1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/Verifier.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <map> 69 #include <set> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 using namespace llvm::PatternMatch; 75 using ProfileCount = Function::ProfileCount; 76 77 #define DEBUG_TYPE "code-extractor" 78 79 // Provide a command-line option to aggregate function arguments into a struct 80 // for functions produced by the code extractor. This is useful when converting 81 // extracted functions to pthread-based code, as only one argument (void*) can 82 // be passed in to pthread_create(). 83 static cl::opt<bool> 84 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 85 cl::desc("Aggregate arguments to code-extracted functions")); 86 87 /// Test whether a block is valid for extraction. 88 static bool isBlockValidForExtraction(const BasicBlock &BB, 89 const SetVector<BasicBlock *> &Result, 90 bool AllowVarArgs, bool AllowAlloca) { 91 // taking the address of a basic block moved to another function is illegal 92 if (BB.hasAddressTaken()) 93 return false; 94 95 // don't hoist code that uses another basicblock address, as it's likely to 96 // lead to unexpected behavior, like cross-function jumps 97 SmallPtrSet<User const *, 16> Visited; 98 SmallVector<User const *, 16> ToVisit; 99 100 for (Instruction const &Inst : BB) 101 ToVisit.push_back(&Inst); 102 103 while (!ToVisit.empty()) { 104 User const *Curr = ToVisit.pop_back_val(); 105 if (!Visited.insert(Curr).second) 106 continue; 107 if (isa<BlockAddress const>(Curr)) 108 return false; // even a reference to self is likely to be not compatible 109 110 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 111 continue; 112 113 for (auto const &U : Curr->operands()) { 114 if (auto *UU = dyn_cast<User>(U)) 115 ToVisit.push_back(UU); 116 } 117 } 118 119 // If explicitly requested, allow vastart and alloca. For invoke instructions 120 // verify that extraction is valid. 121 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 122 if (isa<AllocaInst>(I)) { 123 if (!AllowAlloca) 124 return false; 125 continue; 126 } 127 128 if (const auto *II = dyn_cast<InvokeInst>(I)) { 129 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 130 // must be a part of the subgraph which is being extracted. 131 if (auto *UBB = II->getUnwindDest()) 132 if (!Result.count(UBB)) 133 return false; 134 continue; 135 } 136 137 // All catch handlers of a catchswitch instruction as well as the unwind 138 // destination must be in the subgraph. 139 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 140 if (auto *UBB = CSI->getUnwindDest()) 141 if (!Result.count(UBB)) 142 return false; 143 for (auto *HBB : CSI->handlers()) 144 if (!Result.count(const_cast<BasicBlock*>(HBB))) 145 return false; 146 continue; 147 } 148 149 // Make sure that entire catch handler is within subgraph. It is sufficient 150 // to check that catch return's block is in the list. 151 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 152 for (const auto *U : CPI->users()) 153 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 154 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 155 return false; 156 continue; 157 } 158 159 // And do similar checks for cleanup handler - the entire handler must be 160 // in subgraph which is going to be extracted. For cleanup return should 161 // additionally check that the unwind destination is also in the subgraph. 162 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 163 for (const auto *U : CPI->users()) 164 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 165 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 166 return false; 167 continue; 168 } 169 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 170 if (auto *UBB = CRI->getUnwindDest()) 171 if (!Result.count(UBB)) 172 return false; 173 continue; 174 } 175 176 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 177 if (const Function *F = CI->getCalledFunction()) { 178 auto IID = F->getIntrinsicID(); 179 if (IID == Intrinsic::vastart) { 180 if (AllowVarArgs) 181 continue; 182 else 183 return false; 184 } 185 186 // Currently, we miscompile outlined copies of eh_typid_for. There are 187 // proposals for fixing this in llvm.org/PR39545. 188 if (IID == Intrinsic::eh_typeid_for) 189 return false; 190 } 191 } 192 } 193 194 return true; 195 } 196 197 /// Build a set of blocks to extract if the input blocks are viable. 198 static SetVector<BasicBlock *> 199 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 200 bool AllowVarArgs, bool AllowAlloca) { 201 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 202 SetVector<BasicBlock *> Result; 203 204 // Loop over the blocks, adding them to our set-vector, and aborting with an 205 // empty set if we encounter invalid blocks. 206 for (BasicBlock *BB : BBs) { 207 // If this block is dead, don't process it. 208 if (DT && !DT->isReachableFromEntry(BB)) 209 continue; 210 211 if (!Result.insert(BB)) 212 llvm_unreachable("Repeated basic blocks in extraction input"); 213 } 214 215 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 216 << '\n'); 217 218 for (auto *BB : Result) { 219 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 220 return {}; 221 222 // Make sure that the first block is not a landing pad. 223 if (BB == Result.front()) { 224 if (BB->isEHPad()) { 225 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 226 return {}; 227 } 228 continue; 229 } 230 231 // All blocks other than the first must not have predecessors outside of 232 // the subgraph which is being extracted. 233 for (auto *PBB : predecessors(BB)) 234 if (!Result.count(PBB)) { 235 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 236 "outside the region except for the first block!\n" 237 << "Problematic source BB: " << BB->getName() << "\n" 238 << "Problematic destination BB: " << PBB->getName() 239 << "\n"); 240 return {}; 241 } 242 } 243 244 return Result; 245 } 246 247 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 248 bool AggregateArgs, BlockFrequencyInfo *BFI, 249 BranchProbabilityInfo *BPI, AssumptionCache *AC, 250 bool AllowVarArgs, bool AllowAlloca, 251 std::string Suffix) 252 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 253 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs), 254 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 255 Suffix(Suffix) {} 256 257 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 258 BlockFrequencyInfo *BFI, 259 BranchProbabilityInfo *BPI, AssumptionCache *AC, 260 std::string Suffix) 261 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 262 BPI(BPI), AC(AC), AllowVarArgs(false), 263 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 264 /* AllowVarArgs */ false, 265 /* AllowAlloca */ false)), 266 Suffix(Suffix) {} 267 268 /// definedInRegion - Return true if the specified value is defined in the 269 /// extracted region. 270 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 271 if (Instruction *I = dyn_cast<Instruction>(V)) 272 if (Blocks.count(I->getParent())) 273 return true; 274 return false; 275 } 276 277 /// definedInCaller - Return true if the specified value is defined in the 278 /// function being code extracted, but not in the region being extracted. 279 /// These values must be passed in as live-ins to the function. 