1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/Module.h" 22 #include "llvm/Pass.h" 23 #include "llvm/Analysis/Dominators.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/Verifier.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Compiler.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include <algorithm> 32 #include <set> 33 using namespace llvm; 34 35 // Provide a command-line option to aggregate function arguments into a struct 36 // for functions produced by the code extrator. This is useful when converting 37 // extracted functions to pthread-based code, as only one argument (void*) can 38 // be passed in to pthread_create(). 39 static cl::opt<bool> 40 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 41 cl::desc("Aggregate arguments to code-extracted functions")); 42 43 namespace { 44 class VISIBILITY_HIDDEN CodeExtractor { 45 typedef std::vector<Value*> Values; 46 std::set<BasicBlock*> BlocksToExtract; 47 DominatorSet *DS; 48 bool AggregateArgs; 49 unsigned NumExitBlocks; 50 const Type *RetTy; 51 public: 52 CodeExtractor(DominatorSet *ds = 0, bool AggArgs = false) 53 : DS(ds), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} 54 55 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 56 57 bool isEligible(const std::vector<BasicBlock*> &code); 58 59 private: 60 /// definedInRegion - Return true if the specified value is defined in the 61 /// extracted region. 62 bool definedInRegion(Value *V) const { 63 if (Instruction *I = dyn_cast<Instruction>(V)) 64 if (BlocksToExtract.count(I->getParent())) 65 return true; 66 return false; 67 } 68 69 /// definedInCaller - Return true if the specified value is defined in the 70 /// function being code extracted, but not in the region being extracted. 71 /// These values must be passed in as live-ins to the function. 72 bool definedInCaller(Value *V) const { 73 if (isa<Argument>(V)) return true; 74 if (Instruction *I = dyn_cast<Instruction>(V)) 75 if (!BlocksToExtract.count(I->getParent())) 76 return true; 77 return false; 78 } 79 80 void severSplitPHINodes(BasicBlock *&Header); 81 void splitReturnBlocks(); 82 void findInputsOutputs(Values &inputs, Values &outputs); 83 84 Function *constructFunction(const Values &inputs, 85 const Values &outputs, 86 BasicBlock *header, 87 BasicBlock *newRootNode, BasicBlock *newHeader, 88 Function *oldFunction, Module *M); 89 90 void moveCodeToFunction(Function *newFunction); 91 92 void emitCallAndSwitchStatement(Function *newFunction, 93 BasicBlock *newHeader, 94 Values &inputs, 95 Values &outputs); 96 97 }; 98 } 99 100 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 101 /// region, we need to split the entry block of the region so that the PHI node 102 /// is easier to deal with. 103 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 104 bool HasPredsFromRegion = false; 105 unsigned NumPredsOutsideRegion = 0; 106 107 if (Header != &Header->getParent()->front()) { 108 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 109 if (!PN) return; // No PHI nodes. 110 111 // If the header node contains any PHI nodes, check to see if there is more 112 // than one entry from outside the region. If so, we need to sever the 113 // header block into two. 114 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 115 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 116 HasPredsFromRegion = true; 117 else 118 ++NumPredsOutsideRegion; 119 120 // If there is one (or fewer) predecessor from outside the region, we don't 121 // need to do anything special. 122 if (NumPredsOutsideRegion <= 1) return; 123 } 124 125 // Otherwise, we need to split the header block into two pieces: one 126 // containing PHI nodes merging values from outside of the region, and a 127 // second that contains all of the code for the block and merges back any 128 // incoming values from inside of the region. 129 BasicBlock::iterator AfterPHIs = Header->begin(); 130 while (isa<PHINode>(AfterPHIs)) ++AfterPHIs; 131 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 132 Header->getName()+".ce"); 133 134 // We only want to code extract the second block now, and it becomes the new 135 // header of the region. 136 BasicBlock *OldPred = Header; 137 BlocksToExtract.erase(OldPred); 138 BlocksToExtract.insert(NewBB); 139 Header = NewBB; 140 141 // Okay, update dominator sets. The blocks that dominate the new one are the 142 // blocks that dominate TIBB plus the new block itself. 