xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision a487b792e2dabcec02c63d19e32958572a257408)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DIBuilder.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/InstIterator.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/MDBuilder.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/PatternMatch.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/IR/Verifier.h"
54 #include "llvm/Support/BlockFrequency.h"
55 #include "llvm/Support/BranchProbability.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <map>
66 #include <utility>
67 #include <vector>
68 
69 using namespace llvm;
70 using namespace llvm::PatternMatch;
71 using ProfileCount = Function::ProfileCount;
72 
73 #define DEBUG_TYPE "code-extractor"
74 
75 // Provide a command-line option to aggregate function arguments into a struct
76 // for functions produced by the code extractor. This is useful when converting
77 // extracted functions to pthread-based code, as only one argument (void*) can
78 // be passed in to pthread_create().
79 static cl::opt<bool>
80 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
81                  cl::desc("Aggregate arguments to code-extracted functions"));
82 
83 /// Test whether a block is valid for extraction.
84 static bool isBlockValidForExtraction(const BasicBlock &BB,
85                                       const SetVector<BasicBlock *> &Result,
86                                       bool AllowVarArgs, bool AllowAlloca) {
87   // taking the address of a basic block moved to another function is illegal
88   if (BB.hasAddressTaken())
89     return false;
90 
91   // don't hoist code that uses another basicblock address, as it's likely to
92   // lead to unexpected behavior, like cross-function jumps
93   SmallPtrSet<User const *, 16> Visited;
94   SmallVector<User const *, 16> ToVisit;
95 
96   for (Instruction const &Inst : BB)
97     ToVisit.push_back(&Inst);
98 
99   while (!ToVisit.empty()) {
100     User const *Curr = ToVisit.pop_back_val();
101     if (!Visited.insert(Curr).second)
102       continue;
103     if (isa<BlockAddress const>(Curr))
104       return false; // even a reference to self is likely to be not compatible
105 
106     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
107       continue;
108 
109     for (auto const &U : Curr->operands()) {
110       if (auto *UU = dyn_cast<User>(U))
111         ToVisit.push_back(UU);
112     }
113   }
114 
115   // If explicitly requested, allow vastart and alloca. For invoke instructions
116   // verify that extraction is valid.
117   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
118     if (isa<AllocaInst>(I)) {
119        if (!AllowAlloca)
120          return false;
121        continue;
122     }
123 
124     if (const auto *II = dyn_cast<InvokeInst>(I)) {
125       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
126       // must be a part of the subgraph which is being extracted.
127       if (auto *UBB = II->getUnwindDest())
128         if (!Result.count(UBB))
129           return false;
130       continue;
131     }
132 
133     // All catch handlers of a catchswitch instruction as well as the unwind
134     // destination must be in the subgraph.
135     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
136       if (auto *UBB = CSI->getUnwindDest())
137         if (!Result.count(UBB))
138           return false;
139       for (const auto *HBB : CSI->handlers())
140         if (!Result.count(const_cast<BasicBlock*>(HBB)))
141           return false;
142       continue;
143     }
144 
145     // Make sure that entire catch handler is within subgraph. It is sufficient
146     // to check that catch return's block is in the list.
147     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
148       for (const auto *U : CPI->users())
149         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
150           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
151             return false;
152       continue;
153     }
154 
155     // And do similar checks for cleanup handler - the entire handler must be
156     // in subgraph which is going to be extracted. For cleanup return should
157     // additionally check that the unwind destination is also in the subgraph.
158     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
159       for (const auto *U : CPI->users())
160         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
161           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
162             return false;
163       continue;
164     }
165     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
166       if (auto *UBB = CRI->getUnwindDest())
167         if (!Result.count(UBB))
168           return false;
169       continue;
170     }
171 
172     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
173       if (const Function *F = CI->getCalledFunction()) {
174         auto IID = F->getIntrinsicID();
175         if (IID == Intrinsic::vastart) {
176           if (AllowVarArgs)
177             continue;
178           else
179             return false;
180         }
181 
182         // Currently, we miscompile outlined copies of eh_typid_for. There are
183         // proposals for fixing this in llvm.org/PR39545.
184         if (IID == Intrinsic::eh_typeid_for)
185           return false;
186       }
187     }
188   }
189 
190   return true;
191 }
192 
193 /// Build a set of blocks to extract if the input blocks are viable.
194 static SetVector<BasicBlock *>
195 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
196                         bool AllowVarArgs, bool AllowAlloca) {
197   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
198   SetVector<BasicBlock *> Result;
199 
200   // Loop over the blocks, adding them to our set-vector, and aborting with an
201   // empty set if we encounter invalid blocks.
202   for (BasicBlock *BB : BBs) {
203     // If this block is dead, don't process it.
204     if (DT && !DT->isReachableFromEntry(BB))
205       continue;
206 
207     if (!Result.insert(BB))
208       llvm_unreachable("Repeated basic blocks in extraction input");
209   }
210 
211   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
212                     << '\n');
213 
214   for (auto *BB : Result) {
215     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
216       return {};
217 
218     // Make sure that the first block is not a landing pad.
219     if (BB == Result.front()) {
220       if (BB->isEHPad()) {
221         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
222         return {};
223       }
224       continue;
225     }
226 
227     // All blocks other than the first must not have predecessors outside of
228     // the subgraph which is being extracted.
229     for (auto *PBB : predecessors(BB))
230       if (!Result.count(PBB)) {
231         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
232                              "outside the region except for the first block!\n"
233                           << "Problematic source BB: " << BB->getName() << "\n"
234                           << "Problematic destination BB: " << PBB->getName()
235                           << "\n");
236         return {};
237       }
238   }
239 
240   return Result;
241 }
242 
243 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
244                              bool AggregateArgs, BlockFrequencyInfo *BFI,
245                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
246                              bool AllowVarArgs, bool AllowAlloca,
247                              BasicBlock *AllocationBlock, std::string Suffix,
248                              bool ArgsInZeroAddressSpace)
249     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250       BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
251       AllowVarArgs(AllowVarArgs),
252       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
253       Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {}
254 
255 /// definedInRegion - Return true if the specified value is defined in the
256 /// extracted region.
257 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
258   if (Instruction *I = dyn_cast<Instruction>(V))
259     if (Blocks.count(I->getParent()))
260       return true;
261   return false;
262 }
263 
264 /// definedInCaller - Return true if the specified value is defined in the
265 /// function being code extracted, but not in the region being extracted.
266 /// These values must be passed in as live-ins to the function.
267 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
268   if (isa<Argument>(V)) return true;
269   if (Instruction *I = dyn_cast<Instruction>(V))
270     if (!Blocks.count(I->getParent()))
271       return true;
272   return false;
273 }
274 
275 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
276   BasicBlock *CommonExitBlock = nullptr;
277   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
278     for (auto *Succ : successors(Block)) {
279       // Internal edges, ok.
280       if (Blocks.count(Succ))
281         continue;
282       if (!CommonExitBlock) {
283         CommonExitBlock = Succ;
284         continue;
285       }
286       if (CommonExitBlock != Succ)
287         return true;
288     }
289     return false;
290   };
291 
292   if (any_of(Blocks, hasNonCommonExitSucc))
293     return nullptr;
294 
295   return CommonExitBlock;
296 }
297 
298 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
299   for (BasicBlock &BB : F) {
300     for (Instruction &II : BB.instructionsWithoutDebug())
301       if (auto *AI = dyn_cast<AllocaInst>(&II))
302         Allocas.push_back(AI);
303 
304     findSideEffectInfoForBlock(BB);
305   }
306 }
307 
308 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
309   for (Instruction &II : BB.instructionsWithoutDebug()) {
310     unsigned Opcode = II.getOpcode();
311     Value *MemAddr = nullptr;
312     switch (Opcode) {
313     case Instruction::Store:
314     case Instruction::Load: {
315       if (Opcode == Instruction::Store) {
316         StoreInst *SI = cast<StoreInst>(&II);
317         MemAddr = SI->getPointerOperand();
318       } else {
319         LoadInst *LI = cast<LoadInst>(&II);
320         MemAddr = LI->getPointerOperand();
321       }
322       // Global variable can not be aliased with locals.
323       if (isa<Constant>(MemAddr))
324         break;
325       Value *Base = MemAddr->stripInBoundsConstantOffsets();
326       if (!isa<AllocaInst>(Base)) {
327         SideEffectingBlocks.insert(&BB);
328         return;
329       }
330       BaseMemAddrs[&BB].insert(Base);
331       break;
332     }
333     default: {
334       IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
335       if (IntrInst) {
336         if (IntrInst->isLifetimeStartOrEnd())
337           break;
338         SideEffectingBlocks.insert(&BB);
339         return;
340       }
341       // Treat all the other cases conservatively if it has side effects.
