930 1931 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1932 const Function &NewFunc, 1933 AssumptionCache *AC) { 1934 for (auto AssumeVH : AC->assumptions()) { 1935 auto *I = dyn_cast_or_null<CallInst>(AssumeVH); 1936 if (!I) 1937 continue; 1938 1939 // There shouldn't be any llvm.assume intrinsics in the new function. 1940 if (I->getFunction() != &OldFunc) 1941 return true; 1942 1943 // There shouldn't be any stale affected values in the assumption cache 1944 // that were previously in the old function, but that have now been moved 1945 // to the new function. 1946 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1947 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1948 if (!AffectedCI) 1949 continue; 1950 if (AffectedCI->getFunction() != &OldFunc) 1951 return true; 1952 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); 1953 if (AssumedInst->getFunction() != &OldFunc) 1954 return true; 1955 } 1956 } 1957 return false; 1958 } 1959 1960 void CodeExtractor::excludeArgFromAggregate(Value *Arg) { 1961 ExcludeArgsFromAggregate.insert(Arg); 1962 } 1963