xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision 95b981ca2ae3915464a63d42eb53b0dde4a88227)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/InstIterator.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/Verifier.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include <cassert>
66 #include <cstdint>
67 #include <iterator>
68 #include <map>
69 #include <set>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 using namespace llvm::PatternMatch;
75 using ProfileCount = Function::ProfileCount;
76 
77 #define DEBUG_TYPE "code-extractor"
78 
79 // Provide a command-line option to aggregate function arguments into a struct
80 // for functions produced by the code extractor. This is useful when converting
81 // extracted functions to pthread-based code, as only one argument (void*) can
82 // be passed in to pthread_create().
83 static cl::opt<bool>
84 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
85                  cl::desc("Aggregate arguments to code-extracted functions"));
86 
87 /// Test whether a block is valid for extraction.
88 static bool isBlockValidForExtraction(const BasicBlock &BB,
89                                       const SetVector<BasicBlock *> &Result,
90                                       bool AllowVarArgs, bool AllowAlloca) {
91   // taking the address of a basic block moved to another function is illegal
92   if (BB.hasAddressTaken())
93     return false;
94 
95   // don't hoist code that uses another basicblock address, as it's likely to
96   // lead to unexpected behavior, like cross-function jumps
97   SmallPtrSet<User const *, 16> Visited;
98   SmallVector<User const *, 16> ToVisit;
99 
100   for (Instruction const &Inst : BB)
101     ToVisit.push_back(&Inst);
102 
103   while (!ToVisit.empty()) {
104     User const *Curr = ToVisit.pop_back_val();
105     if (!Visited.insert(Curr).second)
106       continue;
107     if (isa<BlockAddress const>(Curr))
108       return false; // even a reference to self is likely to be not compatible
109 
110     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
111       continue;
112 
113     for (auto const &U : Curr->operands()) {
114       if (auto *UU = dyn_cast<User>(U))
115         ToVisit.push_back(UU);
116     }
117   }
118 
119   // If explicitly requested, allow vastart and alloca. For invoke instructions
120   // verify that extraction is valid.
121   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
122     if (isa<AllocaInst>(I)) {
123        if (!AllowAlloca)
124          return false;
125        continue;
126     }
127 
128     if (const auto *II = dyn_cast<InvokeInst>(I)) {
129       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
130       // must be a part of the subgraph which is being extracted.
131       if (auto *UBB = II->getUnwindDest())
132         if (!Result.count(UBB))
133           return false;
134       continue;
135     }
136 
137     // All catch handlers of a catchswitch instruction as well as the unwind
138     // destination must be in the subgraph.
139     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
140       if (auto *UBB = CSI->getUnwindDest())
141         if (!Result.count(UBB))
142           return false;
143       for (auto *HBB : CSI->handlers())
144         if (!Result.count(const_cast<BasicBlock*>(HBB)))
145           return false;
146       continue;
147     }
148 
149     // Make sure that entire catch handler is within subgraph. It is sufficient
150     // to check that catch return's block is in the list.
151     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
152       for (const auto *U : CPI->users())
153         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
154           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
155             return false;
156       continue;
157     }
158 
159     // And do similar checks for cleanup handler - the entire handler must be
160     // in subgraph which is going to be extracted. For cleanup return should
161     // additionally check that the unwind destination is also in the subgraph.
162     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
163       for (const auto *U : CPI->users())
164         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
165           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
166             return false;
167       continue;
168     }
169     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
170       if (auto *UBB = CRI->getUnwindDest())
171         if (!Result.count(UBB))
172           return false;
173       continue;
174     }
175 
176     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
177       if (const Function *F = CI->getCalledFunction()) {
178         auto IID = F->getIntrinsicID();
179         if (IID == Intrinsic::vastart) {
180           if (AllowVarArgs)
181             continue;
182           else
183             return false;
184         }
185 
186         // Currently, we miscompile outlined copies of eh_typid_for. There are
187         // proposals for fixing this in llvm.org/PR39545.
188         if (IID == Intrinsic::eh_typeid_for)
189           return false;
190       }
191     }
192   }
193 
194   return true;
195 }
196 
197 /// Build a set of blocks to extract if the input blocks are viable.
198 static SetVector<BasicBlock *>
199 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
200                         bool AllowVarArgs, bool AllowAlloca) {
201   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
202   SetVector<BasicBlock *> Result;
203 
204   // Loop over the blocks, adding them to our set-vector, and aborting with an
205   // empty set if we encounter invalid blocks.
206   for (BasicBlock *BB : BBs) {
207     // If this block is dead, don't process it.
208     if (DT && !DT->isReachableFromEntry(BB))
209       continue;
210 
211     if (!Result.insert(BB))
212       llvm_unreachable("Repeated basic blocks in extraction input");
213   }
214 
215   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
216                     << '\n');
217 
218   for (auto *BB : Result) {
219     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
220       return {};
221 
222     // Make sure that the first block is not a landing pad.
223     if (BB == Result.front()) {
224       if (BB->isEHPad()) {
225         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
226         return {};
227       }
228       continue;
229     }
230 
231     // All blocks other than the first must not have predecessors outside of
232     // the subgraph which is being extracted.
233     for (auto *PBB : predecessors(BB))
234       if (!Result.count(PBB)) {
235         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
236                              "outside the region except for the first block!\n"
237                           << "Problematic source BB: " << BB->getName() << "\n"
238                           << "Problematic destination BB: " << PBB->getName()
239                           << "\n");
240         return {};
241       }
242   }
243 
244   return Result;
245 }
246 
247 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
248                              bool AggregateArgs, BlockFrequencyInfo *BFI,
249                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
250                              bool AllowVarArgs, bool AllowAlloca,
251                              std::string Suffix)
252     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
253       BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
254       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
255       Suffix(Suffix) {}
256 
257 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
258                              BlockFrequencyInfo *BFI,
259                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
260                              std::string Suffix)
261     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
262       BPI(BPI), AC(AC), AllowVarArgs(false),
263       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
264                                      /* AllowVarArgs */ false,
265                                      /* AllowAlloca */ false)),
266       Suffix(Suffix) {}
267 
268 /// definedInRegion - Return true if the specified value is defined in the
269 /// extracted region.
270 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
271   if (Instruction *I = dyn_cast<Instruction>(V))
272     if (Blocks.count(I->getParent()))
273       return true;
274   return false;
275 }
276 
277 /// definedInCaller - Return true if the specified value is defined in the
278 /// function being code extracted, but not in the region being extracted.
279 /// These values must be passed in as live-ins to the function.
280 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
281   if (isa<Argument>(V)) return true;
282   if (Instruction *I = dyn_cast<Instruction>(V))
283     if (!Blocks.count(I->getParent()))
284       return true;
285   return false;
286 }
287 
288 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
289   BasicBlock *CommonExitBlock = nullptr;
290   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
291     for (auto *Succ : successors(Block)) {
292       // Internal edges, ok.