342       if (II.mayHaveSideEffects()) {
343         SideEffectingBlocks.insert(&BB);
344         return;
345       }
346     }
347     }
348   }
349 }
350 
351 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
352     BasicBlock &BB, AllocaInst *Addr) const {
353   if (SideEffectingBlocks.count(&BB))
354     return true;
355   auto It = BaseMemAddrs.find(&BB);
356   if (It != BaseMemAddrs.end())
357     return It->second.count(Addr);
358   return false;
359 }
360 
361 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
362     const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
363   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
364   Function *Func = (*Blocks.begin())->getParent();
365   for (BasicBlock &BB : *Func) {
366     if (Blocks.count(&BB))
367       continue;
368     if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
369       return false;
370   }
371   return true;
372 }
373 
374 BasicBlock *
375 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
376   BasicBlock *SinglePredFromOutlineRegion = nullptr;
377   assert(!Blocks.count(CommonExitBlock) &&
378          "Expect a block outside the region!");
379   for (auto *Pred : predecessors(CommonExitBlock)) {
380     if (!Blocks.count(Pred))
381       continue;
382     if (!SinglePredFromOutlineRegion) {
383       SinglePredFromOutlineRegion = Pred;
384     } else if (SinglePredFromOutlineRegion != Pred) {
385       SinglePredFromOutlineRegion = nullptr;
386       break;
387     }
388   }
389 
390   if (SinglePredFromOutlineRegion)
391     return SinglePredFromOutlineRegion;
392 
393 #ifndef NDEBUG
394   auto getFirstPHI = [](BasicBlock *BB) {
395     BasicBlock::iterator I = BB->begin();
396     PHINode *FirstPhi = nullptr;
397     while (I != BB->end()) {
398       PHINode *Phi = dyn_cast<PHINode>(I);
399       if (!Phi)
400         break;
401       if (!FirstPhi) {
402         FirstPhi = Phi;
403         break;
404       }
405     }
406     return FirstPhi;
407   };
408   // If there are any phi nodes, the single pred either exists or has already
409   // be created before code extraction.
410   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
411 #endif
412 
413   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
414       CommonExitBlock->getFirstNonPHI()->getIterator());
415 
416   for (BasicBlock *Pred :
417        llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
418     if (Blocks.count(Pred))
419       continue;
420     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
421   }
422   // Now add the old exit block to the outline region.
423   Blocks.insert(CommonExitBlock);
424   return CommonExitBlock;
425 }
426 
427 // Find the pair of life time markers for address 'Addr' that are either
428 // defined inside the outline region or can legally be shrinkwrapped into the
429 // outline region. If there are not other untracked uses of the address, return
430 // the pair of markers if found; otherwise return a pair of nullptr.
431 CodeExtractor::LifetimeMarkerInfo
432 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
433                                   Instruction *Addr,
434                                   BasicBlock *ExitBlock) const {
435   LifetimeMarkerInfo Info;
436 
437   for (User *U : Addr->users()) {
438     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
439     if (IntrInst) {
440       // We don't model addresses with multiple start/end markers, but the
441       // markers do not need to be in the region.
442       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
443         if (Info.LifeStart)
444           return {};
445         Info.LifeStart = IntrInst;
446         continue;
447       }
448       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
449         if (Info.LifeEnd)
450           return {};
451         Info.LifeEnd = IntrInst;
452         continue;
453       }
454       // At this point, permit debug uses outside of the region.
455       // This is fixed in a later call to fixupDebugInfoPostExtraction().
456       if (isa<DbgInfoIntrinsic>(IntrInst))
457         continue;
458     }
459     // Find untracked uses of the address, bail.
460     if (!definedInRegion(Blocks, U))
461       return {};
462   }
463 
464   if (!Info.LifeStart || !Info.LifeEnd)
465     return {};
466 
467   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
468   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
469   // Do legality check.
470   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
471       !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
472     return {};
473 
474   // Check to see if we have a place to do hoisting, if not, bail.
475   if (Info.HoistLifeEnd && !ExitBlock)
476     return {};
477 
478   return Info;
479 }
480 
481 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
482                                 ValueSet &SinkCands, ValueSet &HoistCands,
483                                 BasicBlock *&ExitBlock) const {
484   Function *Func = (*Blocks.begin())->getParent();
485   ExitBlock = getCommonExitBlock(Blocks);
486 
487   auto moveOrIgnoreLifetimeMarkers =
488       [&](const LifetimeMarkerInfo &LMI) -> bool {
489     if (!LMI.LifeStart)
490       return false;
491     if (LMI.SinkLifeStart) {
492       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
493                         << "\n");
494       SinkCands.insert(LMI.LifeStart);
495     }
496     if (LMI.HoistLifeEnd) {
497       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
498       HoistCands.insert(LMI.LifeEnd);
499     }
500     return true;
501   };
502 
503   // Look up allocas in the original function in CodeExtractorAnalysisCache, as
504   // this is much faster than walking all the instructions.
505   for (AllocaInst *AI : CEAC.getAllocas()) {
506     BasicBlock *BB = AI->getParent();
507     if (Blocks.count(BB))
508       continue;
509 
510     // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
511     // check whether it is actually still in the original function.
512     Function *AIFunc = BB->getParent();
513     if (AIFunc != Func)
514       continue;
515 
516     LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
517     bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
518     if (Moved) {
519       LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
520       SinkCands.insert(AI);
521       continue;
522     }
523 
524     // Find bitcasts in the outlined region that have lifetime marker users
525     // outside that region. Replace the lifetime marker use with an
526     // outside region bitcast to avoid unnecessary alloca/reload instructions
527     // and extra lifetime markers.
528     SmallVector<Instruction *, 2> LifetimeBitcastUsers;
529     for (User *U : AI->users()) {
530       if (!definedInRegion(Blocks, U))
531         continue;
532 
533       if (U->stripInBoundsConstantOffsets() != AI)
534         continue;
535 
536       Instruction *Bitcast = cast<Instruction>(U);
537       for (User *BU : Bitcast->users()) {
538         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
539         if (!IntrInst)
540           continue;
541 
542         if (!IntrInst->isLifetimeStartOrEnd())
543           continue;
544 
545         if (definedInRegion(Blocks, IntrInst))
546           continue;
547 
548         LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
549                           << *Bitcast << " in out-of-region lifetime marker "
550                           << *IntrInst << "\n");
551         LifetimeBitcastUsers.push_back(IntrInst);
552       }
553     }
554 
555     for (Instruction *I : LifetimeBitcastUsers) {
556       Module *M = AIFunc->getParent();
557       LLVMContext &Ctx = M->getContext();
558       auto *Int8PtrTy = PointerType::getUnqual(Ctx);
559       CastInst *CastI =
560           CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I->getIterator());
561       I->replaceUsesOfWith(I->getOperand(1), CastI);
562     }
563 
564     // Follow any bitcasts.
565     SmallVector<Instruction *, 2> Bitcasts;
566     SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
567     for (User *U : AI->users()) {
568       if (U->stripInBoundsConstantOffsets() == AI) {
569         Instruction *Bitcast = cast<Instruction>(U);
570         LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
571         if (LMI.LifeStart) {
572           Bitcasts.push_back(Bitcast);
573           BitcastLifetimeInfo.push_back(LMI);
574           continue;
575         }
576       }
577 
578       // Found unknown use of AI.
579       if (!definedInRegion(Blocks, U)) {
580         Bitcasts.clear();
581         break;
582       }
583     }
584 
585     // Either no bitcasts reference the alloca or there are unknown uses.
586     if (Bitcasts.empty())
587       continue;
588 
589     LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
590     SinkCands.insert(AI);
591     for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
592       Instruction *BitcastAddr = Bitcasts[I];
593       const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
594       assert(LMI.LifeStart &&
595              "Unsafe to sink bitcast without lifetime markers");
596       moveOrIgnoreLifetimeMarkers(LMI);
597       if (!definedInRegion(Blocks, BitcastAddr)) {
598         LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
599                           << "\n");
600         SinkCands.insert(BitcastAddr);
601       }
602     }
603   }
604 }
605 
606 bool CodeExtractor::isEligible() const {
607   if (Blocks.empty())
608     return false;
609   BasicBlock *Header = *Blocks.begin();
610   Function *F = Header->getParent();
611 
612   // For functions with varargs, check that varargs handling is only done in the
613   // outlined function, i.e vastart and vaend are only used in outlined blocks.
614   if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
615     auto containsVarArgIntrinsic = [](const Instruction &I) {
616       if (const CallInst *CI = dyn_cast<CallInst>(&I))
617         if (const Function *Callee = CI->getCalledFunction())
618           return Callee->getIntrinsicID() == Intrinsic::vastart ||
619                  Callee->getIntrinsicID() == Intrinsic::vaend;
620       return false;
621     };
622 
623     for (auto &BB : *F) {
624       if (Blocks.count(&BB))
625         continue;
626       if (llvm::any_of(BB, containsVarArgIntrinsic))
627         return false;
628     }
629   }
630   return true;
631 }
632 
633 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
634                                       const ValueSet &SinkCands,
635                                       bool CollectGlobalInputs) const {
636   for (BasicBlock *BB : Blocks) {
637     // If a used value is defined outside the region, it's an input.  If an
638     // instruction is used outside the region, it's an output.