143 if (DS) { 144 DominatorSet::DomSetType DomSet = DS->getDominators(OldPred); 145 DomSet.insert(NewBB); // A block always dominates itself. 146 DS->addBasicBlock(NewBB, DomSet); 147 148 // Additionally, NewBB dominates all blocks in the function that are 149 // dominated by OldPred. 150 Function *F = Header->getParent(); 151 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) 152 if (DS->properlyDominates(OldPred, I)) 153 DS->addDominator(I, NewBB); 154 } 155 156 // Okay, now we need to adjust the PHI nodes and any branches from within the 157 // region to go to the new header block instead of the old header block. 158 if (HasPredsFromRegion) { 159 PHINode *PN = cast<PHINode>(OldPred->begin()); 160 // Loop over all of the predecessors of OldPred that are in the region, 161 // changing them to branch to NewBB instead. 162 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 163 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 164 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 165 TI->replaceUsesOfWith(OldPred, NewBB); 166 } 167 168 // Okay, everthing within the region is now branching to the right block, we 169 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 170 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 171 PHINode *PN = cast<PHINode>(AfterPHIs); 172 // Create a new PHI node in the new region, which has an incoming value 173 // from OldPred of PN. 174 PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".ce", 175 NewBB->begin()); 176 NewPN->addIncoming(PN, OldPred); 177 178 // Loop over all of the incoming value in PN, moving them to NewPN if they 179 // are from the extracted region. 180 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 181 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 182 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 183 PN->removeIncomingValue(i); 184 --i; 185 } 186 } 187 } 188 } 189 } 190 191 void CodeExtractor::splitReturnBlocks() { 192 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), 193 E = BlocksToExtract.end(); I != E; ++I) 194 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) 195 (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 196 } 197 198 // findInputsOutputs - Find inputs to, outputs from the code region. 199 // 200 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 201 std::set<BasicBlock*> ExitBlocks; 202 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 203 ce = BlocksToExtract.end(); ci != ce; ++ci) { 204 BasicBlock *BB = *ci; 205 206 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 207 // If a used value is defined outside the region, it's an input. If an 208 // instruction is used outside the region, it's an output. 209 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 210 if (definedInCaller(*O)) 211 inputs.push_back(*O); 212 213 // Consider uses of this instruction (outputs). 214 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 215 UI != E; ++UI) 216 if (!definedInRegion(*UI)) { 217 outputs.push_back(I); 218 break; 219 } 220 } // for: insts 221 222 // Keep track of the exit blocks from the region. 223 TerminatorInst *TI = BB->getTerminator(); 224 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 225 if (!BlocksToExtract.count(TI->getSuccessor(i))) 226 ExitBlocks.insert(TI->getSuccessor(i)); 227 } // for: basic blocks 228 229 NumExitBlocks = ExitBlocks.size(); 230 231 // Eliminate duplicates. 232 std::sort(inputs.begin(), inputs.end()); 233 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end()); 234 std::sort(outputs.begin(), outputs.end()); 235 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end()); 236 } 237 238 /// constructFunction - make a function based on inputs and outputs, as follows: 239 /// f(in0, ..., inN, out0, ..., outN) 240 /// 241 Function *CodeExtractor::constructFunction(const Values &inputs, 242 const Values &outputs, 243 BasicBlock *header, 244 BasicBlock *newRootNode, 245 BasicBlock *newHeader, 246 Function *oldFunction, 247 Module *M) { 248 DOUT << "inputs: " << inputs.size() << "\n"; 249 DOUT << "outputs: " << outputs.size() << "\n"; 250 251 // This function returns unsigned, outputs will go back by reference. 