280 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 281 if (isa<Argument>(V)) return true; 282 if (Instruction *I = dyn_cast<Instruction>(V)) 283 if (!Blocks.count(I->getParent())) 284 return true; 285 return false; 286 } 287 288 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 289 BasicBlock *CommonExitBlock = nullptr; 290 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 291 for (auto *Succ : successors(Block)) { 292 // Internal edges, ok. 293 if (Blocks.count(Succ)) 294 continue; 295 if (!CommonExitBlock) { 296 CommonExitBlock = Succ; 297 continue; 298 } 299 if (CommonExitBlock != Succ) 300 return true; 301 } 302 return false; 303 }; 304 305 if (any_of(Blocks, hasNonCommonExitSucc)) 306 return nullptr; 307 308 return CommonExitBlock; 309 } 310 311 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 312 for (BasicBlock &BB : F) { 313 for (Instruction &II : BB.instructionsWithoutDebug()) 314 if (auto *AI = dyn_cast<AllocaInst>(&II)) 315 Allocas.push_back(AI); 316 317 findSideEffectInfoForBlock(BB); 318 } 319 } 320 321 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 322 for (Instruction &II : BB.instructionsWithoutDebug()) { 323 unsigned Opcode = II.getOpcode(); 324 Value *MemAddr = nullptr; 325 switch (Opcode) { 326 case Instruction::Store: 327 case Instruction::Load: { 328 if (Opcode == Instruction::Store) { 329 StoreInst *SI = cast<StoreInst>(&II); 330 MemAddr = SI->getPointerOperand(); 331 } else { 332 LoadInst *LI = cast<LoadInst>(&II); 333 MemAddr = LI->getPointerOperand(); 334 } 335 // Global variable can not be aliased with locals. 336 if (isa<Constant>(MemAddr)) 337 break; 338 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 339 if (!isa<AllocaInst>(Base)) { 340 SideEffectingBlocks.insert(&BB); 341 return; 342 } 343 BaseMemAddrs[&BB].insert(Base); 344 break; 345 } 346 default: { 347 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 348 if (IntrInst) { 349 if (IntrInst->isLifetimeStartOrEnd()) 350 break; 351 SideEffectingBlocks.insert(&BB); 352 return; 353 } 354 // Treat all the other cases conservatively if it has side effects. 355 if (II.mayHaveSideEffects()) { 356 SideEffectingBlocks.insert(&BB); 357 return; 358 } 359 } 360 } 361 } 362 } 363 364 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 365 BasicBlock &BB, AllocaInst *Addr) const { 366 if (SideEffectingBlocks.count(&BB)) 367 return true; 368 auto It = BaseMemAddrs.find(&BB); 369 if (It != BaseMemAddrs.end()) 370 return It->second.count(Addr); 371 return false; 372 } 373 374 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 375 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 376 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 377 Function *Func = (*Blocks.begin())->getParent(); 378 for (BasicBlock &BB : *Func) { 379 if (Blocks.count(&BB)) 380 continue; 381 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 382 return false; 383 } 384 return true; 385 } 386 387 BasicBlock * 388 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 389 BasicBlock *SinglePredFromOutlineRegion = nullptr; 390 assert(!Blocks.count(CommonExitBlock) && 391 "Expect a block outside the region!"); 392 for (auto *Pred : predecessors(CommonExitBlock)) { 393 if (!Blocks.count(Pred)) 394 continue; 395 if (!SinglePredFromOutlineRegion) { 396 SinglePredFromOutlineRegion = Pred; 397 } else if (SinglePredFromOutlineRegion != Pred) { 398 SinglePredFromOutlineRegion = nullptr; 399 break; 400 } 401 } 402 403 if (SinglePredFromOutlineRegion) 404 return SinglePredFromOutlineRegion; 405 406 #ifndef NDEBUG 407 auto getFirstPHI = [](BasicBlock *BB) { 408 BasicBlock::iterator I = BB->begin(); 409 PHINode *FirstPhi = nullptr; 410 while (I != BB->end()) { 411 PHINode *Phi = dyn_cast<PHINode>(I); 412 if (!Phi) 413 break; 414 if (!FirstPhi) { 415 FirstPhi = Phi; 416 break; 417 } 418 } 419 return FirstPhi; 420 }; 421 // If there are any phi nodes, the single pred either exists or has already 422 // be created before code extraction. 423 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 424 #endif 425 426 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 427 CommonExitBlock->getFirstNonPHI()->getIterator()); 428 429 for (BasicBlock *Pred : 430 llvm::make_early_inc_range(predecessors(CommonExitBlock))) { 431 if (Blocks.count(Pred)) 432 continue; 433 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 434 } 435 // Now add the old exit block to the outline region. 436 Blocks.insert(CommonExitBlock); 437 return CommonExitBlock; 438 } 439 440 // Find the pair of life time markers for address 'Addr' that are either 441 // defined inside the outline region or can legally be shrinkwrapped into the 442 // outline region. If there are not other untracked uses of the address, return 443 // the pair of markers if found; otherwise return a pair of nullptr. 444 CodeExtractor::LifetimeMarkerInfo 445 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 446 Instruction *Addr, 447 BasicBlock *ExitBlock) const { 448 LifetimeMarkerInfo Info; 449 450 for (User *U : Addr->users()) { 451 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 452 if (IntrInst) { 453 // We don't model addresses with multiple start/end markers, but the 454 // markers do not need to be in the region. 455 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 456 if (Info.LifeStart) 457 return {}; 458 Info.LifeStart = IntrInst; 459 continue; 460 } 461 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 462 if (Info.LifeEnd) 463 return {}; 464 Info.LifeEnd = IntrInst; 465 continue; 466 } 467 // At this point, permit debug uses outside of the region. 468 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 469 if (isa<DbgInfoIntrinsic>(IntrInst)) 470 continue; 471 } 472 // Find untracked uses of the address, bail. 473 if (!definedInRegion(Blocks, U)) 474 return {}; 475 } 476 477 if (!Info.LifeStart || !Info.LifeEnd) 478 return {}; 479 480 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 481 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 482 // Do legality check. 483 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 484 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 485 return {}; 486 487 // Check to see if we have a place to do hoisting, if not, bail. 488 if (Info.HoistLifeEnd && !ExitBlock) 489 return {}; 490 491 return Info; 492 } 493 494 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 495 ValueSet &SinkCands, ValueSet &HoistCands, 496 BasicBlock *&ExitBlock) const { 497 Function *Func = (*Blocks.begin())->getParent(); 498 ExitBlock = getCommonExitBlock(Blocks); 499 500 auto moveOrIgnoreLifetimeMarkers = 501 [&](const LifetimeMarkerInfo &LMI) -> bool { 502 if (!LMI.LifeStart) 503 return false; 504 if (LMI.SinkLifeStart) { 505 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 506 << "\n"); 507 SinkCands.insert(LMI.LifeStart); 508 } 509 if (LMI.HoistLifeEnd) { 510 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 511 HoistCands.insert(LMI.LifeEnd); 512 } 513 return true; 514 }; 515 516 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 517 // this is much faster than walking all the instructions. 518 for (AllocaInst *AI : CEAC.getAllocas()) { 519 BasicBlock *BB = AI->getParent(); 520 if (Blocks.count(BB)) 521 continue; 522 523 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 524 // check whether it is actually still in the original function. 525 Function *AIFunc = BB->getParent(); 526 if (AIFunc != Func) 527 continue; 528 529 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 530 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 531 if (Moved) { 532 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 533 SinkCands.insert(AI); 534 continue; 535 } 536 537 // Find bitcasts in the outlined region that have lifetime marker users 538 // outside that region. Replace the lifetime marker use with an 539 // outside region bitcast to avoid unnecessary alloca/reload instructions 540 // and extra lifetime markers. 