639     for (Instruction &II : *BB) {
640       for (auto &OI : II.operands()) {
641         Value *V = OI;
642         if (!SinkCands.count(V) &&
643             (definedInCaller(Blocks, V) ||
644              (CollectGlobalInputs && llvm::isa<llvm::GlobalVariable>(V))))
645           Inputs.insert(V);
646       }
647 
648       for (User *U : II.users())
649         if (!definedInRegion(Blocks, U)) {
650           Outputs.insert(&II);
651           break;
652         }
653     }
654   }
655 }
656 
657 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
658 /// of the region, we need to split the entry block of the region so that the
659 /// PHI node is easier to deal with.
660 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
661   unsigned NumPredsFromRegion = 0;
662   unsigned NumPredsOutsideRegion = 0;
663 
664   if (Header != &Header->getParent()->getEntryBlock()) {
665     PHINode *PN = dyn_cast<PHINode>(Header->begin());
666     if (!PN) return;  // No PHI nodes.
667 
668     // If the header node contains any PHI nodes, check to see if there is more
669     // than one entry from outside the region.  If so, we need to sever the
670     // header block into two.
671     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
672       if (Blocks.count(PN->getIncomingBlock(i)))
673         ++NumPredsFromRegion;
674       else
675         ++NumPredsOutsideRegion;
676 
677     // If there is one (or fewer) predecessor from outside the region, we don't
678     // need to do anything special.
679     if (NumPredsOutsideRegion <= 1) return;
680   }
681 
682   // Otherwise, we need to split the header block into two pieces: one
683   // containing PHI nodes merging values from outside of the region, and a
684   // second that contains all of the code for the block and merges back any
685   // incoming values from inside of the region.
686   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
687 
688   // We only want to code extract the second block now, and it becomes the new
689   // header of the region.
690   BasicBlock *OldPred = Header;
691   Blocks.remove(OldPred);
692   Blocks.insert(NewBB);
693   Header = NewBB;
694 
695   // Okay, now we need to adjust the PHI nodes and any branches from within the
696   // region to go to the new header block instead of the old header block.
697   if (NumPredsFromRegion) {
698     PHINode *PN = cast<PHINode>(OldPred->begin());
699     // Loop over all of the predecessors of OldPred that are in the region,
700     // changing them to branch to NewBB instead.
701     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
702       if (Blocks.count(PN->getIncomingBlock(i))) {
703         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
704         TI->replaceUsesOfWith(OldPred, NewBB);
705       }
706 
707     // Okay, everything within the region is now branching to the right block, we
708     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
709     BasicBlock::iterator AfterPHIs;
710     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
711       PHINode *PN = cast<PHINode>(AfterPHIs);
712       // Create a new PHI node in the new region, which has an incoming value
713       // from OldPred of PN.
714       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
715                                        PN->getName() + ".ce");
716       NewPN->insertBefore(NewBB->begin());
717       PN->replaceAllUsesWith(NewPN);
718       NewPN->addIncoming(PN, OldPred);
719 
720       // Loop over all of the incoming value in PN, moving them to NewPN if they
721       // are from the extracted region.
722       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
723         if (Blocks.count(PN->getIncomingBlock(i))) {
724           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
725           PN->removeIncomingValue(i);
726           --i;
727         }
728       }
729     }
730   }
731 }
732 
733 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
734 /// outlined region, we split these PHIs on two: one with inputs from region
735 /// and other with remaining incoming blocks; then first PHIs are placed in
736 /// outlined region.
737 void CodeExtractor::severSplitPHINodesOfExits() {
738   for (BasicBlock *ExitBB : ExtractedFuncRetVals) {
739     BasicBlock *NewBB = nullptr;
740 
741     for (PHINode &PN : ExitBB->phis()) {
742       // Find all incoming values from the outlining region.
743       SmallVector<unsigned, 2> IncomingVals;
744       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
745         if (Blocks.count(PN.getIncomingBlock(i)))
746           IncomingVals.push_back(i);
747 
748       // Do not process PHI if there is one (or fewer) predecessor from region.
749       // If PHI has exactly one predecessor from region, only this one incoming
750       // will be replaced on codeRepl block, so it should be safe to skip PHI.
751       if (IncomingVals.size() <= 1)
752         continue;
753 
754       // Create block for new PHIs and add it to the list of outlined if it
755       // wasn't done before.
756       if (!NewBB) {
757         NewBB = BasicBlock::Create(ExitBB->getContext(),
758                                    ExitBB->getName() + ".split",
759                                    ExitBB->getParent(), ExitBB);
760         NewBB->IsNewDbgInfoFormat = ExitBB->IsNewDbgInfoFormat;
761         SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
762         for (BasicBlock *PredBB : Preds)
763           if (Blocks.count(PredBB))
764             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
765         BranchInst::Create(ExitBB, NewBB);
766         Blocks.insert(NewBB);
767       }
768 
769       // Split this PHI.
770       PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(),
771                                        PN.getName() + ".ce");
772       NewPN->insertBefore(NewBB->getFirstNonPHIIt());
773       for (unsigned i : IncomingVals)
774         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
775       for (unsigned i : reverse(IncomingVals))
776         PN.removeIncomingValue(i, false);
777       PN.addIncoming(NewPN, NewBB);
778     }
779   }
780 }
781 
782 void CodeExtractor::splitReturnBlocks() {
783   for (BasicBlock *Block : Blocks)
784     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
785       BasicBlock *New =
786           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
787       if (DT) {
788         // Old dominates New. New node dominates all other nodes dominated
789         // by Old.
790         DomTreeNode *OldNode = DT->getNode(Block);
791         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
792                                                OldNode->end());
793 
794         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
795 
796         for (DomTreeNode *I : Children)
797           DT->changeImmediateDominator(I, NewNode);
798       }
799     }
800 }
801 
802 Function *CodeExtractor::constructFunctionDeclaration(
803     const ValueSet &inputs, const ValueSet &outputs, BlockFrequency EntryFreq,
804     const Twine &Name, ValueSet &StructValues, StructType *&StructTy) {
805   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
806   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
807 
808   Function *oldFunction = Blocks.front()->getParent();
809   Module *M = Blocks.front()->getModule();
810 
811   // Assemble the function's parameter lists.
812   std::vector<Type *> ParamTy;
813   std::vector<Type *> AggParamTy;
814   const DataLayout &DL = M->getDataLayout();
815 
816   // Add the types of the input values to the function's argument list
817   for (Value *value : inputs) {
818     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
819     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
820       AggParamTy.push_back(value->getType());
821       StructValues.insert(value);
822     } else
823       ParamTy.push_back(value->getType());
824   }
825 
826   // Add the types of the output values to the function's argument list.
827   for (Value *output : outputs) {
828     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
829     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
830       AggParamTy.push_back(output->getType());
831       StructValues.insert(output);
832     } else
833       ParamTy.push_back(
834           PointerType::get(output->getType(), DL.getAllocaAddrSpace()));
835   }
836 
837   assert(
838       (ParamTy.size() + AggParamTy.size()) ==
839           (inputs.size() + outputs.size()) &&
840       "Number of scalar and aggregate params does not match inputs, outputs");
841   assert((StructValues.empty() || AggregateArgs) &&
842          "Expeced StructValues only with AggregateArgs set");
843 
844   // Concatenate scalar and aggregate params in ParamTy.
845   if (!AggParamTy.empty()) {
846     StructTy = StructType::get(M->getContext(), AggParamTy);
847     ParamTy.push_back(PointerType::get(
848         StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace()));
849   }
850 
851   Type *RetTy = getSwitchType();
852   LLVM_DEBUG({
853     dbgs() << "Function type: " << *RetTy << " f(";
854     for (Type *i : ParamTy)
855       dbgs() << *i << ", ";
856     dbgs() << ")\n";
857   });
858 
859   FunctionType *funcType = FunctionType::get(
860       RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
861 
862   // Create the new function
863   Function *newFunction =
864       Function::Create(funcType, GlobalValue::InternalLinkage,
865                        oldFunction->getAddressSpace(), Name, M);
866 
867   // Propagate personality info to the new function if there is one.
868   if (oldFunction->hasPersonalityFn())
869     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
870 
871   // Inherit all of the target dependent attributes and white-listed
872   // target independent attributes.
873   //  (e.g. If the extracted region contains a call to an x86.sse
874   //  instruction we need to make sure that the extracted region has the
875   //  "target-features" attribute allowing it to be lowered.
