1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/Pass.h" 22 #include "llvm/Analysis/Dominators.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/Verifier.h" 25 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 26 #include "Support/Debug.h" 27 #include "Support/StringExtras.h" 28 #include <algorithm> 29 #include <set> 30 using namespace llvm; 31 32 namespace { 33 class CodeExtractor { 34 typedef std::vector<Value*> Values; 35 std::set<BasicBlock*> BlocksToExtract; 36 DominatorSet *DS; 37 public: 38 CodeExtractor(DominatorSet *ds = 0) : DS(ds) {} 39 40 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 41 42 private: 43 void findInputsOutputs(Values &inputs, Values &outputs, 44 BasicBlock *newHeader, 45 BasicBlock *newRootNode); 46 47 Function *constructFunction(const Values &inputs, 48 const Values &outputs, 49 BasicBlock *header, 50 BasicBlock *newRootNode, BasicBlock *newHeader, 51 Function *oldFunction, Module *M); 52 53 void moveCodeToFunction(Function *newFunction); 54 55 void emitCallAndSwitchStatement(Function *newFunction, 56 BasicBlock *newHeader, 57 Values &inputs, 58 Values &outputs); 59 60 }; 61 } 62 63 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs, 64 BasicBlock *newHeader, 65 BasicBlock *newRootNode) { 66 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 67 ce = BlocksToExtract.end(); ci != ce; ++ci) { 68 BasicBlock *BB = *ci; 69 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 70 // If a used value is defined outside the region, it's an input. If an 71 // instruction is used outside the region, it's an output. 72 if (PHINode *PN = dyn_cast<PHINode>(I)) { 73 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 74 Value *V = PN->getIncomingValue(i); 75 if (!BlocksToExtract.count(PN->getIncomingBlock(i)) && 76 (isa<Instruction>(V) || isa<Argument>(V))) 77 inputs.push_back(V); 78 } 79 } else { 80 // All other instructions go through the generic input finder 81 // Loop over the operands of each instruction (inputs) 82 for (User::op_iterator op = I->op_begin(), opE = I->op_end(); 83 op != opE; ++op) 84 if (Instruction *opI = dyn_cast<Instruction>(*op)) { 85 // Check if definition of this operand is within the loop 86 if (!BlocksToExtract.count(opI->getParent())) 87 inputs.push_back(opI); 88 } else if (isa<Argument>(*op)) { 89 inputs.push_back(*op); 90 } 91 } 92 93 // Consider uses of this instruction (outputs) 94 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 95 UI != E; ++UI) 96 if (!BlocksToExtract.count(cast<Instruction>(*UI)->getParent())) { 97 outputs.push_back(I); 98 break; 99 } 100 } // for: insts 101 } // for: basic blocks 102 } 103 104 /// constructFunction - make a function based on inputs and outputs, as follows: 105 /// f(in0, ..., inN, out0, ..., outN) 106 /// 107 Function *CodeExtractor::constructFunction(const Values &inputs, 108 const Values &outputs, 109 BasicBlock *header, 110 BasicBlock *newRootNode, 111 BasicBlock *newHeader, 112 Function *oldFunction, 113 Module *M) { 114 DEBUG(std::cerr << "inputs: " << inputs.size() << "\n"); 115 DEBUG(std::cerr << "outputs: " << outputs.size() << "\n"); 116 117 // This function returns unsigned, outputs will go back by reference. 118 Type *retTy = Type::UShortTy; 119 std::vector<const Type*> paramTy; 120 121 // Add the types of the input values to the function's argument list 122 for (Values::const_iterator i = inputs.begin(), 123 e = inputs.end(); i != e; ++i) { 124 const Value *value = *i; 125 DEBUG(std::cerr << "value used in func: " << value << "\n"); 126 paramTy.push_back(value->getType()); 127 } 128 129 // Add the types of the output values to the function's argument list. 130 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 131 I != E; ++I) { 132 DEBUG(std::cerr << "instr used in func: " << *I << "\n"); 133 paramTy.push_back(PointerType::get((*I)->getType())); 134 } 135 136 DEBUG(std::cerr << "Function type: " << retTy << " f("); 137 for (std::vector<const Type*>::iterator i = paramTy.begin(), 138 e = paramTy.end(); i != e; ++i) 139 DEBUG(std::cerr << *i << ", "); 140 DEBUG(std::cerr << ")\n"); 141 142 const FunctionType *funcType = FunctionType::get(retTy, paramTy, false); 143 144 // Create the new function 145 Function *newFunction = new Function(funcType, 146 GlobalValue::InternalLinkage, 147 oldFunction->getName() + "_code", M); 148 newFunction->getBasicBlockList().push_back(newRootNode); 149 150 // Create an iterator to name all of the arguments we inserted. 151 Function::aiterator AI = newFunction->abegin(); 152 153 // Rewrite all users of the inputs in the extracted region to use the 154 // arguments instead. 155 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) { 156 AI->setName(inputs[i]->getName()); 157 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 158 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 159 use != useE; ++use) 160 if (Instruction* inst = dyn_cast<Instruction>(*use)) 161 if (BlocksToExtract.count(inst->getParent())) 162 inst->replaceUsesOfWith(inputs[i], AI); 163 } 164 165 // Set names for all of the output arguments. 