541 SmallVector<Instruction *, 2> LifetimeBitcastUsers; 542 for (User *U : AI->users()) { 543 if (!definedInRegion(Blocks, U)) 544 continue; 545 546 if (U->stripInBoundsConstantOffsets() != AI) 547 continue; 548 549 Instruction *Bitcast = cast<Instruction>(U); 550 for (User *BU : Bitcast->users()) { 551 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU); 552 if (!IntrInst) 553 continue; 554 555 if (!IntrInst->isLifetimeStartOrEnd()) 556 continue; 557 558 if (definedInRegion(Blocks, IntrInst)) 559 continue; 560 561 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast" 562 << *Bitcast << " in out-of-region lifetime marker " 563 << *IntrInst << "\n"); 564 LifetimeBitcastUsers.push_back(IntrInst); 565 } 566 } 567 568 for (Instruction *I : LifetimeBitcastUsers) { 569 Module *M = AIFunc->getParent(); 570 LLVMContext &Ctx = M->getContext(); 571 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); 572 CastInst *CastI = 573 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I); 574 I->replaceUsesOfWith(I->getOperand(1), CastI); 575 } 576 577 // Follow any bitcasts. 578 SmallVector<Instruction *, 2> Bitcasts; 579 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 580 for (User *U : AI->users()) { 581 if (U->stripInBoundsConstantOffsets() == AI) { 582 Instruction *Bitcast = cast<Instruction>(U); 583 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 584 if (LMI.LifeStart) { 585 Bitcasts.push_back(Bitcast); 586 BitcastLifetimeInfo.push_back(LMI); 587 continue; 588 } 589 } 590 591 // Found unknown use of AI. 592 if (!definedInRegion(Blocks, U)) { 593 Bitcasts.clear(); 594 break; 595 } 596 } 597 598 // Either no bitcasts reference the alloca or there are unknown uses. 599 if (Bitcasts.empty()) 600 continue; 601 602 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 603 SinkCands.insert(AI); 604 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 605 Instruction *BitcastAddr = Bitcasts[I]; 606 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 607 assert(LMI.LifeStart && 608 "Unsafe to sink bitcast without lifetime markers"); 609 moveOrIgnoreLifetimeMarkers(LMI); 610 if (!definedInRegion(Blocks, BitcastAddr)) { 611 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 612 << "\n"); 613 SinkCands.insert(BitcastAddr); 614 } 615 } 616 } 617 } 618 619 bool CodeExtractor::isEligible() const { 620 if (Blocks.empty()) 621 return false; 622 BasicBlock *Header = *Blocks.begin(); 623 Function *F = Header->getParent(); 624 625 // For functions with varargs, check that varargs handling is only done in the 626 // outlined function, i.e vastart and vaend are only used in outlined blocks. 627 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 628 auto containsVarArgIntrinsic = [](const Instruction &I) { 629 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 630 if (const Function *Callee = CI->getCalledFunction()) 631 return Callee->getIntrinsicID() == Intrinsic::vastart || 632 Callee->getIntrinsicID() == Intrinsic::vaend; 633 return false; 634 }; 635 636 for (auto &BB : *F) { 637 if (Blocks.count(&BB)) 638 continue; 639 if (llvm::any_of(BB, containsVarArgIntrinsic)) 640 return false; 641 } 642 } 643 return true; 644 } 645 646 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 647 const ValueSet &SinkCands) const { 648 for (BasicBlock *BB : Blocks) { 649 // If a used value is defined outside the region, it's an input. If an 650 // instruction is used outside the region, it's an output. 651 for (Instruction &II : *BB) { 652 for (auto &OI : II.operands()) { 653 Value *V = OI; 654 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 655 Inputs.insert(V); 656 } 657 658 for (User *U : II.users()) 659 if (!definedInRegion(Blocks, U)) { 660 Outputs.insert(&II); 661 break; 662 } 663 } 664 } 665 } 666 667 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 668 /// of the region, we need to split the entry block of the region so that the 669 /// PHI node is easier to deal with. 670 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 671 unsigned NumPredsFromRegion = 0; 672 unsigned NumPredsOutsideRegion = 0; 673 674 if (Header != &Header->getParent()->getEntryBlock()) { 675 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 676 if (!PN) return; // No PHI nodes. 677 678 // If the header node contains any PHI nodes, check to see if there is more 679 // than one entry from outside the region. If so, we need to sever the 680 // header block into two. 681 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 682 if (Blocks.count(PN->getIncomingBlock(i))) 683 ++NumPredsFromRegion; 684 else 685 ++NumPredsOutsideRegion; 686 687 // If there is one (or fewer) predecessor from outside the region, we don't 688 // need to do anything special. 689 if (NumPredsOutsideRegion <= 1) return; 690 } 691 692 // Otherwise, we need to split the header block into two pieces: one 693 // containing PHI nodes merging values from outside of the region, and a 694 // second that contains all of the code for the block and merges back any 695 // incoming values from inside of the region. 696 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 697 698 // We only want to code extract the second block now, and it becomes the new 699 // header of the region. 700 BasicBlock *OldPred = Header; 701 Blocks.remove(OldPred); 702 Blocks.insert(NewBB); 703 Header = NewBB; 704 705 // Okay, now we need to adjust the PHI nodes and any branches from within the 706 // region to go to the new header block instead of the old header block. 707 if (NumPredsFromRegion) { 708 PHINode *PN = cast<PHINode>(OldPred->begin()); 709 // Loop over all of the predecessors of OldPred that are in the region, 710 // changing them to branch to NewBB instead. 711 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 712 if (Blocks.count(PN->getIncomingBlock(i))) { 713 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 714 TI->replaceUsesOfWith(OldPred, NewBB); 715 } 716 717 // Okay, everything within the region is now branching to the right block, we 718 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 719 BasicBlock::iterator AfterPHIs; 720 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 721 PHINode *PN = cast<PHINode>(AfterPHIs); 722 // Create a new PHI node in the new region, which has an incoming value 723 // from OldPred of PN. 724 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 725 PN->getName() + ".ce", &NewBB->front()); 726 PN->replaceAllUsesWith(NewPN); 727 NewPN->addIncoming(PN, OldPred); 728 729 // Loop over all of the incoming value in PN, moving them to NewPN if they 730 // are from the extracted region. 731 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 732 if (Blocks.count(PN->getIncomingBlock(i))) { 733 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 734 PN->removeIncomingValue(i); 735 --i; 736 } 737 } 738 } 739 } 740 } 741 742 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 743 /// outlined region, we split these PHIs on two: one with inputs from region 744 /// and other with remaining incoming blocks; then first PHIs are placed in 745 /// outlined region. 746 void CodeExtractor::severSplitPHINodesOfExits( 747 const SmallPtrSetImpl<BasicBlock *> &Exits) { 748 for (BasicBlock *ExitBB : Exits) { 749 BasicBlock *NewBB = nullptr; 750 751 for (PHINode &PN : ExitBB->phis()) { 752 // Find all incoming values from the outlining region. 753 SmallVector<unsigned, 2> IncomingVals; 754 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 755 if (Blocks.count(PN.getIncomingBlock(i))) 756 IncomingVals.push_back(i); 757 758 // Do not process PHI if there is one (or fewer) predecessor from region. 759 // If PHI has exactly one predecessor from region, only this one incoming 760 // will be replaced on codeRepl block, so it should be safe to skip PHI. 761 if (IncomingVals.size() <= 1) 762 continue; 763 764 // Create block for new PHIs and add it to the list of outlined if it 765 // wasn't done before. 