876   // FIXME: This should be changed to check to see if a specific
877   //           attribute can not be inherited.
878   for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
879     if (Attr.isStringAttribute()) {
880       if (Attr.getKindAsString() == "thunk")
881         continue;
882     } else
883       switch (Attr.getKindAsEnum()) {
884       // Those attributes cannot be propagated safely. Explicitly list them
885       // here so we get a warning if new attributes are added.
886       case Attribute::AllocSize:
887       case Attribute::Builtin:
888       case Attribute::Convergent:
889       case Attribute::JumpTable:
890       case Attribute::Naked:
891       case Attribute::NoBuiltin:
892       case Attribute::NoMerge:
893       case Attribute::NoReturn:
894       case Attribute::NoSync:
895       case Attribute::ReturnsTwice:
896       case Attribute::Speculatable:
897       case Attribute::StackAlignment:
898       case Attribute::WillReturn:
899       case Attribute::AllocKind:
900       case Attribute::PresplitCoroutine:
901       case Attribute::Memory:
902       case Attribute::NoFPClass:
903       case Attribute::CoroDestroyOnlyWhenComplete:
904       case Attribute::CoroElideSafe:
905       case Attribute::NoDivergenceSource:
906         continue;
907       // Those attributes should be safe to propagate to the extracted function.
908       case Attribute::AlwaysInline:
909       case Attribute::Cold:
910       case Attribute::DisableSanitizerInstrumentation:
911       case Attribute::FnRetThunkExtern:
912       case Attribute::Hot:
913       case Attribute::HybridPatchable:
914       case Attribute::NoRecurse:
915       case Attribute::InlineHint:
916       case Attribute::MinSize:
917       case Attribute::NoCallback:
918       case Attribute::NoDuplicate:
919       case Attribute::NoFree:
920       case Attribute::NoImplicitFloat:
921       case Attribute::NoInline:
922       case Attribute::NonLazyBind:
923       case Attribute::NoRedZone:
924       case Attribute::NoUnwind:
925       case Attribute::NoSanitizeBounds:
926       case Attribute::NoSanitizeCoverage:
927       case Attribute::NullPointerIsValid:
928       case Attribute::OptimizeForDebugging:
929       case Attribute::OptForFuzzing:
930       case Attribute::OptimizeNone:
931       case Attribute::OptimizeForSize:
932       case Attribute::SafeStack:
933       case Attribute::ShadowCallStack:
934       case Attribute::SanitizeAddress:
935       case Attribute::SanitizeMemory:
936       case Attribute::SanitizeNumericalStability:
937       case Attribute::SanitizeThread:
938       case Attribute::SanitizeType:
939       case Attribute::SanitizeHWAddress:
940       case Attribute::SanitizeMemTag:
941       case Attribute::SanitizeRealtime:
942       case Attribute::SanitizeRealtimeBlocking:
943       case Attribute::SpeculativeLoadHardening:
944       case Attribute::StackProtect:
945       case Attribute::StackProtectReq:
946       case Attribute::StackProtectStrong:
947       case Attribute::StrictFP:
948       case Attribute::UWTable:
949       case Attribute::VScaleRange:
950       case Attribute::NoCfCheck:
951       case Attribute::MustProgress:
952       case Attribute::NoProfile:
953       case Attribute::SkipProfile:
954         break;
955       // These attributes cannot be applied to functions.
956       case Attribute::Alignment:
957       case Attribute::AllocatedPointer:
958       case Attribute::AllocAlign:
959       case Attribute::ByVal:
960       case Attribute::Dereferenceable:
961       case Attribute::DereferenceableOrNull:
962       case Attribute::ElementType:
963       case Attribute::InAlloca:
964       case Attribute::InReg:
965       case Attribute::Nest:
966       case Attribute::NoAlias:
967       case Attribute::NoCapture:
968       case Attribute::NoUndef:
969       case Attribute::NonNull:
970       case Attribute::Preallocated:
971       case Attribute::ReadNone:
972       case Attribute::ReadOnly:
973       case Attribute::Returned:
974       case Attribute::SExt:
975       case Attribute::StructRet:
976       case Attribute::SwiftError:
977       case Attribute::SwiftSelf:
978       case Attribute::SwiftAsync:
979       case Attribute::ZExt:
980       case Attribute::ImmArg:
981       case Attribute::ByRef:
982       case Attribute::WriteOnly:
983       case Attribute::Writable:
984       case Attribute::DeadOnUnwind:
985       case Attribute::Range:
986       case Attribute::Initializes:
987       case Attribute::NoExt:
988       //  These are not really attributes.
989       case Attribute::None:
990       case Attribute::EndAttrKinds:
991       case Attribute::EmptyKey:
992       case Attribute::TombstoneKey:
993         llvm_unreachable("Not a function attribute");
994       }
995 
996     newFunction->addFnAttr(Attr);
997   }
998 
999   // Create scalar and aggregate iterators to name all of the arguments we
1000   // inserted.
1001   Function::arg_iterator ScalarAI = newFunction->arg_begin();
1002 
1003   // Set names and attributes for input and output arguments.
1004   ScalarAI = newFunction->arg_begin();
1005   for (Value *input : inputs) {
1006     if (StructValues.contains(input))
1007       continue;
1008 
1009     ScalarAI->setName(input->getName());
1010     if (input->isSwiftError())
1011       newFunction->addParamAttr(ScalarAI - newFunction->arg_begin(),
1012                                 Attribute::SwiftError);
1013     ++ScalarAI;
1014   }
1015   for (Value *output : outputs) {
1016     if (StructValues.contains(output))
1017       continue;
1018 
1019     ScalarAI->setName(output->getName() + ".out");
1020     ++ScalarAI;
1021   }
1022 
1023   // Update the entry count of the function.
1024   if (BFI) {
1025     auto Count = BFI->getProfileCountFromFreq(EntryFreq);
1026     if (Count.has_value())
1027       newFunction->setEntryCount(
1028           ProfileCount(*Count, Function::PCT_Real)); // FIXME
1029   }
1030 
1031   return newFunction;
1032 }
1033 
1034 /// If the original function has debug info, we have to add a debug location
1035 /// to the new branch instruction from the artificial entry block.
1036 /// We use the debug location of the first instruction in the extracted
1037 /// blocks, as there is no other equivalent line in the source code.
1038 static void applyFirstDebugLoc(Function *oldFunction,
1039                                ArrayRef<BasicBlock *> Blocks,
1040                                Instruction *BranchI) {
1041   if (oldFunction->getSubprogram()) {
1042     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1043       return any_of(*BB, [&BranchI](const Instruction &I) {
1044         if (!I.getDebugLoc())
1045           return false;
1046         // Don't use source locations attached to debug-intrinsics: they could
1047         // be from completely unrelated scopes.
1048         if (isa<DbgInfoIntrinsic>(I))
1049           return false;
1050         BranchI->setDebugLoc(I.getDebugLoc());
1051         return true;
1052       });
1053     });
1054   }
1055 }
1056 
1057 /// Erase lifetime.start markers which reference inputs to the extraction
1058 /// region, and insert the referenced memory into \p LifetimesStart.
1059 ///
1060 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1061 /// of allocas which will be moved from the caller function into the extracted
1062 /// function (\p SunkAllocas).
1063 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1064                                          const SetVector<Value *> &SunkAllocas,
1065                                          SetVector<Value *> &LifetimesStart) {
1066   for (BasicBlock *BB : Blocks) {
1067     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1068       auto *II = dyn_cast<IntrinsicInst>(&I);
1069       if (!II || !II->isLifetimeStartOrEnd())
1070         continue;
1071 
1072       // Get the memory operand of the lifetime marker. If the underlying
1073       // object is a sunk alloca, or is otherwise defined in the extraction
1074       // region, the lifetime marker must not be erased.
1075       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1076       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1077         continue;
1078 
1079       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1080         LifetimesStart.insert(Mem);
1081       II->eraseFromParent();
1082     }
1083   }
1084 }
1085 
1086 /// Insert lifetime start/end markers surrounding the call to the new function
1087 /// for objects defined in the caller.
1088 static void insertLifetimeMarkersSurroundingCall(
1089     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1090     CallInst *TheCall) {
1091   LLVMContext &Ctx = M->getContext();
1092   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1093   Instruction *Term = TheCall->getParent()->getTerminator();
1094 
1095   // Emit lifetime markers for the pointers given in \p Objects. Insert the
1096   // markers before the call if \p InsertBefore, and after the call otherwise.