293       if (Blocks.count(Succ))
294         continue;
295       if (!CommonExitBlock) {
296         CommonExitBlock = Succ;
297         continue;
298       }
299       if (CommonExitBlock != Succ)
300         return true;
301     }
302     return false;
303   };
304 
305   if (any_of(Blocks, hasNonCommonExitSucc))
306     return nullptr;
307 
308   return CommonExitBlock;
309 }
310 
311 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
312   for (BasicBlock &BB : F) {
313     for (Instruction &II : BB.instructionsWithoutDebug())
314       if (auto *AI = dyn_cast<AllocaInst>(&II))
315         Allocas.push_back(AI);
316 
317     findSideEffectInfoForBlock(BB);
318   }
319 }
320 
321 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
322   for (Instruction &II : BB.instructionsWithoutDebug()) {
323     unsigned Opcode = II.getOpcode();
324     Value *MemAddr = nullptr;
325     switch (Opcode) {
326     case Instruction::Store:
327     case Instruction::Load: {
328       if (Opcode == Instruction::Store) {
329         StoreInst *SI = cast<StoreInst>(&II);
330         MemAddr = SI->getPointerOperand();
331       } else {
332         LoadInst *LI = cast<LoadInst>(&II);
333         MemAddr = LI->getPointerOperand();
334       }
335       // Global variable can not be aliased with locals.
336       if (isa<Constant>(MemAddr))
337         break;
338       Value *Base = MemAddr->stripInBoundsConstantOffsets();
339       if (!isa<AllocaInst>(Base)) {
340         SideEffectingBlocks.insert(&BB);
341         return;
342       }
343       BaseMemAddrs[&BB].insert(Base);
344       break;
345     }
346     default: {
347       IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
348       if (IntrInst) {
349         if (IntrInst->isLifetimeStartOrEnd())
350           break;
351         SideEffectingBlocks.insert(&BB);
352         return;
353       }
354       // Treat all the other cases conservatively if it has side effects.
355       if (II.mayHaveSideEffects()) {
356         SideEffectingBlocks.insert(&BB);
357         return;
358       }
359     }
360     }
361   }
362 }
363 
364 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
365     BasicBlock &BB, AllocaInst *Addr) const {
366   if (SideEffectingBlocks.count(&BB))
367     return true;
368   auto It = BaseMemAddrs.find(&BB);
369   if (It != BaseMemAddrs.end())
370     return It->second.count(Addr);
371   return false;
372 }
373 
374 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
375     const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
376   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
377   Function *Func = (*Blocks.begin())->getParent();
378   for (BasicBlock &BB : *Func) {
379     if (Blocks.count(&BB))
380       continue;
381     if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
382       return false;
383   }
384   return true;
385 }
386 
387 BasicBlock *
388 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
389   BasicBlock *SinglePredFromOutlineRegion = nullptr;
390   assert(!Blocks.count(CommonExitBlock) &&
391          "Expect a block outside the region!");
392   for (auto *Pred : predecessors(CommonExitBlock)) {
393     if (!Blocks.count(Pred))
394       continue;
395     if (!SinglePredFromOutlineRegion) {
396       SinglePredFromOutlineRegion = Pred;
397     } else if (SinglePredFromOutlineRegion != Pred) {
398       SinglePredFromOutlineRegion = nullptr;
399       break;
400     }
401   }
402 
403   if (SinglePredFromOutlineRegion)
404     return SinglePredFromOutlineRegion;
405 
406 #ifndef NDEBUG
407   auto getFirstPHI = [](BasicBlock *BB) {
408     BasicBlock::iterator I = BB->begin();
409     PHINode *FirstPhi = nullptr;
410     while (I != BB->end()) {
411       PHINode *Phi = dyn_cast<PHINode>(I);
412       if (!Phi)
413         break;
414       if (!FirstPhi) {
415         FirstPhi = Phi;
416         break;
417       }
418     }
419     return FirstPhi;
420   };
421   // If there are any phi nodes, the single pred either exists or has already
422   // be created before code extraction.
423   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
424 #endif
425 
426   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
427       CommonExitBlock->getFirstNonPHI()->getIterator());
428 
429   for (BasicBlock *Pred :
430        llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
431     if (Blocks.count(Pred))
432       continue;
433     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
434   }
435   // Now add the old exit block to the outline region.
436   Blocks.insert(CommonExitBlock);
437   OldTargets.push_back(NewExitBlock);
438   return CommonExitBlock;
439 }
440 
441 // Find the pair of life time markers for address 'Addr' that are either
442 // defined inside the outline region or can legally be shrinkwrapped into the
443 // outline region. If there are not other untracked uses of the address, return
444 // the pair of markers if found; otherwise return a pair of nullptr.
445 CodeExtractor::LifetimeMarkerInfo
446 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
447                                   Instruction *Addr,
448                                   BasicBlock *ExitBlock) const {
449   LifetimeMarkerInfo Info;
450 
451   for (User *U : Addr->users()) {
452     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
453     if (IntrInst) {
454       // We don't model addresses with multiple start/end markers, but the
455       // markers do not need to be in the region.
456       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
457         if (Info.LifeStart)
458           return {};
459         Info.LifeStart = IntrInst;
460         continue;
461       }
462       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
463         if (Info.LifeEnd)
464           return {};
465         Info.LifeEnd = IntrInst;
466         continue;
467       }
468       // At this point, permit debug uses outside of the region.
469       // This is fixed in a later call to fixupDebugInfoPostExtraction().
470       if (isa<DbgInfoIntrinsic>(IntrInst))
471         continue;
472     }
473     // Find untracked uses of the address, bail.
474     if (!definedInRegion(Blocks, U))
475       return {};
476   }
477 
478   if (!Info.LifeStart || !Info.LifeEnd)
479     return {};
480 
481   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
482   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
483   // Do legality check.
484   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
485       !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
486     return {};
487 
488   // Check to see if we have a place to do hoisting, if not, bail.
489   if (Info.HoistLifeEnd && !ExitBlock)
490     return {};
491 
492   return Info;
493 }
494 
495 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
496                                 ValueSet &SinkCands, ValueSet &HoistCands,
497                                 BasicBlock *&ExitBlock) const {
498   Function *Func = (*Blocks.begin())->getParent();
499   ExitBlock = getCommonExitBlock(Blocks);
500 
501   auto moveOrIgnoreLifetimeMarkers =
502       [&](const LifetimeMarkerInfo &LMI) -> bool {
503     if (!LMI.LifeStart)
504       return false;
505     if (LMI.SinkLifeStart) {
506       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
507                         << "\n");
508       SinkCands.insert(LMI.LifeStart);
509     }
510     if (LMI.HoistLifeEnd) {
511       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
512       HoistCands.insert(LMI.LifeEnd);
513     }
514     return true;
515   };
516 
517   // Look up allocas in the original function in CodeExtractorAnalysisCache, as
518   // this is much faster than walking all the instructions.
519   for (AllocaInst *AI : CEAC.getAllocas()) {
520     BasicBlock *BB = AI->getParent();
521     if (Blocks.count(BB))
522       continue;
523 
524     // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
525     // check whether it is actually still in the original function.
526     Function *AIFunc = BB->getParent();
527     if (AIFunc != Func)
528       continue;
529 
530     LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
531     bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
532     if (Moved) {
533       LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
534       SinkCands.insert(AI);
535       continue;
536     }
537 
538     // Find bitcasts in the outlined region that have lifetime marker users
539     // outside that region. Replace the lifetime marker use with an
540     // outside region bitcast to avoid unnecessary alloca/reload instructions
541     // and extra lifetime markers.