766 if (!NewBB) { 767 NewBB = BasicBlock::Create(ExitBB->getContext(), 768 ExitBB->getName() + ".split", 769 ExitBB->getParent(), ExitBB); 770 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB)); 771 for (BasicBlock *PredBB : Preds) 772 if (Blocks.count(PredBB)) 773 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 774 BranchInst::Create(ExitBB, NewBB); 775 Blocks.insert(NewBB); 776 } 777 778 // Split this PHI. 779 PHINode *NewPN = 780 PHINode::Create(PN.getType(), IncomingVals.size(), 781 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 782 for (unsigned i : IncomingVals) 783 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 784 for (unsigned i : reverse(IncomingVals)) 785 PN.removeIncomingValue(i, false); 786 PN.addIncoming(NewPN, NewBB); 787 } 788 } 789 } 790 791 void CodeExtractor::splitReturnBlocks() { 792 for (BasicBlock *Block : Blocks) 793 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 794 BasicBlock *New = 795 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 796 if (DT) { 797 // Old dominates New. New node dominates all other nodes dominated 798 // by Old. 799 DomTreeNode *OldNode = DT->getNode(Block); 800 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 801 OldNode->end()); 802 803 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 804 805 for (DomTreeNode *I : Children) 806 DT->changeImmediateDominator(I, NewNode); 807 } 808 } 809 } 810 811 /// constructFunction - make a function based on inputs and outputs, as follows: 812 /// f(in0, ..., inN, out0, ..., outN) 813 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 814 const ValueSet &outputs, 815 BasicBlock *header, 816 BasicBlock *newRootNode, 817 BasicBlock *newHeader, 818 Function *oldFunction, 819 Module *M) { 820 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 821 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 822 823 // This function returns unsigned, outputs will go back by reference. 824 switch (NumExitBlocks) { 825 case 0: 826 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 827 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 828 default: RetTy = Type::getInt16Ty(header->getContext()); break; 829 } 830 831 std::vector<Type *> paramTy; 832 833 // Add the types of the input values to the function's argument list 834 for (Value *value : inputs) { 835 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 836 paramTy.push_back(value->getType()); 837 } 838 839 // Add the types of the output values to the function's argument list. 840 for (Value *output : outputs) { 841 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 842 if (AggregateArgs) 843 paramTy.push_back(output->getType()); 844 else 845 paramTy.push_back(PointerType::getUnqual(output->getType())); 846 } 847 848 LLVM_DEBUG({ 849 dbgs() << "Function type: " << *RetTy << " f("; 850 for (Type *i : paramTy) 851 dbgs() << *i << ", "; 852 dbgs() << ")\n"; 853 }); 854 855 StructType *StructTy = nullptr; 856 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 857 StructTy = StructType::get(M->getContext(), paramTy); 858 paramTy.clear(); 859 paramTy.push_back(PointerType::getUnqual(StructTy)); 860 } 861 FunctionType *funcType = 862 FunctionType::get(RetTy, paramTy, 863 AllowVarArgs && oldFunction->isVarArg()); 864 865 std::string SuffixToUse = 866 Suffix.empty() 867 ? (header->getName().empty() ? "extracted" : header->getName().str()) 868 : Suffix; 869 // Create the new function 870 Function *newFunction = Function::Create( 871 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 872 oldFunction->getName() + "." + SuffixToUse, M); 873 // If the old function is no-throw, so is the new one. 874 if (oldFunction->doesNotThrow()) 875 newFunction->setDoesNotThrow(); 876 877 // Inherit the uwtable attribute if we need to. 878 if (oldFunction->hasUWTable()) 879 newFunction->setHasUWTable(); 880 881 // Inherit all of the target dependent attributes and white-listed 882 // target independent attributes. 883 // (e.g. If the extracted region contains a call to an x86.sse 884 // instruction we need to make sure that the extracted region has the 885 // "target-features" attribute allowing it to be lowered. 886 // FIXME: This should be changed to check to see if a specific 887 // attribute can not be inherited. 888 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { 889 if (Attr.isStringAttribute()) { 890 if (Attr.getKindAsString() == "thunk") 891 continue; 892 } else 893 switch (Attr.getKindAsEnum()) { 894 // Those attributes cannot be propagated safely. Explicitly list them 895 // here so we get a warning if new attributes are added. This list also 896 // includes non-function attributes. 897 case Attribute::Alignment: 898 case Attribute::AllocSize: 899 case Attribute::ArgMemOnly: 900 case Attribute::Builtin: 901 case Attribute::ByVal: 902 case Attribute::Convergent: 903 case Attribute::Dereferenceable: 904 case Attribute::DereferenceableOrNull: 905 case Attribute::InAlloca: 906 case Attribute::InReg: 907 case Attribute::InaccessibleMemOnly: 908 case Attribute::InaccessibleMemOrArgMemOnly: 909 case Attribute::JumpTable: 910 case Attribute::Naked: 911 case Attribute::Nest: 912 case Attribute::NoAlias: 913 case Attribute::NoBuiltin: 914 case Attribute::NoCapture: 915 case Attribute::NoMerge: 916 case Attribute::NoReturn: 917 case Attribute::NoSync: 918 case Attribute::NoUndef: 919 case Attribute::None: 920 case Attribute::NonNull: 921 case Attribute::Preallocated: 922 case Attribute::ReadNone: 923 case Attribute::ReadOnly: 924 case Attribute::Returned: 925 case Attribute::ReturnsTwice: 926 case Attribute::SExt: 927 case Attribute::Speculatable: 928 case Attribute::StackAlignment: 929 case Attribute::StructRet: 930 case Attribute::SwiftError: 931 case Attribute::SwiftSelf: 932 case Attribute::WillReturn: 933 case Attribute::WriteOnly: 934 case Attribute::ZExt: 935 case Attribute::ImmArg: 936 case Attribute::ByRef: 937 case Attribute::EndAttrKinds: 938 case Attribute::EmptyKey: 939 case Attribute::TombstoneKey: 940 continue; 941 // Those attributes should be safe to propagate to the extracted function. 942 case Attribute::AlwaysInline: 943 case Attribute::Cold: 944 case Attribute::Hot: 945 case Attribute::NoRecurse: 946 case Attribute::InlineHint: 947 case Attribute::MinSize: 948 case Attribute::NoCallback: 949 case Attribute::NoDuplicate: 950 case Attribute::NoFree: 951 case Attribute::NoImplicitFloat: 952 case Attribute::NoInline: 953 case Attribute::NonLazyBind: 954 case Attribute::NoRedZone: 955 case Attribute::NoUnwind: 956 case Attribute::NullPointerIsValid: 957 case Attribute::OptForFuzzing: 958 case Attribute::OptimizeNone: 959 case Attribute::OptimizeForSize: 960 case Attribute::SafeStack: 961 case Attribute::ShadowCallStack: 962 case Attribute::SanitizeAddress: 963 case Attribute::SanitizeMemory: 964 case Attribute::SanitizeThread: 965 case Attribute::SanitizeHWAddress: 966 case Attribute::SanitizeMemTag: 967 case Attribute::SpeculativeLoadHardening: 968 case Attribute::StackProtect: 969 case Attribute::StackProtectReq: 970 case Attribute::StackProtectStrong: 971 case Attribute::StrictFP: 972 case Attribute::UWTable: 973 case Attribute::VScaleRange: 974 case Attribute::NoCfCheck: 975 case Attribute::MustProgress: 976 case Attribute::NoProfile: 977 break; 978 } 979 980 newFunction->addFnAttr(Attr); 981 } 982 newFunction->getBasicBlockList().push_back(newRootNode); 983 984 // Create an iterator to name all of the arguments we inserted. 985 Function::arg_iterator AI = newFunction->arg_begin(); 986 987 // Rewrite all users of the inputs in the extracted region to use the 988 // arguments (or appropriate addressing into struct) instead. 