1097   auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects,
1098                            bool InsertBefore) {
1099     for (Value *Mem : Objects) {
1100       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1101                                             TheCall->getFunction()) &&
1102              "Input memory not defined in original function");
1103 
1104       Function *Func =
1105           Intrinsic::getOrInsertDeclaration(M, MarkerFunc, Mem->getType());
1106       auto Marker = CallInst::Create(Func, {NegativeOne, Mem});
1107       if (InsertBefore)
1108         Marker->insertBefore(TheCall);
1109       else
1110         Marker->insertBefore(Term);
1111     }
1112   };
1113 
1114   if (!LifetimesStart.empty()) {
1115     insertMarkers(Intrinsic::lifetime_start, LifetimesStart,
1116                   /*InsertBefore=*/true);
1117   }
1118 
1119   if (!LifetimesEnd.empty()) {
1120     insertMarkers(Intrinsic::lifetime_end, LifetimesEnd,
1121                   /*InsertBefore=*/false);
1122   }
1123 }
1124 
1125 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1126   auto newFuncIt = newFunction->begin();
1127   for (BasicBlock *Block : Blocks) {
1128     // Delete the basic block from the old function, and the list of blocks
1129     Block->removeFromParent();
1130 
1131     // Insert this basic block into the new function
1132     // Insert the original blocks after the entry block created
1133     // for the new function. The entry block may be followed
1134     // by a set of exit blocks at this point, but these exit
1135     // blocks better be placed at the end of the new function.
1136     newFuncIt = newFunction->insert(std::next(newFuncIt), Block);
1137   }
1138 }
1139 
1140 void CodeExtractor::calculateNewCallTerminatorWeights(
1141     BasicBlock *CodeReplacer,
1142     const DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1143     BranchProbabilityInfo *BPI) {
1144   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1145   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1146 
1147   // Update the branch weights for the exit block.
1148   Instruction *TI = CodeReplacer->getTerminator();
1149   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1150 
1151   // Block Frequency distribution with dummy node.
1152   Distribution BranchDist;
1153 
1154   SmallVector<BranchProbability, 4> EdgeProbabilities(
1155       TI->getNumSuccessors(), BranchProbability::getUnknown());
1156 
1157   // Add each of the frequencies of the successors.
1158   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1159     BlockNode ExitNode(i);
1160     uint64_t ExitFreq = ExitWeights.lookup(TI->getSuccessor(i)).getFrequency();
1161     if (ExitFreq != 0)
1162       BranchDist.addExit(ExitNode, ExitFreq);
1163     else
1164       EdgeProbabilities[i] = BranchProbability::getZero();
1165   }
1166 
1167   // Check for no total weight.
1168   if (BranchDist.Total == 0) {
1169     BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1170     return;
1171   }
1172 
1173   // Normalize the distribution so that they can fit in unsigned.
1174   BranchDist.normalize();
1175 
1176   // Create normalized branch weights and set the metadata.
1177   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1178     const auto &Weight = BranchDist.Weights[I];
1179 
1180     // Get the weight and update the current BFI.
1181     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1182     BranchProbability BP(Weight.Amount, BranchDist.Total);
1183     EdgeProbabilities[Weight.TargetNode.Index] = BP;
1184   }
1185   BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1186   TI->setMetadata(
1187       LLVMContext::MD_prof,
1188       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1189 }
1190 
1191 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1192 /// \p F.
1193 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1194   for (Instruction &I : instructions(F)) {
1195     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1196     SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1197     findDbgUsers(DbgUsers, &I, &DbgVariableRecords);
1198     for (DbgVariableIntrinsic *DVI : DbgUsers)
1199       if (DVI->getFunction() != &F)
1200         DVI->eraseFromParent();
1201     for (DbgVariableRecord *DVR : DbgVariableRecords)
1202       if (DVR->getFunction() != &F)
1203         DVR->eraseFromParent();
1204   }
1205 }
1206 
1207 /// Fix up the debug info in the old and new functions by pointing line
1208 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1209 /// intrinsics which point to values outside of the new function.
1210 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1211                                          CallInst &TheCall) {
1212   DISubprogram *OldSP = OldFunc.getSubprogram();
1213   LLVMContext &Ctx = OldFunc.getContext();
1214 
1215   if (!OldSP) {
1216     // Erase any debug info the new function contains.
1217     stripDebugInfo(NewFunc);
1218     // Make sure the old function doesn't contain any non-local metadata refs.
1219     eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1220     return;
1221   }
1222 
1223   // Create a subprogram for the new function. Leave out a description of the
1224   // function arguments, as the parameters don't correspond to anything at the
1225   // source level.
1226   assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1227   DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1228                 OldSP->getUnit());
1229   auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray({}));
1230   DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1231                                     DISubprogram::SPFlagOptimized |
1232                                     DISubprogram::SPFlagLocalToUnit;
1233   auto NewSP = DIB.createFunction(
1234       OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1235       /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1236   NewFunc.setSubprogram(NewSP);
1237 
1238   auto IsInvalidLocation = [&NewFunc](Value *Location) {
1239     // Location is invalid if it isn't a constant or an instruction, or is an
1240     // instruction but isn't in the new function.
1241     if (!Location ||
1242         (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1243       return true;
1244     Instruction *LocationInst = dyn_cast<Instruction>(Location);
1245     return LocationInst && LocationInst->getFunction() != &NewFunc;
1246   };
1247 
1248   // Debug intrinsics in the new function need to be updated in one of two
1249   // ways:
1250   //  1) They need to be deleted, because they describe a value in the old
1251   //     function.
1252   //  2) They need to point to fresh metadata, e.g. because they currently
1253   //     point to a variable in the wrong scope.
1254   SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1255   SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1256   SmallVector<DbgVariableRecord *, 4> DVRsToDelete;
1257   DenseMap<const MDNode *, MDNode *> Cache;
1258 
1259   auto GetUpdatedDIVariable = [&](DILocalVariable *OldVar) {
1260     DINode *&NewVar = RemappedMetadata[OldVar];
1261     if (!NewVar) {
1262       DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1263           *OldVar->getScope(), *NewSP, Ctx, Cache);
1264       NewVar = DIB.createAutoVariable(
1265           NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1266           OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1267           OldVar->getAlignInBits());
1268     }
1269     return cast<DILocalVariable>(NewVar);
1270   };
1271 
1272   auto UpdateDbgLabel = [&](auto *LabelRecord) {
1273     // Point the label record to a fresh label within the new function if
1274     // the record was not inlined from some other function.
1275     if (LabelRecord->getDebugLoc().getInlinedAt())
1276       return;
1277     DILabel *OldLabel = LabelRecord->getLabel();
1278     DINode *&NewLabel = RemappedMetadata[OldLabel];
1279     if (!NewLabel) {
1280       DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1281           *OldLabel->getScope(), *NewSP, Ctx, Cache);
1282       NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(),
1283                               OldLabel->getFile(), OldLabel->getLine());
1284     }
1285     LabelRecord->setLabel(cast<DILabel>(NewLabel));
1286   };
1287 
1288   auto UpdateDbgRecordsOnInst = [&](Instruction &I) -> void {
1289     for (DbgRecord &DR : I.getDbgRecordRange()) {
1290       if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1291         UpdateDbgLabel(DLR);
1292         continue;
1293       }
1294 
1295       DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1296       // Apply the two updates that dbg.values get: invalid operands, and
1297       // variable metadata fixup.
1298       if (any_of(DVR.location_ops(), IsInvalidLocation)) {
1299         DVRsToDelete.push_back(&DVR);
1300         continue;
1301       }
1302       if (DVR.isDbgAssign() && IsInvalidLocation(DVR.getAddress())) {
1303         DVRsToDelete.push_back(&DVR);
1304         continue;
1305       }
1306       if (!DVR.getDebugLoc().getInlinedAt())
1307         DVR.setVariable(GetUpdatedDIVariable(DVR.getVariable()));
1308     }
1309   };
1310 
1311   for (Instruction &I : instructions(NewFunc)) {
1312     UpdateDbgRecordsOnInst(I);
1313 
1314     auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1315     if (!DII)
1316       continue;
1317 
1318     // Point the intrinsic to a fresh label within the new function if the
1319     // intrinsic was not inlined from some other function.
1320     if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1321       UpdateDbgLabel(DLI);
1322       continue;
1323     }
1324 
1325     auto *DVI = cast<DbgVariableIntrinsic>(DII);
1326     // If any of the used locations are invalid, delete the intrinsic.
1327     if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1328       DebugIntrinsicsToDelete.push_back(DVI);
1329       continue;
1330     }
1331     // DbgAssign intrinsics have an extra Value argument:
1332     if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
1333         DAI && IsInvalidLocation(DAI->getAddress())) {
1334       DebugIntrinsicsToDelete.push_back(DVI);
1335       continue;
1336     }
1337     // If the variable was in the scope of the old function, i.e. it was not
1338     // inlined, point the intrinsic to a fresh variable within the new function.