252 switch (NumExitBlocks) { 253 case 0: 254 case 1: RetTy = Type::VoidTy; break; 255 case 2: RetTy = Type::Int1Ty; break; 256 default: RetTy = Type::Int16Ty; break; 257 } 258 259 std::vector<const Type*> paramTy; 260 261 // Add the types of the input values to the function's argument list 262 for (Values::const_iterator i = inputs.begin(), 263 e = inputs.end(); i != e; ++i) { 264 const Value *value = *i; 265 DOUT << "value used in func: " << *value << "\n"; 266 paramTy.push_back(value->getType()); 267 } 268 269 // Add the types of the output values to the function's argument list. 270 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 271 I != E; ++I) { 272 DOUT << "instr used in func: " << **I << "\n"; 273 if (AggregateArgs) 274 paramTy.push_back((*I)->getType()); 275 else 276 paramTy.push_back(PointerType::get((*I)->getType())); 277 } 278 279 DOUT << "Function type: " << *RetTy << " f("; 280 for (std::vector<const Type*>::iterator i = paramTy.begin(), 281 e = paramTy.end(); i != e; ++i) 282 DOUT << **i << ", "; 283 DOUT << ")\n"; 284 285 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 286 PointerType *StructPtr = PointerType::get(StructType::get(paramTy)); 287 paramTy.clear(); 288 paramTy.push_back(StructPtr); 289 } 290 const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false); 291 292 // Create the new function 293 Function *newFunction = new Function(funcType, 294 GlobalValue::InternalLinkage, 295 oldFunction->getName() + "_" + 296 header->getName(), M); 297 newFunction->getBasicBlockList().push_back(newRootNode); 298 299 // Create an iterator to name all of the arguments we inserted. 300 Function::arg_iterator AI = newFunction->arg_begin(); 301 302 // Rewrite all users of the inputs in the extracted region to use the 303 // arguments (or appropriate addressing into struct) instead. 304 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 305 Value *RewriteVal; 306 if (AggregateArgs) { 307 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 308 Value *Idx1 = ConstantInt::get(Type::Int32Ty, i); 309 std::string GEPname = "gep_" + inputs[i]->getName(); 310 TerminatorInst *TI = newFunction->begin()->getTerminator(); 311 GetElementPtrInst *GEP = new GetElementPtrInst(AI, Idx0, Idx1, 312 GEPname, TI); 313 RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); 314 } else 315 RewriteVal = AI++; 316 317 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 318 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 319 use != useE; ++use) 320 if (Instruction* inst = dyn_cast<Instruction>(*use)) 321 if (BlocksToExtract.count(inst->getParent())) 322 inst->replaceUsesOfWith(inputs[i], RewriteVal); 323 } 324 325 // Set names for input and output arguments. 326 if (!AggregateArgs) { 327 AI = newFunction->arg_begin(); 328 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 329 AI->setName(inputs[i]->getName()); 330 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 331 AI->setName(outputs[i]->getName()+".out"); 332 } 333 334 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 335 // within the new function. This must be done before we lose track of which 336 // blocks were originally in the code region. 337 std::vector<User*> Users(header->use_begin(), header->use_end()); 338 for (unsigned i = 0, e = Users.size(); i != e; ++i) 339 // The BasicBlock which contains the branch is not in the region 340 // modify the branch target to a new block 341 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 342 if (!BlocksToExtract.count(TI->getParent()) && 343 TI->getParent()->getParent() == oldFunction) 344 TI->replaceUsesOfWith(header, newHeader); 345 346 return newFunction; 347 } 348 349 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 350 /// the call instruction, splitting any PHI nodes in the header block as 351 /// necessary. 352 void CodeExtractor:: 353 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 354 Values &inputs, Values &outputs) { 355 // Emit a call to the new function, passing in: *pointer to struct (if 356 // aggregating parameters), or plan inputs and allocated memory for outputs 357 std::vector<Value*> params, StructValues, ReloadOutputs; 358 359 // Add inputs as params, or to be filled into the struct 360 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 361 if (AggregateArgs) 362 StructValues.push_back(*i); 363 else 364 params.push_back(*i); 365 366 // Create allocas for the outputs 367 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 368 if (AggregateArgs) { 369 StructValues.push_back(*i); 370 } else { 371 AllocaInst *alloca = 372 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 373 codeReplacer->getParent()->begin()->begin()); 374 ReloadOutputs.push_back(alloca); 375 params.push_back(alloca); 376 } 377 } 378 379 AllocaInst *Struct = 0; 380 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 381 std::vector<const