166 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 167 AI->setName(outputs[i]->getName()+".out"); 168 169 170 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 171 // within the new function. This must be done before we lose track of which 172 // blocks were originally in the code region. 173 std::vector<User*> Users(header->use_begin(), header->use_end()); 174 for (unsigned i = 0, e = Users.size(); i != e; ++i) 175 // The BasicBlock which contains the branch is not in the region 176 // modify the branch target to a new block 177 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 178 if (!BlocksToExtract.count(TI->getParent()) && 179 TI->getParent()->getParent() == oldFunction) 180 TI->replaceUsesOfWith(header, newHeader); 181 182 return newFunction; 183 } 184 185 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 186 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 187 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 188 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 189 190 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 191 e = BlocksToExtract.end(); i != e; ++i) { 192 // Delete the basic block from the old function, and the list of blocks 193 oldBlocks.remove(*i); 194 195 // Insert this basic block into the new function 196 newBlocks.push_back(*i); 197 } 198 } 199 200 void 201 CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 202 BasicBlock *codeReplacer, 203 Values &inputs, 204 Values &outputs) { 205 // Emit a call to the new function, passing allocated memory for outputs and 206 // just plain inputs for non-scalars 207 std::vector<Value*> params(inputs); 208 209 // Get an iterator to the first output argument. 210 Function::aiterator OutputArgBegin = newFunction->abegin(); 211 std::advance(OutputArgBegin, inputs.size()); 212 213 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 214 Value *Output = outputs[i]; 215 // Create allocas for scalar outputs 216 AllocaInst *alloca = 217 new AllocaInst(outputs[i]->getType(), 0, Output->getName()+".loc", 218 codeReplacer->getParent()->begin()->begin()); 219 params.push_back(alloca); 220 221 LoadInst *load = new LoadInst(alloca, Output->getName()+".reload"); 222 codeReplacer->getInstList().push_back(load); 223 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 224 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 225 Instruction *inst = cast<Instruction>(Users[u]); 226 if (!BlocksToExtract.count(inst->getParent())) 227 inst->replaceUsesOfWith(outputs[i], load); 228 } 229 } 230 231 CallInst *call = new CallInst(newFunction, params, "targetBlock"); 232 codeReplacer->getInstList().push_front(call); 233 234 // Now we can emit a switch statement using the call as a value. 235 SwitchInst *TheSwitch = new SwitchInst(call, codeReplacer, codeReplacer); 236 237 // Since there may be multiple exits from the original region, make the new 238 // function return an unsigned, switch on that number. This loop iterates 239 // over all of the blocks in the extracted region, updating any terminator 240 // instructions in the to-be-extracted region that branch to blocks that are 241 // not in the region to be extracted. 242 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 243 244 unsigned switchVal = 0; 245 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 246 e = BlocksToExtract.end(); i != e; ++i) { 247 TerminatorInst *TI = (*i)->getTerminator(); 248 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 249 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 250 BasicBlock *OldTarget = TI->getSuccessor(i); 251 // add a new basic block which returns the appropriate value 252 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 253 if (!NewTarget) { 254 // If we don't already have an exit stub for this non-extracted 255 // destination, create one now! 256 NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", 257 newFunction); 258 259 ConstantUInt *brVal = ConstantUInt::get(Type::UShortTy, switchVal++); 260 ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); 261 262 // Update the switch instruction. 263 TheSwitch->addCase(brVal, OldTarget); 264 265 // Restore values just before we exit 266 // FIXME: Use a GetElementPtr to bunch the outputs in a struct 267 Function::aiterator OAI = OutputArgBegin; 268 for (unsigned out = 0, e = outputs.size(); out != e; ++out, ++OAI) 269 if (!DS || 270 DS->dominates(cast<Instruction>(outputs[out])->getParent(), 271 TI->getParent())) 272 new StoreInst(outputs[out], OAI, NTRet); 273 } 274 275 // rewrite the original branch instruction with this new target 276 TI->setSuccessor(i, NewTarget); 277 } 278 } 279 280 // Now that we've done the deed, make the default destination of the switch 281 // instruction be one of the exit blocks of the region. 282 if (TheSwitch->getNumSuccessors() > 1) { 283 // FIXME: this is broken w.r.t. PHI nodes, but the old code was more broken. 