1339     if (!DVI->getDebugLoc().getInlinedAt())
1340       DVI->setVariable(GetUpdatedDIVariable(DVI->getVariable()));
1341   }
1342 
1343   for (auto *DII : DebugIntrinsicsToDelete)
1344     DII->eraseFromParent();
1345   for (auto *DVR : DVRsToDelete)
1346     DVR->getMarker()->MarkedInstr->dropOneDbgRecord(DVR);
1347   DIB.finalizeSubprogram(NewSP);
1348 
1349   // Fix up the scope information attached to the line locations and the
1350   // debug assignment metadata in the new function.
1351   DenseMap<DIAssignID *, DIAssignID *> AssignmentIDMap;
1352   for (Instruction &I : instructions(NewFunc)) {
1353     if (const DebugLoc &DL = I.getDebugLoc())
1354       I.setDebugLoc(
1355           DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache));
1356     for (DbgRecord &DR : I.getDbgRecordRange())
1357       DR.setDebugLoc(DebugLoc::replaceInlinedAtSubprogram(DR.getDebugLoc(),
1358                                                           *NewSP, Ctx, Cache));
1359 
1360     // Loop info metadata may contain line locations. Fix them up.
1361     auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * {
1362       if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1363         return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache);
1364       return MD;
1365     };
1366     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1367     at::remapAssignID(AssignmentIDMap, I);
1368   }
1369   if (!TheCall.getDebugLoc())
1370     TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1371 
1372   eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1373 }
1374 
1375 Function *
1376 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1377   ValueSet Inputs, Outputs;
1378   return extractCodeRegion(CEAC, Inputs, Outputs);
1379 }
1380 
1381 Function *
1382 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1383                                  ValueSet &inputs, ValueSet &outputs) {
1384   if (!isEligible())
1385     return nullptr;
1386 
1387   // Assumption: this is a single-entry code region, and the header is the first
1388   // block in the region.
1389   BasicBlock *header = *Blocks.begin();
1390   Function *oldFunction = header->getParent();
1391 
1392   normalizeCFGForExtraction(header);
1393 
1394   // Remove @llvm.assume calls that will be moved to the new function from the
1395   // old function's assumption cache.
1396   for (BasicBlock *Block : Blocks) {
1397     for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1398       if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1399         if (AC)
1400           AC->unregisterAssumption(AI);
1401         AI->eraseFromParent();
1402       }
1403     }
1404   }
1405 
1406   ValueSet SinkingCands, HoistingCands;
1407   BasicBlock *CommonExit = nullptr;
1408   findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1409   assert(HoistingCands.empty() || CommonExit);
1410 
1411   // Find inputs to, outputs from the code region.
1412   findInputsOutputs(inputs, outputs, SinkingCands);
1413 
1414   // Collect objects which are inputs to the extraction region and also
1415   // referenced by lifetime start markers within it. The effects of these
1416   // markers must be replicated in the calling function to prevent the stack
1417   // coloring pass from merging slots which store input objects.
1418   ValueSet LifetimesStart;
1419   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1420 
1421   if (!HoistingCands.empty()) {
1422     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1423     Instruction *TI = HoistToBlock->getTerminator();
1424     for (auto *II : HoistingCands)
1425       cast<Instruction>(II)->moveBefore(TI);
1426     computeExtractedFuncRetVals();
1427   }
1428 
1429   // CFG/ExitBlocks must not change hereafter
1430 
1431   // Calculate the entry frequency of the new function before we change the root
1432   //   block.
1433   BlockFrequency EntryFreq;
1434   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1435   if (BFI) {
1436     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1437     for (BasicBlock *Pred : predecessors(header)) {
1438       if (Blocks.count(Pred))
1439         continue;
1440       EntryFreq +=
1441           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1442     }
1443 
1444     for (BasicBlock *Succ : ExtractedFuncRetVals) {
1445       for (BasicBlock *Block : predecessors(Succ)) {
1446         if (!Blocks.count(Block))
1447           continue;
1448 
1449         // Update the branch weight for this successor.
1450         BlockFrequency &BF = ExitWeights[Succ];
1451         BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1452       }
1453     }
1454   }
1455 
1456   // Determine position for the replacement code. Do so before header is moved
1457   // to the new function.
1458   BasicBlock *ReplIP = header;
1459   while (ReplIP && Blocks.count(ReplIP))
1460     ReplIP = ReplIP->getNextNode();
1461 
1462   // Construct new function based on inputs/outputs & add allocas for all defs.
1463   std::string SuffixToUse =
1464       Suffix.empty()
1465           ? (header->getName().empty() ? "extracted" : header->getName().str())
1466           : Suffix;
1467 
1468   ValueSet StructValues;
1469   StructType *StructTy = nullptr;
1470   Function *newFunction = constructFunctionDeclaration(
1471       inputs, outputs, EntryFreq, oldFunction->getName() + "." + SuffixToUse,
1472       StructValues, StructTy);
1473   newFunction->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1474 
1475   emitFunctionBody(inputs, outputs, StructValues, newFunction, StructTy, header,
1476                    SinkingCands);
1477 
1478   std::vector<Value *> Reloads;
1479   CallInst *TheCall = emitReplacerCall(
1480       inputs, outputs, StructValues, newFunction, StructTy, oldFunction, ReplIP,
1481       EntryFreq, LifetimesStart.getArrayRef(), Reloads);
1482 
1483   insertReplacerCall(oldFunction, header, TheCall->getParent(), outputs,
1484                      Reloads, ExitWeights);
1485 
1486   fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1487 
1488   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1489     newFunction->dump();
1490     report_fatal_error("verification of newFunction failed!");
1491   });
1492   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1493                  report_fatal_error("verification of oldFunction failed!"));
1494   LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1495                  report_fatal_error("Stale Asumption cache for old Function!"));
1496   return newFunction;
1497 }
1498 
1499 void CodeExtractor::normalizeCFGForExtraction(BasicBlock *&header) {
1500   // If we have any return instructions in the region, split those blocks so
1501   // that the return is not in the region.
1502   splitReturnBlocks();
1503 
1504   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1505   severSplitPHINodesOfEntry(header);
1506 
1507   // If a PHI in an exit block has multiple incoming values from the outlined
1508   // region, create a new PHI for those values within the region such that only
1509   // PHI itself becomes an output value, not each of its incoming values
1510   // individually.
1511   computeExtractedFuncRetVals();
1512   severSplitPHINodesOfExits();
1513 }
1514 
1515 void CodeExtractor::computeExtractedFuncRetVals() {
1516   ExtractedFuncRetVals.clear();
1517 
1518   SmallPtrSet<BasicBlock *, 2> ExitBlocks;
1519   for (BasicBlock *Block : Blocks) {
1520     for (BasicBlock *Succ : successors(Block)) {
1521       if (Blocks.count(Succ))
1522         continue;
1523 
1524       bool IsNew = ExitBlocks.insert(Succ).second;
1525       if (IsNew)
1526         ExtractedFuncRetVals.push_back(Succ);
1527     }
1528   }
1529 }
1530 
1531 Type *CodeExtractor::getSwitchType() {
1532   LLVMContext &Context = Blocks.front()->getContext();
1533 
1534   assert(ExtractedFuncRetVals.size() < 0xffff &&
1535          "too many exit blocks for switch");
1536   switch (ExtractedFuncRetVals.size()) {
1537   case 0:
1538   case 1:
1539     return Type::getVoidTy(Context);
1540   case 2:
1541     // Conditional branch, return a bool
1542     return Type::getInt1Ty(Context);
1543   default:
1544     return Type::getInt16Ty(Context);
1545   }
1546 }
1547 
1548 void CodeExtractor::emitFunctionBody(
1549     const ValueSet &inputs, const ValueSet &outputs,
1550     const ValueSet &StructValues, Function *newFunction,
1551     StructType *StructArgTy, BasicBlock *header, const ValueSet &SinkingCands) {
1552   Function *oldFunction = header->getParent();
1553   LLVMContext &Context = oldFunction->getContext();
1554 
1555   // The new function needs a root node because other nodes can branch to the
1556   // head of the region, but the entry node of a function cannot have preds.
1557   BasicBlock *newFuncRoot =
1558       BasicBlock::Create(Context, "newFuncRoot", newFunction);
1559   newFuncRoot->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1560 
1561   // Now sink all instructions which only have non-phi uses inside the region.
1562   // Group the allocas at the start of the block, so that any bitcast uses of
1563   // the allocas are well-defined.
1564   for (auto *II : SinkingCands) {
1565     if (!isa<AllocaInst>(II)) {
1566       cast<Instruction>(II)->moveBefore(*newFuncRoot,
1567                                         newFuncRoot->getFirstInsertionPt());
1568     }
1569   }
1570   for (auto *II : SinkingCands) {
1571     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1572       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1573     }
1574   }
1575 
1576   Function::arg_iterator ScalarAI = newFunction->arg_begin();
1577   Argument *AggArg = StructValues.empty()
1578                          ? nullptr
1579                          : newFunction->getArg(newFunction->arg_size() - 1);
1580 
1581   // Rewrite all users of the inputs in the extracted region to use the
1582   // arguments (or appropriate addressing into struct) instead.