Type*> ArgTypes; 382 for (Values::iterator v = StructValues.begin(), 383 ve = StructValues.end(); v != ve; ++v) 384 ArgTypes.push_back((*v)->getType()); 385 386 // Allocate a struct at the beginning of this function 387 Type *StructArgTy = StructType::get(ArgTypes); 388 Struct = 389 new AllocaInst(StructArgTy, 0, "structArg", 390 codeReplacer->getParent()->begin()->begin()); 391 params.push_back(Struct); 392 393 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 394 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 395 Value *Idx1 = ConstantInt::get(Type::Int32Ty, i); 396 GetElementPtrInst *GEP = 397 new GetElementPtrInst(Struct, Idx0, Idx1, 398 "gep_" + StructValues[i]->getName()); 399 codeReplacer->getInstList().push_back(GEP); 400 StoreInst *SI = new StoreInst(StructValues[i], GEP); 401 codeReplacer->getInstList().push_back(SI); 402 } 403 } 404 405 // Emit the call to the function 406 CallInst *call = new CallInst(newFunction, ¶ms[0], params.size(), 407 NumExitBlocks > 1 ? "targetBlock" : ""); 408 codeReplacer->getInstList().push_back(call); 409 410 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 411 unsigned FirstOut = inputs.size(); 412 if (!AggregateArgs) 413 std::advance(OutputArgBegin, inputs.size()); 414 415 // Reload the outputs passed in by reference 416 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 417 Value *Output = 0; 418 if (AggregateArgs) { 419 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 420 Value *Idx1 = ConstantInt::get(Type::Int32Ty, FirstOut + i); 421 GetElementPtrInst *GEP 422 = new GetElementPtrInst(Struct, Idx0, Idx1, 423 "gep_reload_" + outputs[i]->getName()); 424 codeReplacer->getInstList().push_back(GEP); 425 Output = GEP; 426 } else { 427 Output = ReloadOutputs[i]; 428 } 429 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 430 codeReplacer->getInstList().push_back(load); 431 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 432 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 433 Instruction *inst = cast<Instruction>(Users[u]); 434 if (!BlocksToExtract.count(inst->getParent())) 435 inst->replaceUsesOfWith(outputs[i], load); 436 } 437 } 438 439 // Now we can emit a switch statement using the call as a value. 440 SwitchInst *TheSwitch = 441 new SwitchInst(ConstantInt::getNullValue(Type::Int16Ty), 442 codeReplacer, 0, codeReplacer); 443 444 // Since there may be multiple exits from the original region, make the new 445 // function return an unsigned, switch on that number. This loop iterates 446 // over all of the blocks in the extracted region, updating any terminator 447 // instructions in the to-be-extracted region that branch to blocks that are 448 // not in the region to be extracted. 449 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 450 451 unsigned switchVal = 0; 452 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 453 e = BlocksToExtract.end(); i != e; ++i) { 454 TerminatorInst *TI = (*i)->getTerminator(); 455 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 456 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 457 BasicBlock *OldTarget = TI->getSuccessor(i); 458 // add a new basic block which returns the appropriate value 459 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 460 if (!NewTarget) { 461 // If we don't already have an exit stub for this non-extracted 462 // destination, create one now! 463 NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", 464 newFunction); 465 unsigned SuccNum = switchVal++; 466 467 Value *brVal = 0; 468 switch (NumExitBlocks) { 469 case 0: 470 case 1: break; // No value needed. 471 case 2: // Conditional branch, return a bool 472 brVal = ConstantInt::get(Type::Int1Ty, !SuccNum); 473 break; 474 default: 475 brVal = ConstantInt::get(Type::Int16Ty, SuccNum); 476 break; 477 } 478 479 ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); 480 481 // Update the switch instruction. 482 TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum), 483 OldTarget); 484 485 // Restore values just before we exit 486 Function::arg_iterator OAI = OutputArgBegin; 487 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 488 // For an invoke, the normal destination is the only one that is 489 // dominated by the result of the invocation 490 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 491 492 bool DominatesDef = true; 493 494 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 495 DefBlock = Invoke->getNormalDest(); 496 497 // Make sure we are looking at the original successor block, not 498 // at a newly inserted exit block, which won't be in the dominator 499 // info. 500 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 501 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 502 if (DefBlock == I->second) { 503 DefBlock = I->first; 504 break; 505 } 506 507 // In the extract block case, if the block we are extracting ends 508 // with an invoke instruction, make sure that we don't emit a 509 // store of the invoke value for the unwind block. 