542     SmallVector<Instruction *, 2> LifetimeBitcastUsers;
543     for (User *U : AI->users()) {
544       if (!definedInRegion(Blocks, U))
545         continue;
546 
547       if (U->stripInBoundsConstantOffsets() != AI)
548         continue;
549 
550       Instruction *Bitcast = cast<Instruction>(U);
551       for (User *BU : Bitcast->users()) {
552         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
553         if (!IntrInst)
554           continue;
555 
556         if (!IntrInst->isLifetimeStartOrEnd())
557           continue;
558 
559         if (definedInRegion(Blocks, IntrInst))
560           continue;
561 
562         LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
563                           << *Bitcast << " in out-of-region lifetime marker "
564                           << *IntrInst << "\n");
565         LifetimeBitcastUsers.push_back(IntrInst);
566       }
567     }
568 
569     for (Instruction *I : LifetimeBitcastUsers) {
570       Module *M = AIFunc->getParent();
571       LLVMContext &Ctx = M->getContext();
572       auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
573       CastInst *CastI =
574           CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I);
575       I->replaceUsesOfWith(I->getOperand(1), CastI);
576     }
577 
578     // Follow any bitcasts.
579     SmallVector<Instruction *, 2> Bitcasts;
580     SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
581     for (User *U : AI->users()) {
582       if (U->stripInBoundsConstantOffsets() == AI) {
583         Instruction *Bitcast = cast<Instruction>(U);
584         LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
585         if (LMI.LifeStart) {
586           Bitcasts.push_back(Bitcast);
587           BitcastLifetimeInfo.push_back(LMI);
588           continue;
589         }
590       }
591 
592       // Found unknown use of AI.
593       if (!definedInRegion(Blocks, U)) {
594         Bitcasts.clear();
595         break;
596       }
597     }
598 
599     // Either no bitcasts reference the alloca or there are unknown uses.
600     if (Bitcasts.empty())
601       continue;
602 
603     LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
604     SinkCands.insert(AI);
605     for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
606       Instruction *BitcastAddr = Bitcasts[I];
607       const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
608       assert(LMI.LifeStart &&
609              "Unsafe to sink bitcast without lifetime markers");
610       moveOrIgnoreLifetimeMarkers(LMI);
611       if (!definedInRegion(Blocks, BitcastAddr)) {
612         LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
613                           << "\n");
614         SinkCands.insert(BitcastAddr);
615       }
616     }
617   }
618 }
619 
620 bool CodeExtractor::isEligible() const {
621   if (Blocks.empty())
622     return false;
623   BasicBlock *Header = *Blocks.begin();
624   Function *F = Header->getParent();
625 
626   // For functions with varargs, check that varargs handling is only done in the
627   // outlined function, i.e vastart and vaend are only used in outlined blocks.
628   if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
629     auto containsVarArgIntrinsic = [](const Instruction &I) {
630       if (const CallInst *CI = dyn_cast<CallInst>(&I))
631         if (const Function *Callee = CI->getCalledFunction())
632           return Callee->getIntrinsicID() == Intrinsic::vastart ||
633                  Callee->getIntrinsicID() == Intrinsic::vaend;
634       return false;
635     };
636 
637     for (auto &BB : *F) {
638       if (Blocks.count(&BB))
639         continue;
640       if (llvm::any_of(BB, containsVarArgIntrinsic))
641         return false;
642     }
643   }
644   return true;
645 }
646 
647 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
648                                       const ValueSet &SinkCands) const {
649   for (BasicBlock *BB : Blocks) {
650     // If a used value is defined outside the region, it's an input.  If an
651     // instruction is used outside the region, it's an output.
652     for (Instruction &II : *BB) {
653       for (auto &OI : II.operands()) {
654         Value *V = OI;
655         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
656           Inputs.insert(V);
657       }
658 
659       for (User *U : II.users())
660         if (!definedInRegion(Blocks, U)) {
661           Outputs.insert(&II);
662           break;
663         }
664     }
665   }
666 }
667 
668 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
669 /// of the region, we need to split the entry block of the region so that the
670 /// PHI node is easier to deal with.
671 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
672   unsigned NumPredsFromRegion = 0;
673   unsigned NumPredsOutsideRegion = 0;
674 
675   if (Header != &Header->getParent()->getEntryBlock()) {
676     PHINode *PN = dyn_cast<PHINode>(Header->begin());
677     if (!PN) return;  // No PHI nodes.
678 
679     // If the header node contains any PHI nodes, check to see if there is more
680     // than one entry from outside the region.  If so, we need to sever the
681     // header block into two.
682     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
683       if (Blocks.count(PN->getIncomingBlock(i)))
684         ++NumPredsFromRegion;
685       else
686         ++NumPredsOutsideRegion;
687 
688     // If there is one (or fewer) predecessor from outside the region, we don't
689     // need to do anything special.
690     if (NumPredsOutsideRegion <= 1) return;
691   }
692 
693   // Otherwise, we need to split the header block into two pieces: one
694   // containing PHI nodes merging values from outside of the region, and a
695   // second that contains all of the code for the block and merges back any
696   // incoming values from inside of the region.
697   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
698 
699   // We only want to code extract the second block now, and it becomes the new
700   // header of the region.
701   BasicBlock *OldPred = Header;
702   Blocks.remove(OldPred);
703   Blocks.insert(NewBB);
704   Header = NewBB;
705 
706   // Okay, now we need to adjust the PHI nodes and any branches from within the
707   // region to go to the new header block instead of the old header block.
708   if (NumPredsFromRegion) {
709     PHINode *PN = cast<PHINode>(OldPred->begin());
710     // Loop over all of the predecessors of OldPred that are in the region,
711     // changing them to branch to NewBB instead.
712     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
713       if (Blocks.count(PN->getIncomingBlock(i))) {
714         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
715         TI->replaceUsesOfWith(OldPred, NewBB);
716       }
717 
718     // Okay, everything within the region is now branching to the right block, we
719     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
720     BasicBlock::iterator AfterPHIs;
721     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
722       PHINode *PN = cast<PHINode>(AfterPHIs);
723       // Create a new PHI node in the new region, which has an incoming value
724       // from OldPred of PN.
725       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
726                                        PN->getName() + ".ce", &NewBB->front());
727       PN->replaceAllUsesWith(NewPN);
728       NewPN->addIncoming(PN, OldPred);
729 
730       // Loop over all of the incoming value in PN, moving them to NewPN if they
731       // are from the extracted region.
732       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
733         if (Blocks.count(PN->getIncomingBlock(i))) {
734           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
735           PN->removeIncomingValue(i);
736           --i;
737         }
738       }
739     }
740   }
741 }
742 
743 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
744 /// outlined region, we split these PHIs on two: one with inputs from region
745 /// and other with remaining incoming blocks; then first PHIs are placed in
746 /// outlined region.
747 void CodeExtractor::severSplitPHINodesOfExits(
748     const SmallPtrSetImpl<BasicBlock *> &Exits) {
749   for (BasicBlock *ExitBB : Exits) {
750     BasicBlock *NewBB = nullptr;
751 
752     for (PHINode &PN : ExitBB->phis()) {
753       // Find all incoming values from the outlining region.
754       SmallVector<unsigned, 2> IncomingVals;
755       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
756         if (Blocks.count(PN.getIncomingBlock(i)))
757           IncomingVals.push_back(i);
758 
759       // Do not process PHI if there is one (or fewer) predecessor from region.
760       // If PHI has exactly one predecessor from region, only this one incoming
761       // will be replaced on codeRepl block, so it should be safe to skip PHI.