989 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 990 Value *RewriteVal; 991 if (AggregateArgs) { 992 Value *Idx[2]; 993 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 994 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 995 Instruction *TI = newFunction->begin()->getTerminator(); 996 GetElementPtrInst *GEP = GetElementPtrInst::Create( 997 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 998 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP, 999 "loadgep_" + inputs[i]->getName(), TI); 1000 } else 1001 RewriteVal = &*AI++; 1002 1003 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 1004 for (User *use : Users) 1005 if (Instruction *inst = dyn_cast<Instruction>(use)) 1006 if (Blocks.count(inst->getParent())) 1007 inst->replaceUsesOfWith(inputs[i], RewriteVal); 1008 } 1009 1010 // Set names for input and output arguments. 1011 if (!AggregateArgs) { 1012 AI = newFunction->arg_begin(); 1013 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 1014 AI->setName(inputs[i]->getName()); 1015 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 1016 AI->setName(outputs[i]->getName()+".out"); 1017 } 1018 1019 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 1020 // within the new function. This must be done before we lose track of which 1021 // blocks were originally in the code region. 1022 std::vector<User *> Users(header->user_begin(), header->user_end()); 1023 for (auto &U : Users) 1024 // The BasicBlock which contains the branch is not in the region 1025 // modify the branch target to a new block 1026 if (Instruction *I = dyn_cast<Instruction>(U)) 1027 if (I->isTerminator() && I->getFunction() == oldFunction && 1028 !Blocks.count(I->getParent())) 1029 I->replaceUsesOfWith(header, newHeader); 1030 1031 return newFunction; 1032 } 1033 1034 /// Erase lifetime.start markers which reference inputs to the extraction 1035 /// region, and insert the referenced memory into \p LifetimesStart. 1036 /// 1037 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 1038 /// of allocas which will be moved from the caller function into the extracted 1039 /// function (\p SunkAllocas). 1040 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 1041 const SetVector<Value *> &SunkAllocas, 1042 SetVector<Value *> &LifetimesStart) { 1043 for (BasicBlock *BB : Blocks) { 1044 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1045 auto *II = dyn_cast<IntrinsicInst>(&*It); 1046 ++It; 1047 if (!II || !II->isLifetimeStartOrEnd()) 1048 continue; 1049 1050 // Get the memory operand of the lifetime marker. If the underlying 1051 // object is a sunk alloca, or is otherwise defined in the extraction 1052 // region, the lifetime marker must not be erased. 1053 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1054 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1055 continue; 1056 1057 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1058 LifetimesStart.insert(Mem); 1059 II->eraseFromParent(); 1060 } 1061 } 1062 } 1063 1064 /// Insert lifetime start/end markers surrounding the call to the new function 1065 /// for objects defined in the caller. 1066 static void insertLifetimeMarkersSurroundingCall( 1067 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1068 CallInst *TheCall) { 1069 LLVMContext &Ctx = M->getContext(); 1070 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 1071 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1072 Instruction *Term = TheCall->getParent()->getTerminator(); 1073 1074 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 1075 // needed to satisfy this requirement so they may be reused. 1076 DenseMap<Value *, Value *> Bitcasts; 1077 1078 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1079 // markers before the call if \p InsertBefore, and after the call otherwise. 1080 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 1081 bool InsertBefore) { 1082 for (Value *Mem : Objects) { 1083 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1084 TheCall->getFunction()) && 1085 "Input memory not defined in original function"); 1086 Value *&MemAsI8Ptr = Bitcasts[Mem]; 1087 if (!MemAsI8Ptr) { 1088 if (Mem->getType() == Int8PtrTy) 1089 MemAsI8Ptr = Mem; 1090 else 1091 MemAsI8Ptr = 1092 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 1093 } 1094 1095 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 1096 if (InsertBefore) 1097 Marker->insertBefore(TheCall); 1098 else 1099 Marker->insertBefore(Term); 1100 } 1101 }; 1102 1103 if (!LifetimesStart.empty()) { 1104 auto StartFn = llvm::Intrinsic::getDeclaration( 1105 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 1106 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 1107 } 1108 1109 if (!LifetimesEnd.empty()) { 1110 auto EndFn = llvm::Intrinsic::getDeclaration( 1111 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 1112 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 1113 } 1114 } 1115 1116 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1117 /// the call instruction, splitting any PHI nodes in the header block as 1118 /// necessary. 1119 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1120 BasicBlock *codeReplacer, 1121 ValueSet &inputs, 1122 ValueSet &outputs) { 1123 // Emit a call to the new function, passing in: *pointer to struct (if 1124 // aggregating parameters), or plan inputs and allocated memory for outputs 1125 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 1126 1127 Module *M = newFunction->getParent(); 1128 LLVMContext &Context = M->getContext(); 1129 const DataLayout &DL = M->getDataLayout(); 1130 CallInst *call = nullptr; 1131 1132 // Add inputs as params, or to be filled into the struct 1133 unsigned ArgNo = 0; 1134 SmallVector<unsigned, 1> SwiftErrorArgs; 1135 for (Value *input : inputs) { 1136 if (AggregateArgs) 1137 StructValues.push_back(input); 1138 else { 1139 params.push_back(input); 1140 if (input->isSwiftError()) 1141 SwiftErrorArgs.push_back(ArgNo); 1142 } 1143 ++ArgNo; 1144 } 1145 1146 // Create allocas for the outputs 1147 for (Value *output : outputs) { 1148 if (AggregateArgs) { 1149 StructValues.push_back(output); 1150 } else { 1151 AllocaInst *alloca = 1152 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1153 nullptr, output->getName() + ".loc", 1154 &codeReplacer->getParent()->front().front()); 1155 ReloadOutputs.push_back(alloca); 1156 params.push_back(alloca); 1157 } 1158 } 1159 1160 StructType *StructArgTy = nullptr; 1161 AllocaInst *Struct = nullptr; 1162 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 1163 std::vector<Type *> ArgTypes; 1164 for (Value *V : StructValues) 1165 ArgTypes.push_back(V->getType()); 1166 1167 // Allocate a struct at the beginning of this function 1168 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1169 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 1170 "structArg", 1171 &codeReplacer->getParent()->front().front()); 1172 params.push_back(Struct); 1173 1174 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 1175 Value *Idx[2]; 1176 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1177 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1178 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1179 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1180 codeReplacer->getInstList().push_back(GEP); 1181 new StoreInst(StructValues[i], GEP, codeReplacer); 1182 } 1183 } 1184 1185 // Emit the call to the function 1186 call = CallInst::Create(newFunction, params, 1187 NumExitBlocks > 1 ? "targetBlock" : ""); 1188 // Add debug location to the new call, if the original function has debug 1189 // info. In that case, the terminator of the entry block of the extracted 1190 // function contains the first debug location of the extracted function, 1191 // set in extractCodeRegion. 1192 if (codeReplacer->getParent()->getSubprogram()) { 1193 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1194 call->setDebugLoc(DL); 1195 } 1196 codeReplacer->getInstList().push_back(call); 1197 1198 // Set swifterror parameter attributes. 