510 if (!DS && DefBlock != OldTarget) 511 DominatesDef = false; 512 } 513 514 if (DS) 515 DominatesDef = DS->dominates(DefBlock, OldTarget); 516 517 if (DominatesDef) { 518 if (AggregateArgs) { 519 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 520 Value *Idx1 = ConstantInt::get(Type::Int32Ty,FirstOut+out); 521 GetElementPtrInst *GEP = 522 new GetElementPtrInst(OAI, Idx0, Idx1, 523 "gep_" + outputs[out]->getName(), 524 NTRet); 525 new StoreInst(outputs[out], GEP, NTRet); 526 } else { 527 new StoreInst(outputs[out], OAI, NTRet); 528 } 529 } 530 // Advance output iterator even if we don't emit a store 531 if (!AggregateArgs) ++OAI; 532 } 533 } 534 535 // rewrite the original branch instruction with this new target 536 TI->setSuccessor(i, NewTarget); 537 } 538 } 539 540 // Now that we've done the deed, simplify the switch instruction. 541 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 542 switch (NumExitBlocks) { 543 case 0: 544 // There are no successors (the block containing the switch itself), which 545 // means that previously this was the last part of the function, and hence 546 // this should be rewritten as a `ret' 547 548 // Check if the function should return a value 549 if (OldFnRetTy == Type::VoidTy) { 550 new ReturnInst(0, TheSwitch); // Return void 551 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 552 // return what we have 553 new ReturnInst(TheSwitch->getCondition(), TheSwitch); 554 } else { 555 // Otherwise we must have code extracted an unwind or something, just 556 // return whatever we want. 557 new ReturnInst(Constant::getNullValue(OldFnRetTy), TheSwitch); 558 } 559 560 TheSwitch->getParent()->getInstList().erase(TheSwitch); 561 break; 562 case 1: 563 // Only a single destination, change the switch into an unconditional 564 // branch. 565 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch); 566 TheSwitch->getParent()->getInstList().erase(TheSwitch); 567 break; 568 case 2: 569 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 570 call, TheSwitch); 571 TheSwitch->getParent()->getInstList().erase(TheSwitch); 572 break; 573 default: 574 // Otherwise, make the default destination of the switch instruction be one 575 // of the other successors. 576 TheSwitch->setOperand(0, call); 577 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 578 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 579 break; 580 } 581 } 582 583 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 584 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 585 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 586 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 587 588 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 589 e = BlocksToExtract.end(); i != e; ++i) { 590 // Delete the basic block from the old function, and the list of blocks 591 oldBlocks.remove(*i); 592 593 // Insert this basic block into the new function 594 newBlocks.push_back(*i); 595 } 596 } 597 598 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 599 /// new function. Returns pointer to the new function. 600 /// 601 /// algorithm: 602 /// 603 /// find inputs and outputs for the region 604 /// 605 /// for inputs: add to function as args, map input instr* to arg# 606 /// for outputs: add allocas for scalars, 607 /// add to func as args, map output instr* to arg# 608 /// 609 /// rewrite func to use argument #s instead of instr* 610 /// 611 /// for each scalar output in the function: at every exit, store intermediate 612 /// computed result back into memory. 613 /// 614 Function *CodeExtractor:: 615 ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 616 if (!isEligible(code)) 617 return 0; 618 619 // 1) Find inputs, outputs 620 // 2) Construct new function 621 // * Add allocas for defs, pass as args by reference 622 // * Pass in uses as args 623 // 3) Move code region, add call instr to func 624 // 625 BlocksToExtract.insert(code.begin(), code.end()); 626 627 Values inputs, outputs; 628 629 // Assumption: this is a single-entry code region, and the header is the first 630 // block in the region. 