762       if (IncomingVals.size() <= 1)
763         continue;
764 
765       // Create block for new PHIs and add it to the list of outlined if it
766       // wasn't done before.
767       if (!NewBB) {
768         NewBB = BasicBlock::Create(ExitBB->getContext(),
769                                    ExitBB->getName() + ".split",
770                                    ExitBB->getParent(), ExitBB);
771         SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
772         for (BasicBlock *PredBB : Preds)
773           if (Blocks.count(PredBB))
774             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
775         BranchInst::Create(ExitBB, NewBB);
776         Blocks.insert(NewBB);
777       }
778 
779       // Split this PHI.
780       PHINode *NewPN =
781           PHINode::Create(PN.getType(), IncomingVals.size(),
782                           PN.getName() + ".ce", NewBB->getFirstNonPHI());
783       for (unsigned i : IncomingVals)
784         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
785       for (unsigned i : reverse(IncomingVals))
786         PN.removeIncomingValue(i, false);
787       PN.addIncoming(NewPN, NewBB);
788     }
789   }
790 }
791 
792 void CodeExtractor::splitReturnBlocks() {
793   for (BasicBlock *Block : Blocks)
794     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
795       BasicBlock *New =
796           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
797       if (DT) {
798         // Old dominates New. New node dominates all other nodes dominated
799         // by Old.
800         DomTreeNode *OldNode = DT->getNode(Block);
801         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
802                                                OldNode->end());
803 
804         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
805 
806         for (DomTreeNode *I : Children)
807           DT->changeImmediateDominator(I, NewNode);
808       }
809     }
810 }
811 
812 /// constructFunction - make a function based on inputs and outputs, as follows:
813 /// f(in0, ..., inN, out0, ..., outN)
814 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
815                                            const ValueSet &outputs,
816                                            BasicBlock *header,
817                                            BasicBlock *newRootNode,
818                                            BasicBlock *newHeader,
819                                            Function *oldFunction,
820                                            Module *M) {
821   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
822   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
823 
824   // This function returns unsigned, outputs will go back by reference.
825   switch (NumExitBlocks) {
826   case 0:
827   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
828   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
829   default: RetTy = Type::getInt16Ty(header->getContext()); break;
830   }
831 
832   std::vector<Type *> ParamTy;
833   std::vector<Type *> AggParamTy;
834   ValueSet StructValues;
835 
836   // Add the types of the input values to the function's argument list
837   for (Value *value : inputs) {
838     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
839     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
840       AggParamTy.push_back(value->getType());
841       StructValues.insert(value);
842     } else
843       ParamTy.push_back(value->getType());
844   }
845 
846   // Add the types of the output values to the function's argument list.
847   for (Value *output : outputs) {
848     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
849     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
850       AggParamTy.push_back(output->getType());
851       StructValues.insert(output);
852     } else
853       ParamTy.push_back(PointerType::getUnqual(output->getType()));
854   }
855 
856   assert(
857       (ParamTy.size() + AggParamTy.size()) ==
858           (inputs.size() + outputs.size()) &&
859       "Number of scalar and aggregate params does not match inputs, outputs");
860   assert(StructValues.empty() ||
861          AggregateArgs && "Expeced StructValues only with AggregateArgs set");
862 
863   // Concatenate scalar and aggregate params in ParamTy.
864   size_t NumScalarParams = ParamTy.size();
865   StructType *StructTy = nullptr;
866   if (AggregateArgs && !AggParamTy.empty()) {
867     StructTy = StructType::get(M->getContext(), AggParamTy);
868     ParamTy.push_back(PointerType::getUnqual(StructTy));
869   }
870 
871   LLVM_DEBUG({
872     dbgs() << "Function type: " << *RetTy << " f(";
873     for (Type *i : ParamTy)
874       dbgs() << *i << ", ";
875     dbgs() << ")\n";
876   });
877 
878   FunctionType *funcType = FunctionType::get(
879       RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
880 
881   std::string SuffixToUse =
882       Suffix.empty()
883           ? (header->getName().empty() ? "extracted" : header->getName().str())
884           : Suffix;
885   // Create the new function
886   Function *newFunction = Function::Create(
887       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
888       oldFunction->getName() + "." + SuffixToUse, M);
889 
890   // Inherit all of the target dependent attributes and white-listed
891   // target independent attributes.
892   //  (e.g. If the extracted region contains a call to an x86.sse
893   //  instruction we need to make sure that the extracted region has the
894   //  "target-features" attribute allowing it to be lowered.
895   // FIXME: This should be changed to check to see if a specific
896   //           attribute can not be inherited.
897   for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
898     if (Attr.isStringAttribute()) {
899       if (Attr.getKindAsString() == "thunk")
900         continue;
901     } else
902       switch (Attr.getKindAsEnum()) {
903       // Those attributes cannot be propagated safely. Explicitly list them
904       // here so we get a warning if new attributes are added.
905       case Attribute::AllocSize:
906       case Attribute::ArgMemOnly:
907       case Attribute::Builtin:
908       case Attribute::Convergent:
909       case Attribute::InaccessibleMemOnly:
910       case Attribute::InaccessibleMemOrArgMemOnly:
911       case Attribute::JumpTable:
912       case Attribute::Naked:
913       case Attribute::NoBuiltin:
914       case Attribute::NoMerge:
915       case Attribute::NoReturn:
916       case Attribute::NoSync:
917       case Attribute::ReadNone:
918       case Attribute::ReadOnly:
919       case Attribute::ReturnsTwice:
920       case Attribute::Speculatable:
921       case Attribute::StackAlignment:
922       case Attribute::WillReturn:
923       case Attribute::WriteOnly:
924         continue;
925       // Those attributes should be safe to propagate to the extracted function.
926       case Attribute::AlwaysInline:
927       case Attribute::Cold:
928       case Attribute::DisableSanitizerInstrumentation:
929       case Attribute::Hot:
930       case Attribute::NoRecurse:
931       case Attribute::InlineHint:
932       case Attribute::MinSize:
933       case Attribute::NoCallback:
934       case Attribute::NoDuplicate:
935       case Attribute::NoFree:
936       case Attribute::NoImplicitFloat:
937       case Attribute::NoInline:
938       case Attribute::NonLazyBind:
939       case Attribute::NoRedZone:
940       case Attribute::NoUnwind:
941       case Attribute::NoSanitizeCoverage:
942       case Attribute::NullPointerIsValid:
943       case Attribute::OptForFuzzing:
944       case Attribute::OptimizeNone:
945       case Attribute::OptimizeForSize:
946       case Attribute::SafeStack:
947       case Attribute::ShadowCallStack:
948       case Attribute::SanitizeAddress:
949       case Attribute::SanitizeMemory:
950       case Attribute::SanitizeThread:
951       case Attribute::SanitizeHWAddress:
952       case Attribute::SanitizeMemTag:
953       case Attribute::SpeculativeLoadHardening:
954       case Attribute::StackProtect:
955       case Attribute::StackProtectReq:
956       case Attribute::StackProtectStrong:
957       case Attribute::StrictFP:
958       case Attribute::UWTable:
959       case Attribute::VScaleRange:
960       case Attribute::NoCfCheck:
961       case Attribute::MustProgress:
962       case Attribute::NoProfile:
963         break;
964       // These attributes cannot be applied to functions.