1583   SmallVector<Value *> NewValues;
1584   for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1585     Value *RewriteVal;
1586     if (StructValues.contains(inputs[i])) {
1587       Value *Idx[2];
1588       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1589       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1590       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1591           StructArgTy, AggArg, Idx, "gep_" + inputs[i]->getName(), newFuncRoot);
1592       RewriteVal = new LoadInst(StructArgTy->getElementType(aggIdx), GEP,
1593                                 "loadgep_" + inputs[i]->getName(), newFuncRoot);
1594       ++aggIdx;
1595     } else
1596       RewriteVal = &*ScalarAI++;
1597 
1598     NewValues.push_back(RewriteVal);
1599   }
1600 
1601   moveCodeToFunction(newFunction);
1602 
1603   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1604     Value *RewriteVal = NewValues[i];
1605 
1606     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1607     for (User *use : Users)
1608       if (Instruction *inst = dyn_cast<Instruction>(use))
1609         if (Blocks.count(inst->getParent()))
1610           inst->replaceUsesOfWith(inputs[i], RewriteVal);
1611   }
1612 
1613   // Since there may be multiple exits from the original region, make the new
1614   // function return an unsigned, switch on that number.  This loop iterates
1615   // over all of the blocks in the extracted region, updating any terminator
1616   // instructions in the to-be-extracted region that branch to blocks that are
1617   // not in the region to be extracted.
1618   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1619 
1620   // Iterate over the previously collected targets, and create new blocks inside
1621   // the function to branch to.
1622   for (auto P : enumerate(ExtractedFuncRetVals)) {
1623     BasicBlock *OldTarget = P.value();
1624     size_t SuccNum = P.index();
1625 
1626     BasicBlock *NewTarget = BasicBlock::Create(
1627         Context, OldTarget->getName() + ".exitStub", newFunction);
1628     ExitBlockMap[OldTarget] = NewTarget;
1629 
1630     Value *brVal = nullptr;
1631     Type *RetTy = getSwitchType();
1632     assert(ExtractedFuncRetVals.size() < 0xffff &&
1633            "too many exit blocks for switch");
1634     switch (ExtractedFuncRetVals.size()) {
1635     case 0:
1636     case 1:
1637       // No value needed.
1638       break;
1639     case 2: // Conditional branch, return a bool
1640       brVal = ConstantInt::get(RetTy, !SuccNum);
1641       break;
1642     default:
1643       brVal = ConstantInt::get(RetTy, SuccNum);
1644       break;
1645     }
1646 
1647     ReturnInst::Create(Context, brVal, NewTarget);
1648   }
1649 
1650   for (BasicBlock *Block : Blocks) {
1651     Instruction *TI = Block->getTerminator();
1652     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1653       if (Blocks.count(TI->getSuccessor(i)))
1654         continue;
1655       BasicBlock *OldTarget = TI->getSuccessor(i);
1656       // add a new basic block which returns the appropriate value
1657       BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1658       assert(NewTarget && "Unknown target block!");
1659 
1660       // rewrite the original branch instruction with this new target
1661       TI->setSuccessor(i, NewTarget);
1662     }
1663   }
1664 
1665   // Loop over all of the PHI nodes in the header and exit blocks, and change
1666   // any references to the old incoming edge to be the new incoming edge.
1667   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1668     PHINode *PN = cast<PHINode>(I);
1669     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1670       if (!Blocks.count(PN->getIncomingBlock(i)))
1671         PN->setIncomingBlock(i, newFuncRoot);
1672   }
1673 
1674   // Connect newFunction entry block to new header.
1675   BranchInst *BranchI = BranchInst::Create(header, newFuncRoot);
1676   applyFirstDebugLoc(oldFunction, Blocks.getArrayRef(), BranchI);
1677 
1678   // Store the arguments right after the definition of output value.
1679   // This should be proceeded after creating exit stubs to be ensure that invoke
1680   // result restore will be placed in the outlined function.
1681   ScalarAI = newFunction->arg_begin();
1682   unsigned AggIdx = 0;
1683 
1684   for (Value *Input : inputs) {
1685     if (StructValues.contains(Input))
1686       ++AggIdx;
1687     else
1688       ++ScalarAI;
1689   }
1690 
1691   for (Value *Output : outputs) {
1692     // Find proper insertion point.
1693     // In case Output is an invoke, we insert the store at the beginning in the
1694     // 'normal destination' BB. Otherwise we insert the store right after
1695     // Output.
1696     BasicBlock::iterator InsertPt;
1697     if (auto *InvokeI = dyn_cast<InvokeInst>(Output))
1698       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1699     else if (auto *Phi = dyn_cast<PHINode>(Output))
1700       InsertPt = Phi->getParent()->getFirstInsertionPt();
1701     else if (auto *OutI = dyn_cast<Instruction>(Output))
1702       InsertPt = std::next(OutI->getIterator());
1703     else {
1704       // Globals don't need to be updated, just advance to the next argument.
1705       if (StructValues.contains(Output))
1706         ++AggIdx;
1707       else
1708         ++ScalarAI;
1709       continue;
1710     }
1711 
1712     assert((InsertPt->getFunction() == newFunction ||
1713             Blocks.count(InsertPt->getParent())) &&
1714            "InsertPt should be in new function");
1715 
1716     if (StructValues.contains(Output)) {
1717       assert(AggArg && "Number of aggregate output arguments should match "
1718                        "the number of defined values");
1719       Value *Idx[2];
1720       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1721       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), AggIdx);
1722       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1723           StructArgTy, AggArg, Idx, "gep_" + Output->getName(), InsertPt);
1724       new StoreInst(Output, GEP, InsertPt);
1725       ++AggIdx;
1726     } else {
1727       assert(ScalarAI != newFunction->arg_end() &&
1728              "Number of scalar output arguments should match "
1729              "the number of defined values");
1730       new StoreInst(Output, &*ScalarAI, InsertPt);
1731       ++ScalarAI;
1732     }
1733   }
1734 
1735   if (ExtractedFuncRetVals.empty()) {
1736     // Mark the new function `noreturn` if applicable. Terminators which resume
1737     // exception propagation are treated as returning instructions. This is to
1738     // avoid inserting traps after calls to outlined functions which unwind.
1739     if (none_of(Blocks, [](const BasicBlock *BB) {
1740           const Instruction *Term = BB->getTerminator();
1741           return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1742         }))
1743       newFunction->setDoesNotReturn();
1744   }
1745 }
1746 
1747 CallInst *CodeExtractor::emitReplacerCall(
1748     const ValueSet &inputs, const ValueSet &outputs,
1749     const ValueSet &StructValues, Function *newFunction,
1750     StructType *StructArgTy, Function *oldFunction, BasicBlock *ReplIP,
1751     BlockFrequency EntryFreq, ArrayRef<Value *> LifetimesStart,
1752     std::vector<Value *> &Reloads) {
1753   LLVMContext &Context = oldFunction->getContext();
1754   Module *M = oldFunction->getParent();
1755   const DataLayout &DL = M->getDataLayout();
1756 
1757   // This takes place of the original loop
1758   BasicBlock *codeReplacer =
1759       BasicBlock::Create(Context, "codeRepl", oldFunction, ReplIP);
1760   codeReplacer->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1761   BasicBlock *AllocaBlock =
1762       AllocationBlock ? AllocationBlock : &oldFunction->getEntryBlock();
1763   AllocaBlock->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1764 
1765   // Update the entry count of the function.
1766   if (BFI)
1767     BFI->setBlockFreq(codeReplacer, EntryFreq);
1768 
1769   std::vector<Value *> params;
1770 
1771   // Add inputs as params, or to be filled into the struct
1772   for (Value *input : inputs) {
1773     if (StructValues.contains(input))
1774       continue;
1775 
1776     params.push_back(input);
1777   }
1778 
1779   // Create allocas for the outputs
1780   std::vector<Value *> ReloadOutputs;
1781   for (Value *output : outputs) {
1782     if (StructValues.contains(output))
1783       continue;
1784 
1785     AllocaInst *alloca = new AllocaInst(
1786         output->getType(), DL.getAllocaAddrSpace(), nullptr,
1787         output->getName() + ".loc", AllocaBlock->getFirstInsertionPt());
1788     params.push_back(alloca);
1789     ReloadOutputs.push_back(alloca);
1790   }
1791 
1792   AllocaInst *Struct = nullptr;
1793   if (!StructValues.empty()) {
1794     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1795                             "structArg", AllocaBlock->getFirstInsertionPt());
1796     if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) {
1797       auto *StructSpaceCast = new AddrSpaceCastInst(
1798           Struct, PointerType ::get(Context, 0), "structArg.ascast");
1799       StructSpaceCast->insertAfter(Struct);
1800       params.push_back(StructSpaceCast);
1801     } else {
1802       params.push_back(Struct);
1803     }
1804 
1805     unsigned AggIdx = 0;
1806     for (Value *input : inputs) {
1807       if (!StructValues.contains(input))
1808         continue;
1809 
1810       Value *Idx[2];
1811       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1812       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), AggIdx);
1813       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1814           StructArgTy, Struct, Idx, "gep_" + input->getName());
1815       GEP->insertInto(codeReplacer, codeReplacer->end());
1816       new StoreInst(input, GEP, codeReplacer);
1817 
1818       ++AggIdx;
1819     }
1820   }
1821 
1822   // Emit the call to the function
1823   CallInst *call = CallInst::Create(
1824       newFunction, params, ExtractedFuncRetVals.size() > 1 ? "targetBlock" : "",
1825       codeReplacer);
1826 
1827   // Set swifterror parameter attributes.