1199 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1200 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1201 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1202 } 1203 1204 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 1205 unsigned FirstOut = inputs.size(); 1206 if (!AggregateArgs) 1207 std::advance(OutputArgBegin, inputs.size()); 1208 1209 // Reload the outputs passed in by reference. 1210 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1211 Value *Output = nullptr; 1212 if (AggregateArgs) { 1213 Value *Idx[2]; 1214 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1215 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1216 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1217 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1218 codeReplacer->getInstList().push_back(GEP); 1219 Output = GEP; 1220 } else { 1221 Output = ReloadOutputs[i]; 1222 } 1223 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1224 outputs[i]->getName() + ".reload", 1225 codeReplacer); 1226 Reloads.push_back(load); 1227 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1228 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1229 Instruction *inst = cast<Instruction>(Users[u]); 1230 if (!Blocks.count(inst->getParent())) 1231 inst->replaceUsesOfWith(outputs[i], load); 1232 } 1233 } 1234 1235 // Now we can emit a switch statement using the call as a value. 1236 SwitchInst *TheSwitch = 1237 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1238 codeReplacer, 0, codeReplacer); 1239 1240 // Since there may be multiple exits from the original region, make the new 1241 // function return an unsigned, switch on that number. This loop iterates 1242 // over all of the blocks in the extracted region, updating any terminator 1243 // instructions in the to-be-extracted region that branch to blocks that are 1244 // not in the region to be extracted. 1245 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1246 1247 unsigned switchVal = 0; 1248 for (BasicBlock *Block : Blocks) { 1249 Instruction *TI = Block->getTerminator(); 1250 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1251 if (!Blocks.count(TI->getSuccessor(i))) { 1252 BasicBlock *OldTarget = TI->getSuccessor(i); 1253 // add a new basic block which returns the appropriate value 1254 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1255 if (!NewTarget) { 1256 // If we don't already have an exit stub for this non-extracted 1257 // destination, create one now! 1258 NewTarget = BasicBlock::Create(Context, 1259 OldTarget->getName() + ".exitStub", 1260 newFunction); 1261 unsigned SuccNum = switchVal++; 1262 1263 Value *brVal = nullptr; 1264 switch (NumExitBlocks) { 1265 case 0: 1266 case 1: break; // No value needed. 1267 case 2: // Conditional branch, return a bool 1268 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1269 break; 1270 default: 1271 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1272 break; 1273 } 1274 1275 ReturnInst::Create(Context, brVal, NewTarget); 1276 1277 // Update the switch instruction. 1278 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1279 SuccNum), 1280 OldTarget); 1281 } 1282 1283 // rewrite the original branch instruction with this new target 1284 TI->setSuccessor(i, NewTarget); 1285 } 1286 } 1287 1288 // Store the arguments right after the definition of output value. 1289 // This should be proceeded after creating exit stubs to be ensure that invoke 1290 // result restore will be placed in the outlined function. 1291 Function::arg_iterator OAI = OutputArgBegin; 1292 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1293 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1294 if (!OutI) 1295 continue; 1296 1297 // Find proper insertion point. 1298 BasicBlock::iterator InsertPt; 1299 // In case OutI is an invoke, we insert the store at the beginning in the 1300 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1301 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1302 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1303 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1304 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1305 else 1306 InsertPt = std::next(OutI->getIterator()); 1307 1308 Instruction *InsertBefore = &*InsertPt; 1309 assert((InsertBefore->getFunction() == newFunction || 1310 Blocks.count(InsertBefore->getParent())) && 1311 "InsertPt should be in new function"); 1312 assert(OAI != newFunction->arg_end() && 1313 "Number of output arguments should match " 1314 "the amount of defined values"); 1315 if (AggregateArgs) { 1316 Value *Idx[2]; 1317 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1318 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1319 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1320 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), 1321 InsertBefore); 1322 new StoreInst(outputs[i], GEP, InsertBefore); 1323 // Since there should be only one struct argument aggregating 1324 // all the output values, we shouldn't increment OAI, which always 1325 // points to the struct argument, in this case. 1326 } else { 1327 new StoreInst(outputs[i], &*OAI, InsertBefore); 1328 ++OAI; 1329 } 1330 } 1331 1332 // Now that we've done the deed, simplify the switch instruction. 1333 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1334 switch (NumExitBlocks) { 1335 case 0: 1336 // There are no successors (the block containing the switch itself), which 1337 // means that previously this was the last part of the function, and hence 1338 // this should be rewritten as a `ret' 1339 1340 // Check if the function should return a value 1341 if (OldFnRetTy->isVoidTy()) { 1342 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1343 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1344 // return what we have 1345 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1346 } else { 1347 // Otherwise we must have code extracted an unwind or something, just 1348 // return whatever we want. 1349 ReturnInst::Create(Context, 1350 Constant::getNullValue(OldFnRetTy), TheSwitch); 1351 } 1352 1353 TheSwitch->eraseFromParent(); 1354 break; 1355 case 1: 1356 // Only a single destination, change the switch into an unconditional 1357 // branch. 1358 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1359 TheSwitch->eraseFromParent(); 1360 break; 1361 case 2: 1362 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1363 call, TheSwitch); 1364 TheSwitch->eraseFromParent(); 1365 break; 1366 default: 1367 // Otherwise, make the default destination of the switch instruction be one 1368 // of the other successors. 1369 TheSwitch->setCondition(call); 1370 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1371 // Remove redundant case 1372 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1373 break; 1374 } 1375 1376 // Insert lifetime markers around the reloads of any output values. The 1377 // allocas output values are stored in are only in-use in the codeRepl block. 1378 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1379 1380 return call; 1381 } 1382 1383 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1384 Function *oldFunc = (*Blocks.begin())->getParent(); 1385 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1386 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1387 1388 for (BasicBlock *Block : Blocks) { 1389 // Delete the basic block from the old function, and the list of blocks 1390 oldBlocks.remove(Block); 1391 1392 // Insert this basic block into the new function 1393 newBlocks.push_back(Block); 1394 } 1395 } 1396 1397 void CodeExtractor::calculateNewCallTerminatorWeights( 1398 BasicBlock *CodeReplacer, 1399 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1400 BranchProbabilityInfo *BPI) { 1401 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1402 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1403 1404 // Update the branch weights for the exit block. 