965       case Attribute::Alignment:
966       case Attribute::ByVal:
967       case Attribute::Dereferenceable:
968       case Attribute::DereferenceableOrNull:
969       case Attribute::ElementType:
970       case Attribute::InAlloca:
971       case Attribute::InReg:
972       case Attribute::Nest:
973       case Attribute::NoAlias:
974       case Attribute::NoCapture:
975       case Attribute::NoUndef:
976       case Attribute::NonNull:
977       case Attribute::Preallocated:
978       case Attribute::Returned:
979       case Attribute::SExt:
980       case Attribute::StructRet:
981       case Attribute::SwiftError:
982       case Attribute::SwiftSelf:
983       case Attribute::SwiftAsync:
984       case Attribute::ZExt:
985       case Attribute::ImmArg:
986       case Attribute::ByRef:
987       //  These are not really attributes.
988       case Attribute::None:
989       case Attribute::EndAttrKinds:
990       case Attribute::EmptyKey:
991       case Attribute::TombstoneKey:
992         llvm_unreachable("Not a function attribute");
993       }
994 
995     newFunction->addFnAttr(Attr);
996   }
997   newFunction->getBasicBlockList().push_back(newRootNode);
998 
999   // Create scalar and aggregate iterators to name all of the arguments we
1000   // inserted.
1001   Function::arg_iterator ScalarAI = newFunction->arg_begin();
1002   Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1003 
1004   // Rewrite all users of the inputs in the extracted region to use the
1005   // arguments (or appropriate addressing into struct) instead.
1006   for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1007     Value *RewriteVal;
1008     if (AggregateArgs && StructValues.contains(inputs[i])) {
1009       Value *Idx[2];
1010       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1011       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1012       Instruction *TI = newFunction->begin()->getTerminator();
1013       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1014           StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1015       RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1016                                 "loadgep_" + inputs[i]->getName(), TI);
1017       ++aggIdx;
1018     } else
1019       RewriteVal = &*ScalarAI++;
1020 
1021     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1022     for (User *use : Users)
1023       if (Instruction *inst = dyn_cast<Instruction>(use))
1024         if (Blocks.count(inst->getParent()))
1025           inst->replaceUsesOfWith(inputs[i], RewriteVal);
1026   }
1027 
1028   // Set names for input and output arguments.
1029   if (NumScalarParams) {
1030     ScalarAI = newFunction->arg_begin();
1031     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
1032       if (!StructValues.contains(inputs[i]))
1033         ScalarAI->setName(inputs[i]->getName());
1034     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
1035       if (!StructValues.contains(outputs[i]))
1036         ScalarAI->setName(outputs[i]->getName() + ".out");
1037   }
1038 
1039   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1040   // within the new function. This must be done before we lose track of which
1041   // blocks were originally in the code region.
1042   std::vector<User *> Users(header->user_begin(), header->user_end());
1043   for (auto &U : Users)
1044     // The BasicBlock which contains the branch is not in the region
1045     // modify the branch target to a new block
1046     if (Instruction *I = dyn_cast<Instruction>(U))
1047       if (I->isTerminator() && I->getFunction() == oldFunction &&
1048           !Blocks.count(I->getParent()))
1049         I->replaceUsesOfWith(header, newHeader);
1050 
1051   return newFunction;
1052 }
1053 
1054 /// Erase lifetime.start markers which reference inputs to the extraction
1055 /// region, and insert the referenced memory into \p LifetimesStart.
1056 ///
1057 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1058 /// of allocas which will be moved from the caller function into the extracted
1059 /// function (\p SunkAllocas).
1060 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1061                                          const SetVector<Value *> &SunkAllocas,
1062                                          SetVector<Value *> &LifetimesStart) {
1063   for (BasicBlock *BB : Blocks) {
1064     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1065       auto *II = dyn_cast<IntrinsicInst>(&I);
1066       if (!II || !II->isLifetimeStartOrEnd())
1067         continue;
1068 
1069       // Get the memory operand of the lifetime marker. If the underlying
1070       // object is a sunk alloca, or is otherwise defined in the extraction
1071       // region, the lifetime marker must not be erased.
1072       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1073       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1074         continue;
1075 
1076       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1077         LifetimesStart.insert(Mem);
1078       II->eraseFromParent();
1079     }
1080   }
1081 }
1082 
1083 /// Insert lifetime start/end markers surrounding the call to the new function
1084 /// for objects defined in the caller.
1085 static void insertLifetimeMarkersSurroundingCall(
1086     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1087     CallInst *TheCall) {
1088   LLVMContext &Ctx = M->getContext();
1089   auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
1090   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1091   Instruction *Term = TheCall->getParent()->getTerminator();
1092 
1093   // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
1094   // needed to satisfy this requirement so they may be reused.
1095   DenseMap<Value *, Value *> Bitcasts;
1096 
1097   // Emit lifetime markers for the pointers given in \p Objects. Insert the
1098   // markers before the call if \p InsertBefore, and after the call otherwise.
1099   auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
1100                            bool InsertBefore) {
1101     for (Value *Mem : Objects) {
1102       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1103                                             TheCall->getFunction()) &&
1104              "Input memory not defined in original function");
1105       Value *&MemAsI8Ptr = Bitcasts[Mem];
1106       if (!MemAsI8Ptr) {
1107         if (Mem->getType() == Int8PtrTy)
1108           MemAsI8Ptr = Mem;
1109         else
1110           MemAsI8Ptr =
1111               CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
1112       }
1113 
1114       auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
1115       if (InsertBefore)
1116         Marker->insertBefore(TheCall);
1117       else
1118         Marker->insertBefore(Term);
1119     }
1120   };
1121 
1122   if (!LifetimesStart.empty()) {
1123     auto StartFn = llvm::Intrinsic::getDeclaration(
1124         M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
1125     insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
1126   }
1127 
1128   if (!LifetimesEnd.empty()) {
1129     auto EndFn = llvm::Intrinsic::getDeclaration(
1130         M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
1131     insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
1132   }
1133 }
1134 
1135 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1136 /// the call instruction, splitting any PHI nodes in the header block as
1137 /// necessary.
1138 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1139                                                     BasicBlock *codeReplacer,
1140                                                     ValueSet &inputs,
1141                                                     ValueSet &outputs) {
1142   // Emit a call to the new function, passing in: *pointer to struct (if
1143   // aggregating parameters), or plan inputs and allocated memory for outputs
1144   std::vector<Value *> params, ReloadOutputs, Reloads;
1145   ValueSet StructValues;
1146 
1147   Module *M = newFunction->getParent();
1148   LLVMContext &Context = M->getContext();
1149   const DataLayout &DL = M->getDataLayout();
1150   CallInst *call = nullptr;
1151 
1152   // Add inputs as params, or to be filled into the struct
1153   unsigned ScalarInputArgNo = 0;
1154   SmallVector<unsigned, 1> SwiftErrorArgs;
1155   for (Value *input : inputs) {
1156     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1157       StructValues.insert(input);
1158     else {
1159       params.push_back(input);
1160       if (input->isSwiftError())
1161         SwiftErrorArgs.push_back(ScalarInputArgNo);
1162     }
1163     ++ScalarInputArgNo;
1164   }
1165 
1166   // Create allocas for the outputs
1167   unsigned ScalarOutputArgNo = 0;
1168   for (Value *output : outputs) {
1169     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1170       StructValues.insert(output);
1171     } else {
1172       AllocaInst *alloca =
1173         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1174                        nullptr, output->getName() + ".loc",
1175                        &codeReplacer->getParent()->front().front());
1176       ReloadOutputs.push_back(alloca);
1177       params.push_back(alloca);
1178       ++ScalarOutputArgNo;
1179     }
1180   }
1181 
1182   StructType *StructArgTy = nullptr;
1183   AllocaInst *Struct = nullptr;
1184   unsigned NumAggregatedInputs = 0;
1185   if (AggregateArgs && !StructValues.empty()) {
1186     std::vector<Type *> ArgTypes;
1187     for (Value *V : StructValues)
1188       ArgTypes.push_back(V->getType());
1189 
1190     // Allocate a struct at the beginning of this function
1191     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1192     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1193                             "structArg",
1194                             &codeReplacer->getParent()->front().front());
1195     params.push_back(Struct);
1196 
1197     // Store aggregated inputs in the struct.