631 BasicBlock *header = code[0]; 632 633 for (unsigned i = 1, e = code.size(); i != e; ++i) 634 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 635 PI != E; ++PI) 636 assert(BlocksToExtract.count(*PI) && 637 "No blocks in this region may have entries from outside the region" 638 " except for the first block!"); 639 640 // If we have to split PHI nodes or the entry block, do so now. 641 severSplitPHINodes(header); 642 643 // If we have any return instructions in the region, split those blocks so 644 // that the return is not in the region. 645 splitReturnBlocks(); 646 647 Function *oldFunction = header->getParent(); 648 649 // This takes place of the original loop 650 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction, header); 651 652 // The new function needs a root node because other nodes can branch to the 653 // head of the region, but the entry node of a function cannot have preds. 654 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 655 newFuncRoot->getInstList().push_back(new BranchInst(header)); 656 657 // Find inputs to, outputs from the code region. 658 findInputsOutputs(inputs, outputs); 659 660 // Construct new function based on inputs/outputs & add allocas for all defs. 661 Function *newFunction = constructFunction(inputs, outputs, header, 662 newFuncRoot, 663 codeReplacer, oldFunction, 664 oldFunction->getParent()); 665 666 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 667 668 moveCodeToFunction(newFunction); 669 670 // Loop over all of the PHI nodes in the header block, and change any 671 // references to the old incoming edge to be the new incoming edge. 672 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 673 PHINode *PN = cast<PHINode>(I); 674 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 675 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 676 PN->setIncomingBlock(i, newFuncRoot); 677 } 678 679 // Look at all successors of the codeReplacer block. If any of these blocks 680 // had PHI nodes in them, we need to update the "from" block to be the code 681 // replacer, not the original block in the extracted region. 682 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 683 succ_end(codeReplacer)); 684 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 685 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 686 PHINode *PN = cast<PHINode>(I); 687 std::set<BasicBlock*> ProcessedPreds; 688 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 689 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 690 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 691 PN->setIncomingBlock(i, codeReplacer); 692 else { 693 // There were multiple entries in the PHI for this block, now there 694 // is only one, so remove the duplicated entries. 695 PN->removeIncomingValue(i, false); 696 --i; --e; 697 } 698 } 699 700 //cerr << "NEW FUNCTION: " << *newFunction; 701 // verifyFunction(*newFunction); 702 703 // cerr << "OLD FUNCTION: " << *oldFunction; 704 // verifyFunction(*oldFunction); 705 706 DEBUG(if (verifyFunction(*newFunction)) abort()); 707 return newFunction; 708 } 709 710 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 711 // Deny code region if it contains allocas or vastarts. 712 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 713 BB != e; ++BB) 714 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 715 I != Ie; ++I) 716 if (isa<AllocaInst>(*I)) 717 return false; 718 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 719 if (const Function *F = CI->getCalledFunction()) 720 if (F->getIntrinsicID() == Intrinsic::vastart) 721 return false; 722 return true; 723 } 724 725 726 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 727 /// function 728 /// 729 Function* llvm::ExtractCodeRegion(DominatorSet &DS, 730 const std::vector<BasicBlock*> &code, 731 bool AggregateArgs) { 732 return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(code); 733 } 734 735 /// ExtractBasicBlock - slurp a natural loop into a brand new function 736 /// 737 Function* llvm::ExtractLoop(DominatorSet &DS, Loop *L, bool AggregateArgs) { 738 return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 739 } 740 741 /// ExtractBasicBlock - slurp a basic block into a brand new function 742 /// 743 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 744 std::vector<BasicBlock*> Blocks; 745 Blocks.push_back(BB); 746 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 747 } 748