1828   unsigned ParamIdx = 0;
1829   unsigned AggIdx = 0;
1830   for (auto input : inputs) {
1831     if (StructValues.contains(input)) {
1832       ++AggIdx;
1833     } else {
1834       if (input->isSwiftError())
1835         call->addParamAttr(ParamIdx, Attribute::SwiftError);
1836       ++ParamIdx;
1837     }
1838   }
1839 
1840   // Add debug location to the new call, if the original function has debug
1841   // info. In that case, the terminator of the entry block of the extracted
1842   // function contains the first debug location of the extracted function,
1843   // set in extractCodeRegion.
1844   if (codeReplacer->getParent()->getSubprogram()) {
1845     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1846       call->setDebugLoc(DL);
1847   }
1848 
1849   // Reload the outputs passed in by reference, use the struct if output is in
1850   // the aggregate or reload from the scalar argument.
1851   for (unsigned i = 0, e = outputs.size(), scalarIdx = 0; i != e; ++i) {
1852     Value *Output = nullptr;
1853     if (StructValues.contains(outputs[i])) {
1854       Value *Idx[2];
1855       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1856       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), AggIdx);
1857       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1858           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1859       GEP->insertInto(codeReplacer, codeReplacer->end());
1860       Output = GEP;
1861       ++AggIdx;
1862     } else {
1863       Output = ReloadOutputs[scalarIdx];
1864       ++scalarIdx;
1865     }
1866     LoadInst *load =
1867         new LoadInst(outputs[i]->getType(), Output,
1868                      outputs[i]->getName() + ".reload", codeReplacer);
1869     Reloads.push_back(load);
1870   }
1871 
1872   // Now we can emit a switch statement using the call as a value.
1873   SwitchInst *TheSwitch =
1874       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1875                          codeReplacer, 0, codeReplacer);
1876   for (auto P : enumerate(ExtractedFuncRetVals)) {
1877     BasicBlock *OldTarget = P.value();
1878     size_t SuccNum = P.index();
1879 
1880     TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), SuccNum),
1881                        OldTarget);
1882   }
1883 
1884   // Now that we've done the deed, simplify the switch instruction.
1885   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1886   switch (ExtractedFuncRetVals.size()) {
1887   case 0:
1888     // There are no successors (the block containing the switch itself), which
1889     // means that previously this was the last part of the function, and hence
1890     // this should be rewritten as a `ret` or `unreachable`.
1891     if (newFunction->doesNotReturn()) {
1892       // If fn is no return, end with an unreachable terminator.
1893       (void)new UnreachableInst(Context, TheSwitch->getIterator());
1894     } else if (OldFnRetTy->isVoidTy()) {
1895       // We have no return value.
1896       ReturnInst::Create(Context, nullptr,
1897                          TheSwitch->getIterator()); // Return void
1898     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1899       // return what we have
1900       ReturnInst::Create(Context, TheSwitch->getCondition(),
1901                          TheSwitch->getIterator());
1902     } else {
1903       // Otherwise we must have code extracted an unwind or something, just
1904       // return whatever we want.
1905       ReturnInst::Create(Context, Constant::getNullValue(OldFnRetTy),
1906                          TheSwitch->getIterator());
1907     }
1908 
1909     TheSwitch->eraseFromParent();
1910     break;
1911   case 1:
1912     // Only a single destination, change the switch into an unconditional
1913     // branch.
1914     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getIterator());
1915     TheSwitch->eraseFromParent();
1916     break;
1917   case 2:
1918     // Only two destinations, convert to a condition branch.
1919     // Remark: This also swaps the target branches:
1920     // 0 -> false -> getSuccessor(2); 1 -> true -> getSuccessor(1)
1921     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1922                        call, TheSwitch->getIterator());
1923     TheSwitch->eraseFromParent();
1924     break;
1925   default:
1926     // Otherwise, make the default destination of the switch instruction be one
1927     // of the other successors.
1928     TheSwitch->setCondition(call);
1929     TheSwitch->setDefaultDest(
1930         TheSwitch->getSuccessor(ExtractedFuncRetVals.size()));
1931     // Remove redundant case
1932     TheSwitch->removeCase(
1933         SwitchInst::CaseIt(TheSwitch, ExtractedFuncRetVals.size() - 1));
1934     break;
1935   }
1936 
1937   // Insert lifetime markers around the reloads of any output values. The
1938   // allocas output values are stored in are only in-use in the codeRepl block.
1939   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1940 
1941   // Replicate the effects of any lifetime start/end markers which referenced
1942   // input objects in the extraction region by placing markers around the call.
1943   insertLifetimeMarkersSurroundingCall(oldFunction->getParent(), LifetimesStart,
1944                                        {}, call);
1945 
1946   return call;
1947 }
1948 
1949 void CodeExtractor::insertReplacerCall(
1950     Function *oldFunction, BasicBlock *header, BasicBlock *codeReplacer,
1951     const ValueSet &outputs, ArrayRef<Value *> Reloads,
1952     const DenseMap<BasicBlock *, BlockFrequency> &ExitWeights) {
1953 
1954   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1955   // within the new function. This must be done before we lose track of which
1956   // blocks were originally in the code region.
1957   std::vector<User *> Users(header->user_begin(), header->user_end());
1958   for (auto &U : Users)
1959     // The BasicBlock which contains the branch is not in the region
1960     // modify the branch target to a new block
1961     if (Instruction *I = dyn_cast<Instruction>(U))
1962       if (I->isTerminator() && I->getFunction() == oldFunction &&
1963           !Blocks.count(I->getParent()))
1964         I->replaceUsesOfWith(header, codeReplacer);
1965 
1966   // When moving the code region it is sufficient to replace all uses to the
1967   // extracted function values. Since the original definition's block
1968   // dominated its use, it will also be dominated by codeReplacer's switch
1969   // which joined multiple exit blocks.
1970   for (BasicBlock *ExitBB : ExtractedFuncRetVals)
1971     for (PHINode &PN : ExitBB->phis()) {
1972       Value *IncomingCodeReplacerVal = nullptr;
1973       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1974         // Ignore incoming values from outside of the extracted region.
1975         if (!Blocks.count(PN.getIncomingBlock(i)))
1976           continue;
1977 
1978         // Ensure that there is only one incoming value from codeReplacer.
1979         if (!IncomingCodeReplacerVal) {
1980           PN.setIncomingBlock(i, codeReplacer);
1981           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1982         } else
1983           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1984                  "PHI has two incompatbile incoming values from codeRepl");
1985       }
1986     }
1987 
1988   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1989     Value *load = Reloads[i];
1990     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1991     for (User *U : Users) {
1992       Instruction *inst = cast<Instruction>(U);
1993       if (inst->getParent()->getParent() == oldFunction)
1994         inst->replaceUsesOfWith(outputs[i], load);
1995     }
1996   }
1997 
1998   // Update the branch weights for the exit block.
1999   if (BFI && ExtractedFuncRetVals.size() > 1)
2000     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
2001 }
2002 
2003 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
2004                                           const Function &NewFunc,
2005                                           AssumptionCache *AC) {
2006   for (auto AssumeVH : AC->assumptions()) {
2007     auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
2008     if (!I)
2009       continue;
2010 
2011     // There shouldn't be any llvm.assume intrinsics in the new function.
2012     if (I->getFunction() != &OldFunc)
2013       return true;
2014 
2015     // There shouldn't be any stale affected values in the assumption cache
2016     // that were previously in the old function, but that have now been moved
2017     // to the new function.
2018     for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
2019       auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
2020       if (!AffectedCI)
2021         continue;
2022       if (AffectedCI->getFunction() != &OldFunc)
2023         return true;
2024       auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
2025       if (AssumedInst->getFunction() != &OldFunc)
2026         return true;
2027     }
2028   }
2029   return false;
2030 }
2031 
2032 void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
2033   ExcludeArgsFromAggregate.insert(Arg);
2034 }
2035