1198     for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1199       if (inputs.contains(StructValues[i])) {
1200         Value *Idx[2];
1201         Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1202         Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1203         GetElementPtrInst *GEP = GetElementPtrInst::Create(
1204             StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1205         codeReplacer->getInstList().push_back(GEP);
1206         new StoreInst(StructValues[i], GEP, codeReplacer);
1207         NumAggregatedInputs++;
1208       }
1209     }
1210   }
1211 
1212   // Emit the call to the function
1213   call = CallInst::Create(newFunction, params,
1214                           NumExitBlocks > 1 ? "targetBlock" : "");
1215   // Add debug location to the new call, if the original function has debug
1216   // info. In that case, the terminator of the entry block of the extracted
1217   // function contains the first debug location of the extracted function,
1218   // set in extractCodeRegion.
1219   if (codeReplacer->getParent()->getSubprogram()) {
1220     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1221       call->setDebugLoc(DL);
1222   }
1223   codeReplacer->getInstList().push_back(call);
1224 
1225   // Set swifterror parameter attributes.
1226   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1227     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1228     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1229   }
1230 
1231   // Reload the outputs passed in by reference, use the struct if output is in
1232   // the aggregate or reload from the scalar argument.
1233   for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1234                 aggIdx = NumAggregatedInputs;
1235        i != e; ++i) {
1236     Value *Output = nullptr;
1237     if (AggregateArgs && StructValues.contains(outputs[i])) {
1238       Value *Idx[2];
1239       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1240       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1241       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1242           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1243       codeReplacer->getInstList().push_back(GEP);
1244       Output = GEP;
1245       ++aggIdx;
1246     } else {
1247       Output = ReloadOutputs[scalarIdx];
1248       ++scalarIdx;
1249     }
1250     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1251                                   outputs[i]->getName() + ".reload",
1252                                   codeReplacer);
1253     Reloads.push_back(load);
1254     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1255     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1256       Instruction *inst = cast<Instruction>(Users[u]);
1257       if (!Blocks.count(inst->getParent()))
1258         inst->replaceUsesOfWith(outputs[i], load);
1259     }
1260   }
1261 
1262   // Now we can emit a switch statement using the call as a value.
1263   SwitchInst *TheSwitch =
1264       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1265                          codeReplacer, 0, codeReplacer);
1266 
1267   // Since there may be multiple exits from the original region, make the new
1268   // function return an unsigned, switch on that number.  This loop iterates
1269   // over all of the blocks in the extracted region, updating any terminator
1270   // instructions in the to-be-extracted region that branch to blocks that are
1271   // not in the region to be extracted.
1272   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1273 
1274   // Iterate over the previously collected targets, and create new blocks inside
1275   // the function to branch to.
1276   unsigned switchVal = 0;
1277   for (BasicBlock *OldTarget : OldTargets) {
1278     if (Blocks.count(OldTarget))
1279       continue;
1280     BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1281     if (NewTarget)
1282       continue;
1283 
1284     // If we don't already have an exit stub for this non-extracted
1285     // destination, create one now!
1286     NewTarget = BasicBlock::Create(Context,
1287                                     OldTarget->getName() + ".exitStub",
1288                                     newFunction);
1289     unsigned SuccNum = switchVal++;
1290 
1291     Value *brVal = nullptr;
1292     assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1293     switch (NumExitBlocks) {
1294     case 0:
1295     case 1: break;  // No value needed.
1296     case 2:         // Conditional branch, return a bool
1297       brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1298       break;
1299     default:
1300       brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1301       break;
1302     }
1303 
1304     ReturnInst::Create(Context, brVal, NewTarget);
1305 
1306     // Update the switch instruction.
1307     TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1308                                         SuccNum),
1309                         OldTarget);
1310   }
1311 
1312   for (BasicBlock *Block : Blocks) {
1313     Instruction *TI = Block->getTerminator();
1314     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1315       if (Blocks.count(TI->getSuccessor(i)))
1316         continue;
1317       BasicBlock *OldTarget = TI->getSuccessor(i);
1318       // add a new basic block which returns the appropriate value
1319       BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1320       assert(NewTarget && "Unknown target block!");
1321 
1322       // rewrite the original branch instruction with this new target
1323       TI->setSuccessor(i, NewTarget);
1324    }
1325   }
1326 
1327   // Store the arguments right after the definition of output value.
1328   // This should be proceeded after creating exit stubs to be ensure that invoke
1329   // result restore will be placed in the outlined function.
1330   Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1331   std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1332   Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1333   std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1334 
1335   for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1336        ++i) {
1337     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1338     if (!OutI)
1339       continue;
1340 
1341     // Find proper insertion point.
1342     BasicBlock::iterator InsertPt;
1343     // In case OutI is an invoke, we insert the store at the beginning in the
1344     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1345     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1346       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1347     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1348       InsertPt = Phi->getParent()->getFirstInsertionPt();
1349     else
1350       InsertPt = std::next(OutI->getIterator());
1351 
1352     Instruction *InsertBefore = &*InsertPt;
1353     assert((InsertBefore->getFunction() == newFunction ||
1354             Blocks.count(InsertBefore->getParent())) &&
1355            "InsertPt should be in new function");
1356     if (AggregateArgs && StructValues.contains(outputs[i])) {
1357       assert(AggOutputArgBegin != newFunction->arg_end() &&
1358              "Number of aggregate output arguments should match "
1359              "the number of defined values");
1360       Value *Idx[2];
1361       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1362       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1363       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1364           StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1365           InsertBefore);
1366       new StoreInst(outputs[i], GEP, InsertBefore);
1367       ++aggIdx;
1368       // Since there should be only one struct argument aggregating
1369       // all the output values, we shouldn't increment AggOutputArgBegin, which
1370       // always points to the struct argument, in this case.
1371     } else {
1372       assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1373              "Number of scalar output arguments should match "
1374              "the number of defined values");
1375       new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore);
1376       ++ScalarOutputArgBegin;
1377     }
1378   }
1379 
1380   // Now that we've done the deed, simplify the switch instruction.
1381   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1382   switch (NumExitBlocks) {
1383   case 0:
1384     // There are no successors (the block containing the switch itself), which
1385     // means that previously this was the last part of the function, and hence
1386     // this should be rewritten as a `ret'
1387 
1388     // Check if the function should return a value
1389     if (OldFnRetTy->isVoidTy()) {
1390       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1391     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1392       // return what we have
1393       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1394     } else {
1395       // Otherwise we must have code extracted an unwind or something, just
1396       // return whatever we want.