1405 Instruction *TI = CodeReplacer->getTerminator(); 1406 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1407 1408 // Block Frequency distribution with dummy node. 1409 Distribution BranchDist; 1410 1411 SmallVector<BranchProbability, 4> EdgeProbabilities( 1412 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1413 1414 // Add each of the frequencies of the successors. 1415 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1416 BlockNode ExitNode(i); 1417 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1418 if (ExitFreq != 0) 1419 BranchDist.addExit(ExitNode, ExitFreq); 1420 else 1421 EdgeProbabilities[i] = BranchProbability::getZero(); 1422 } 1423 1424 // Check for no total weight. 1425 if (BranchDist.Total == 0) { 1426 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1427 return; 1428 } 1429 1430 // Normalize the distribution so that they can fit in unsigned. 1431 BranchDist.normalize(); 1432 1433 // Create normalized branch weights and set the metadata. 1434 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1435 const auto &Weight = BranchDist.Weights[I]; 1436 1437 // Get the weight and update the current BFI. 1438 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1439 BranchProbability BP(Weight.Amount, BranchDist.Total); 1440 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1441 } 1442 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1443 TI->setMetadata( 1444 LLVMContext::MD_prof, 1445 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1446 } 1447 1448 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1449 /// \p F. 1450 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1451 for (Instruction &I : instructions(F)) { 1452 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1453 findDbgUsers(DbgUsers, &I); 1454 for (DbgVariableIntrinsic *DVI : DbgUsers) 1455 if (DVI->getFunction() != &F) 1456 DVI->eraseFromParent(); 1457 } 1458 } 1459 1460 /// Fix up the debug info in the old and new functions by pointing line 1461 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1462 /// intrinsics which point to values outside of the new function. 1463 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1464 CallInst &TheCall) { 1465 DISubprogram *OldSP = OldFunc.getSubprogram(); 1466 LLVMContext &Ctx = OldFunc.getContext(); 1467 1468 if (!OldSP) { 1469 // Erase any debug info the new function contains. 1470 stripDebugInfo(NewFunc); 1471 // Make sure the old function doesn't contain any non-local metadata refs. 1472 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1473 return; 1474 } 1475 1476 // Create a subprogram for the new function. Leave out a description of the 1477 // function arguments, as the parameters don't correspond to anything at the 1478 // source level. 1479 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1480 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, 1481 OldSP->getUnit()); 1482 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 1483 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1484 DISubprogram::SPFlagOptimized | 1485 DISubprogram::SPFlagLocalToUnit; 1486 auto NewSP = DIB.createFunction( 1487 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1488 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1489 NewFunc.setSubprogram(NewSP); 1490 1491 // Debug intrinsics in the new function need to be updated in one of two 1492 // ways: 1493 // 1) They need to be deleted, because they describe a value in the old 1494 // function. 1495 // 2) They need to point to fresh metadata, e.g. because they currently 1496 // point to a variable in the wrong scope. 1497 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1498 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1499 for (Instruction &I : instructions(NewFunc)) { 1500 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1501 if (!DII) 1502 continue; 1503 1504 // Point the intrinsic to a fresh label within the new function. 1505 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1506 DILabel *OldLabel = DLI->getLabel(); 1507 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1508 if (!NewLabel) 1509 NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(), 1510 OldLabel->getFile(), OldLabel->getLine()); 1511 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); 1512 continue; 1513 } 1514 1515 auto IsInvalidLocation = [&NewFunc](Value *Location) { 1516 // Location is invalid if it isn't a constant or an instruction, or is an 1517 // instruction but isn't in the new function. 1518 if (!Location || 1519 (!isa<Constant>(Location) && !isa<Instruction>(Location))) 1520 return true; 1521 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1522 return LocationInst && LocationInst->getFunction() != &NewFunc; 1523 }; 1524 1525 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1526 // If any of the used locations are invalid, delete the intrinsic. 1527 if (any_of(DVI->location_ops(), IsInvalidLocation)) { 1528 DebugIntrinsicsToDelete.push_back(DVI); 1529 continue; 1530 } 1531 1532 // Point the intrinsic to a fresh variable within the new function. 1533 DILocalVariable *OldVar = DVI->getVariable(); 1534 DINode *&NewVar = RemappedMetadata[OldVar]; 1535 if (!NewVar) 1536 NewVar = DIB.createAutoVariable( 1537 NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1538 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1539 OldVar->getAlignInBits()); 1540 DVI->setVariable(cast<DILocalVariable>(NewVar)); 1541 } 1542 for (auto *DII : DebugIntrinsicsToDelete) 1543 DII->eraseFromParent(); 1544 DIB.finalizeSubprogram(NewSP); 1545 1546 // Fix up the scope information attached to the line locations in the new 1547 // function. 1548 for (Instruction &I : instructions(NewFunc)) { 1549 if (const DebugLoc &DL = I.getDebugLoc()) 1550 I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP)); 1551 1552 // Loop info metadata may contain line locations. Fix them up. 1553 auto updateLoopInfoLoc = [&Ctx, 1554 NewSP](const DILocation &Loc) -> DILocation * { 1555 return DILocation::get(Ctx, Loc.getLine(), Loc.getColumn(), NewSP, 1556 nullptr); 1557 }; 1558 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1559 } 1560 if (!TheCall.getDebugLoc()) 1561 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP)); 1562 1563 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1564 } 1565 1566 Function * 1567 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1568 if (!isEligible()) 1569 return nullptr; 1570 1571 // Assumption: this is a single-entry code region, and the header is the first 1572 // block in the region. 1573 BasicBlock *header = *Blocks.begin(); 1574 Function *oldFunction = header->getParent(); 1575 1576 // Calculate the entry frequency of the new function before we change the root 1577 // block. 1578 BlockFrequency EntryFreq; 1579 if (BFI) { 1580 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1581 for (BasicBlock *Pred : predecessors(header)) { 1582 if (Blocks.count(Pred)) 1583 continue; 1584 EntryFreq += 1585 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1586 } 1587 } 1588 1589 // Remove @llvm.assume calls that will be moved to the new function from the 1590 // old function's assumption cache. 1591 for (BasicBlock *Block : Blocks) { 1592 for (auto It = Block->begin(), End = Block->end(); It != End;) { 1593 Instruction *I = &*It; 1594 ++It; 1595 1596 if (auto *AI = dyn_cast<AssumeInst>(I)) { 1597 if (AC) 1598 AC->unregisterAssumption(AI); 1599 AI->eraseFromParent(); 1600 } 1601 } 1602 } 1603 1604 // If we have any return instructions in the region, split those blocks so 1605 // that the return is not in the region. 1606 splitReturnBlocks(); 1607 1608 // Calculate the exit blocks for the extracted region and the total exit 1609 // weights for each of those blocks. 