284 // This edge is not traversable. 285 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(1)); 286 } 287 } 288 289 290 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 291 /// new function. Returns pointer to the new function. 292 /// 293 /// algorithm: 294 /// 295 /// find inputs and outputs for the region 296 /// 297 /// for inputs: add to function as args, map input instr* to arg# 298 /// for outputs: add allocas for scalars, 299 /// add to func as args, map output instr* to arg# 300 /// 301 /// rewrite func to use argument #s instead of instr* 302 /// 303 /// for each scalar output in the function: at every exit, store intermediate 304 /// computed result back into memory. 305 /// 306 Function *CodeExtractor::ExtractCodeRegion(const std::vector<BasicBlock*> &code) 307 { 308 // 1) Find inputs, outputs 309 // 2) Construct new function 310 // * Add allocas for defs, pass as args by reference 311 // * Pass in uses as args 312 // 3) Move code region, add call instr to func 313 // 314 BlocksToExtract.insert(code.begin(), code.end()); 315 316 Values inputs, outputs; 317 318 // Assumption: this is a single-entry code region, and the header is the first 319 // block in the region. 320 BasicBlock *header = code[0]; 321 for (unsigned i = 1, e = code.size(); i != e; ++i) 322 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 323 PI != E; ++PI) 324 assert(BlocksToExtract.count(*PI) && 325 "No blocks in this region may have entries from outside the region" 326 " except for the first block!"); 327 328 Function *oldFunction = header->getParent(); 329 330 // This takes place of the original loop 331 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction); 332 333 // The new function needs a root node because other nodes can branch to the 334 // head of the loop, and the root cannot have predecessors 335 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 336 newFuncRoot->getInstList().push_back(new BranchInst(header)); 337 338 // Find inputs to, outputs from the code region 339 // 340 // If one of the inputs is coming from a different basic block and it's in a 341 // phi node, we need to rewrite the phi node: 342 // 343 // * All the inputs which involve basic blocks OUTSIDE of this region go into 344 // a NEW phi node that takes care of finding which value really came in. 345 // The result of this phi is passed to the function as an argument. 346 // 347 // * All the other phi values stay. 348 // 349 // FIXME: PHI nodes' incoming blocks aren't being rewritten to accomodate for 350 // blocks moving to a new function. 351 // SOLUTION: move Phi nodes out of the loop header into the codeReplacer, pass 352 // the values as parameters to the function 353 findInputsOutputs(inputs, outputs, codeReplacer, newFuncRoot); 354 355 // Step 2: Construct new function based on inputs/outputs, 356 // Add allocas for all defs 357 Function *newFunction = constructFunction(inputs, outputs, code[0], 358 newFuncRoot, 359 codeReplacer, oldFunction, 360 oldFunction->getParent()); 361 362 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 363 364 moveCodeToFunction(newFunction); 365 366 // Loop over all of the PHI nodes in the entry block (code[0]), and change any 367 // references to the old incoming edge to be the new incoming edge. 368 for (BasicBlock::iterator I = code[0]->begin(); 369 PHINode *PN = dyn_cast<PHINode>(I); ++I) 370 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 371 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 372 PN->setIncomingBlock(i, newFuncRoot); 373 374 // Look at all successors of the codeReplacer block. If any of these blocks 375 // had PHI nodes in them, we need to update the "from" block to be the code 376 // replacer, not the original block in the extracted region. 377 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 378 succ_end(codeReplacer)); 379 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 380 for (BasicBlock::iterator I = Succs[i]->begin(); 381 PHINode *PN = dyn_cast<PHINode>(I); ++I) 382 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 383 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 384 PN->setIncomingBlock(i, codeReplacer); 385 386 387 DEBUG(if (verifyFunction(*newFunction)) abort()); 388 return newFunction; 389 } 390 391 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 392 /// function 393 /// 394 Function* llvm::ExtractCodeRegion(DominatorSet &DS, 395 const std::vector<BasicBlock*> &code) { 396 return CodeExtractor(&DS).ExtractCodeRegion(code); 397 } 398 399 /// ExtractBasicBlock - slurp a natural loop into a brand new function 400 /// 401 Function* llvm::ExtractLoop(DominatorSet &DS, Loop *L) { 402 return CodeExtractor(&DS).ExtractCodeRegion(L->getBlocks()); 403 } 404 405 /// ExtractBasicBlock - slurp a basic block into a brand new function 406 /// 407 Function* llvm::ExtractBasicBlock(BasicBlock *BB) { 408 std::vector<BasicBlock*> Blocks; 409 Blocks.push_back(BB); 410 return CodeExtractor().ExtractCodeRegion(Blocks); 411 } 412