1397       ReturnInst::Create(Context,
1398                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1399     }
1400 
1401     TheSwitch->eraseFromParent();
1402     break;
1403   case 1:
1404     // Only a single destination, change the switch into an unconditional
1405     // branch.
1406     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1407     TheSwitch->eraseFromParent();
1408     break;
1409   case 2:
1410     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1411                        call, TheSwitch);
1412     TheSwitch->eraseFromParent();
1413     break;
1414   default:
1415     // Otherwise, make the default destination of the switch instruction be one
1416     // of the other successors.
1417     TheSwitch->setCondition(call);
1418     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1419     // Remove redundant case
1420     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1421     break;
1422   }
1423 
1424   // Insert lifetime markers around the reloads of any output values. The
1425   // allocas output values are stored in are only in-use in the codeRepl block.
1426   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1427 
1428   return call;
1429 }
1430 
1431 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1432   Function *oldFunc = (*Blocks.begin())->getParent();
1433   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1434   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1435 
1436   auto newFuncIt = newFunction->front().getIterator();
1437   for (BasicBlock *Block : Blocks) {
1438     // Delete the basic block from the old function, and the list of blocks
1439     oldBlocks.remove(Block);
1440 
1441     // Insert this basic block into the new function
1442     // Insert the original blocks after the entry block created
1443     // for the new function. The entry block may be followed
1444     // by a set of exit blocks at this point, but these exit
1445     // blocks better be placed at the end of the new function.
1446     newFuncIt = newBlocks.insertAfter(newFuncIt, Block);
1447   }
1448 }
1449 
1450 void CodeExtractor::calculateNewCallTerminatorWeights(
1451     BasicBlock *CodeReplacer,
1452     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1453     BranchProbabilityInfo *BPI) {
1454   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1455   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1456 
1457   // Update the branch weights for the exit block.
1458   Instruction *TI = CodeReplacer->getTerminator();
1459   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1460 
1461   // Block Frequency distribution with dummy node.
1462   Distribution BranchDist;
1463 
1464   SmallVector<BranchProbability, 4> EdgeProbabilities(
1465       TI->getNumSuccessors(), BranchProbability::getUnknown());
1466 
1467   // Add each of the frequencies of the successors.
1468   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1469     BlockNode ExitNode(i);
1470     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1471     if (ExitFreq != 0)
1472       BranchDist.addExit(ExitNode, ExitFreq);
1473     else
1474       EdgeProbabilities[i] = BranchProbability::getZero();
1475   }
1476 
1477   // Check for no total weight.
1478   if (BranchDist.Total == 0) {
1479     BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1480     return;
1481   }
1482 
1483   // Normalize the distribution so that they can fit in unsigned.
1484   BranchDist.normalize();
1485 
1486   // Create normalized branch weights and set the metadata.
1487   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1488     const auto &Weight = BranchDist.Weights[I];
1489 
1490     // Get the weight and update the current BFI.
1491     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1492     BranchProbability BP(Weight.Amount, BranchDist.Total);
1493     EdgeProbabilities[Weight.TargetNode.Index] = BP;
1494   }
1495   BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1496   TI->setMetadata(
1497       LLVMContext::MD_prof,
1498       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1499 }
1500 
1501 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1502 /// \p F.
1503 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1504   for (Instruction &I : instructions(F)) {
1505     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1506     findDbgUsers(DbgUsers, &I);
1507     for (DbgVariableIntrinsic *DVI : DbgUsers)
1508       if (DVI->getFunction() != &F)
1509         DVI->eraseFromParent();
1510   }
1511 }
1512 
1513 /// Fix up the debug info in the old and new functions by pointing line
1514 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1515 /// intrinsics which point to values outside of the new function.
1516 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1517                                          CallInst &TheCall) {
1518   DISubprogram *OldSP = OldFunc.getSubprogram();
1519   LLVMContext &Ctx = OldFunc.getContext();
1520 
1521   if (!OldSP) {
1522     // Erase any debug info the new function contains.
1523     stripDebugInfo(NewFunc);
1524     // Make sure the old function doesn't contain any non-local metadata refs.
1525     eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1526     return;
1527   }
1528 
1529   // Create a subprogram for the new function. Leave out a description of the
1530   // function arguments, as the parameters don't correspond to anything at the
1531   // source level.
1532   assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1533   DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1534                 OldSP->getUnit());
1535   auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
1536   DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1537                                     DISubprogram::SPFlagOptimized |
1538                                     DISubprogram::SPFlagLocalToUnit;
1539   auto NewSP = DIB.createFunction(
1540       OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1541       /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1542   NewFunc.setSubprogram(NewSP);
1543 
1544   // Debug intrinsics in the new function need to be updated in one of two
1545   // ways:
1546   //  1) They need to be deleted, because they describe a value in the old
1547   //     function.
1548   //  2) They need to point to fresh metadata, e.g. because they currently
1549   //     point to a variable in the wrong scope.
1550   SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1551   SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1552   for (Instruction &I : instructions(NewFunc)) {
1553     auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1554     if (!DII)
1555       continue;
1556 
1557     // Point the intrinsic to a fresh label within the new function.
1558     if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1559       DILabel *OldLabel = DLI->getLabel();
1560       DINode *&NewLabel = RemappedMetadata[OldLabel];
1561       if (!NewLabel)
1562         NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(),
1563                                 OldLabel->getFile(), OldLabel->getLine());
1564       DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1565       continue;
1566     }
1567 
1568     auto IsInvalidLocation = [&NewFunc](Value *Location) {
1569       // Location is invalid if it isn't a constant or an instruction, or is an
1570       // instruction but isn't in the new function.
1571       if (!Location ||
1572           (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1573         return true;
1574       Instruction *LocationInst = dyn_cast<Instruction>(Location);
1575       return LocationInst && LocationInst->getFunction() != &NewFunc;
1576     };
1577 
1578     auto *DVI = cast<DbgVariableIntrinsic>(DII);
1579     // If any of the used locations are invalid, delete the intrinsic.
1580     if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1581       DebugIntrinsicsToDelete.push_back(DVI);
1582       continue;
1583     }
1584 
1585     // Point the intrinsic to a fresh variable within the new function.
1586     DILocalVariable *OldVar = DVI->getVariable();
1587     DINode *&NewVar = RemappedMetadata[OldVar];
1588     if (!NewVar)
1589       NewVar = DIB.createAutoVariable(
1590           NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1591           OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1592           OldVar->getAlignInBits());
1593     DVI->setVariable(cast<DILocalVariable>(NewVar));
1594   }
1595   for (auto *DII : DebugIntrinsicsToDelete)
1596     DII->eraseFromParent();
1597   DIB.finalizeSubprogram(NewSP);
1598 
1599   // Fix up the scope information attached to the line locations in the new
1600   // function.
1601   for (Instruction &I : instructions(NewFunc)) {
1602     if (const DebugLoc &DL = I.getDebugLoc())
1603       I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP));
1604 
1605     // Loop info metadata may contain line locations. Fix them up.
1606     auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * {
1607       if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1608         return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP,
1609                                nullptr);
1610       return MD;
1611     };
1612     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1613   }
1614   if (!TheCall.getDebugLoc())
1615     TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1616 
1617   eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1618 }
1619 
1620 Function *
1621 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1622   ValueSet Inputs, Outputs;
1623   return extractCodeRegion(CEAC, Inputs, Outputs);
1624 }
1625 
1626 Function *
1627 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1628                                  ValueSet &inputs, ValueSet &outputs) {
1629   if (!isEligible())
1630     return nullptr;
1631 
1632   // Assumption: this is a single-entry code region, and the header is the first
1633   // block in the region.