1610 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1611 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1612 for (BasicBlock *Block : Blocks) { 1613 for (BasicBlock *Succ : successors(Block)) { 1614 if (!Blocks.count(Succ)) { 1615 // Update the branch weight for this successor. 1616 if (BFI) { 1617 BlockFrequency &BF = ExitWeights[Succ]; 1618 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ); 1619 } 1620 ExitBlocks.insert(Succ); 1621 } 1622 } 1623 } 1624 NumExitBlocks = ExitBlocks.size(); 1625 1626 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1627 severSplitPHINodesOfEntry(header); 1628 severSplitPHINodesOfExits(ExitBlocks); 1629 1630 // This takes place of the original loop 1631 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1632 "codeRepl", oldFunction, 1633 header); 1634 1635 // The new function needs a root node because other nodes can branch to the 1636 // head of the region, but the entry node of a function cannot have preds. 1637 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1638 "newFuncRoot"); 1639 auto *BranchI = BranchInst::Create(header); 1640 // If the original function has debug info, we have to add a debug location 1641 // to the new branch instruction from the artificial entry block. 1642 // We use the debug location of the first instruction in the extracted 1643 // blocks, as there is no other equivalent line in the source code. 1644 if (oldFunction->getSubprogram()) { 1645 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1646 return any_of(*BB, [&BranchI](const Instruction &I) { 1647 if (!I.getDebugLoc()) 1648 return false; 1649 BranchI->setDebugLoc(I.getDebugLoc()); 1650 return true; 1651 }); 1652 }); 1653 } 1654 newFuncRoot->getInstList().push_back(BranchI); 1655 1656 ValueSet inputs, outputs, SinkingCands, HoistingCands; 1657 BasicBlock *CommonExit = nullptr; 1658 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1659 assert(HoistingCands.empty() || CommonExit); 1660 1661 // Find inputs to, outputs from the code region. 1662 findInputsOutputs(inputs, outputs, SinkingCands); 1663 1664 // Now sink all instructions which only have non-phi uses inside the region. 1665 // Group the allocas at the start of the block, so that any bitcast uses of 1666 // the allocas are well-defined. 1667 AllocaInst *FirstSunkAlloca = nullptr; 1668 for (auto *II : SinkingCands) { 1669 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1670 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1671 if (!FirstSunkAlloca) 1672 FirstSunkAlloca = AI; 1673 } 1674 } 1675 assert((SinkingCands.empty() || FirstSunkAlloca) && 1676 "Did not expect a sink candidate without any allocas"); 1677 for (auto *II : SinkingCands) { 1678 if (!isa<AllocaInst>(II)) { 1679 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1680 } 1681 } 1682 1683 if (!HoistingCands.empty()) { 1684 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1685 Instruction *TI = HoistToBlock->getTerminator(); 1686 for (auto *II : HoistingCands) 1687 cast<Instruction>(II)->moveBefore(TI); 1688 } 1689 1690 // Collect objects which are inputs to the extraction region and also 1691 // referenced by lifetime start markers within it. The effects of these 1692 // markers must be replicated in the calling function to prevent the stack 1693 // coloring pass from merging slots which store input objects. 1694 ValueSet LifetimesStart; 1695 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1696 1697 // Construct new function based on inputs/outputs & add allocas for all defs. 1698 Function *newFunction = 1699 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1700 oldFunction, oldFunction->getParent()); 1701 1702 // Update the entry count of the function. 1703 if (BFI) { 1704 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1705 if (Count.hasValue()) 1706 newFunction->setEntryCount( 1707 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1708 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1709 } 1710 1711 CallInst *TheCall = 1712 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1713 1714 moveCodeToFunction(newFunction); 1715 1716 // Replicate the effects of any lifetime start/end markers which referenced 1717 // input objects in the extraction region by placing markers around the call. 1718 insertLifetimeMarkersSurroundingCall( 1719 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1720 1721 // Propagate personality info to the new function if there is one. 1722 if (oldFunction->hasPersonalityFn()) 1723 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1724 1725 // Update the branch weights for the exit block. 1726 if (BFI && NumExitBlocks > 1) 1727 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1728 1729 // Loop over all of the PHI nodes in the header and exit blocks, and change 1730 // any references to the old incoming edge to be the new incoming edge. 1731 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1732 PHINode *PN = cast<PHINode>(I); 1733 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1734 if (!Blocks.count(PN->getIncomingBlock(i))) 1735 PN->setIncomingBlock(i, newFuncRoot); 1736 } 1737 1738 for (BasicBlock *ExitBB : ExitBlocks) 1739 for (PHINode &PN : ExitBB->phis()) { 1740 Value *IncomingCodeReplacerVal = nullptr; 1741 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1742 // Ignore incoming values from outside of the extracted region. 1743 if (!Blocks.count(PN.getIncomingBlock(i))) 1744 continue; 1745 1746 // Ensure that there is only one incoming value from codeReplacer. 1747 if (!IncomingCodeReplacerVal) { 1748 PN.setIncomingBlock(i, codeReplacer); 1749 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1750 } else 1751 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1752 "PHI has two incompatbile incoming values from codeRepl"); 1753 } 1754 } 1755 1756 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1757 1758 // Mark the new function `noreturn` if applicable. Terminators which resume 1759 // exception propagation are treated as returning instructions. This is to 1760 // avoid inserting traps after calls to outlined functions which unwind. 1761 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1762 const Instruction *Term = BB.getTerminator(); 1763 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1764 }); 1765 if (doesNotReturn) 1766 newFunction->setDoesNotReturn(); 1767 1768 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1769 newFunction->dump(); 1770 report_fatal_error("verification of newFunction failed!"); 1771 }); 1772 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1773 report_fatal_error("verification of oldFunction failed!")); 1774 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1775 report_fatal_error("Stale Asumption cache for old Function!")); 1776 return newFunction; 1777 } 1778 1779 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1780 const Function &NewFunc, 1781 AssumptionCache *AC) { 1782 for (auto AssumeVH : AC->assumptions()) { 1783 auto *I = dyn_cast_or_null<CallInst>(AssumeVH); 1784 if (!I) 1785 continue; 1786 1787 // There shouldn't be any llvm.assume intrinsics in the new function. 1788 if (I->getFunction() != &OldFunc) 1789 return true; 1790 1791 // There shouldn't be any stale affected values in the assumption cache 1792 // that were previously in the old function, but that have now been moved 1793 // to the new function. 1794 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1795 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1796 if (!AffectedCI) 1797 continue; 1798 if (AffectedCI->getFunction() != &OldFunc) 1799 return true; 1800 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); 1801 if (AssumedInst->getFunction() != &OldFunc) 1802 return true; 1803 } 1804 } 1805 return false; 1806 } 1807