1634   BasicBlock *header = *Blocks.begin();
1635   Function *oldFunction = header->getParent();
1636 
1637   // Calculate the entry frequency of the new function before we change the root
1638   //   block.
1639   BlockFrequency EntryFreq;
1640   if (BFI) {
1641     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1642     for (BasicBlock *Pred : predecessors(header)) {
1643       if (Blocks.count(Pred))
1644         continue;
1645       EntryFreq +=
1646           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1647     }
1648   }
1649 
1650   // Remove @llvm.assume calls that will be moved to the new function from the
1651   // old function's assumption cache.
1652   for (BasicBlock *Block : Blocks) {
1653     for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1654       if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1655         if (AC)
1656           AC->unregisterAssumption(AI);
1657         AI->eraseFromParent();
1658       }
1659     }
1660   }
1661 
1662   // If we have any return instructions in the region, split those blocks so
1663   // that the return is not in the region.
1664   splitReturnBlocks();
1665 
1666   // Calculate the exit blocks for the extracted region and the total exit
1667   // weights for each of those blocks.
1668   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1669   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1670   for (BasicBlock *Block : Blocks) {
1671     for (BasicBlock *Succ : successors(Block)) {
1672       if (!Blocks.count(Succ)) {
1673         // Update the branch weight for this successor.
1674         if (BFI) {
1675           BlockFrequency &BF = ExitWeights[Succ];
1676           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1677         }
1678         ExitBlocks.insert(Succ);
1679       }
1680     }
1681   }
1682   NumExitBlocks = ExitBlocks.size();
1683 
1684   for (BasicBlock *Block : Blocks) {
1685     Instruction *TI = Block->getTerminator();
1686     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1687       if (Blocks.count(TI->getSuccessor(i)))
1688         continue;
1689       BasicBlock *OldTarget = TI->getSuccessor(i);
1690       OldTargets.push_back(OldTarget);
1691     }
1692   }
1693 
1694   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1695   severSplitPHINodesOfEntry(header);
1696   severSplitPHINodesOfExits(ExitBlocks);
1697 
1698   // This takes place of the original loop
1699   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1700                                                 "codeRepl", oldFunction,
1701                                                 header);
1702 
1703   // The new function needs a root node because other nodes can branch to the
1704   // head of the region, but the entry node of a function cannot have preds.
1705   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1706                                                "newFuncRoot");
1707   auto *BranchI = BranchInst::Create(header);
1708   // If the original function has debug info, we have to add a debug location
1709   // to the new branch instruction from the artificial entry block.
1710   // We use the debug location of the first instruction in the extracted
1711   // blocks, as there is no other equivalent line in the source code.
1712   if (oldFunction->getSubprogram()) {
1713     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1714       return any_of(*BB, [&BranchI](const Instruction &I) {
1715         if (!I.getDebugLoc())
1716           return false;
1717         BranchI->setDebugLoc(I.getDebugLoc());
1718         return true;
1719       });
1720     });
1721   }
1722   newFuncRoot->getInstList().push_back(BranchI);
1723 
1724   ValueSet SinkingCands, HoistingCands;
1725   BasicBlock *CommonExit = nullptr;
1726   findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1727   assert(HoistingCands.empty() || CommonExit);
1728 
1729   // Find inputs to, outputs from the code region.
1730   findInputsOutputs(inputs, outputs, SinkingCands);
1731 
1732   // Now sink all instructions which only have non-phi uses inside the region.
1733   // Group the allocas at the start of the block, so that any bitcast uses of
1734   // the allocas are well-defined.
1735   AllocaInst *FirstSunkAlloca = nullptr;
1736   for (auto *II : SinkingCands) {
1737     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1738       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1739       if (!FirstSunkAlloca)
1740         FirstSunkAlloca = AI;
1741     }
1742   }
1743   assert((SinkingCands.empty() || FirstSunkAlloca) &&
1744          "Did not expect a sink candidate without any allocas");
1745   for (auto *II : SinkingCands) {
1746     if (!isa<AllocaInst>(II)) {
1747       cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1748     }
1749   }
1750 
1751   if (!HoistingCands.empty()) {
1752     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1753     Instruction *TI = HoistToBlock->getTerminator();
1754     for (auto *II : HoistingCands)
1755       cast<Instruction>(II)->moveBefore(TI);
1756   }
1757 
1758   // Collect objects which are inputs to the extraction region and also
1759   // referenced by lifetime start markers within it. The effects of these
1760   // markers must be replicated in the calling function to prevent the stack
1761   // coloring pass from merging slots which store input objects.
1762   ValueSet LifetimesStart;
1763   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1764 
1765   // Construct new function based on inputs/outputs & add allocas for all defs.
1766   Function *newFunction =
1767       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1768                         oldFunction, oldFunction->getParent());
1769 
1770   // Update the entry count of the function.
1771   if (BFI) {
1772     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1773     if (Count.hasValue())
1774       newFunction->setEntryCount(
1775           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1776     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1777   }
1778 
1779   CallInst *TheCall =
1780       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1781 
1782   moveCodeToFunction(newFunction);
1783 
1784   // Replicate the effects of any lifetime start/end markers which referenced
1785   // input objects in the extraction region by placing markers around the call.
1786   insertLifetimeMarkersSurroundingCall(
1787       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1788 
1789   // Propagate personality info to the new function if there is one.
1790   if (oldFunction->hasPersonalityFn())
1791     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1792 
1793   // Update the branch weights for the exit block.
1794   if (BFI && NumExitBlocks > 1)
1795     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1796 
1797   // Loop over all of the PHI nodes in the header and exit blocks, and change
1798   // any references to the old incoming edge to be the new incoming edge.
1799   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1800     PHINode *PN = cast<PHINode>(I);
1801     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1802       if (!Blocks.count(PN->getIncomingBlock(i)))
1803         PN->setIncomingBlock(i, newFuncRoot);
1804   }
1805 
1806   for (BasicBlock *ExitBB : ExitBlocks)
1807     for (PHINode &PN : ExitBB->phis()) {
1808       Value *IncomingCodeReplacerVal = nullptr;
1809       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1810         // Ignore incoming values from outside of the extracted region.
1811         if (!Blocks.count(PN.getIncomingBlock(i)))
1812           continue;
1813 
1814         // Ensure that there is only one incoming value from codeReplacer.
1815         if (!IncomingCodeReplacerVal) {
1816           PN.setIncomingBlock(i, codeReplacer);
1817           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1818         } else
1819           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1820                  "PHI has two incompatbile incoming values from codeRepl");
1821       }
1822     }
1823 
1824   fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1825 
1826   // Mark the new function `noreturn` if applicable. Terminators which resume
1827   // exception propagation are treated as returning instructions. This is to
1828   // avoid inserting traps after calls to outlined functions which unwind.
1829   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1830     const Instruction *Term = BB.getTerminator();
1831     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1832   });
1833   if (doesNotReturn)
1834     newFunction->setDoesNotReturn();
1835 
1836   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1837     newFunction->dump();
1838     report_fatal_error("verification of newFunction failed!");
1839   });
1840   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1841              report_fatal_error("verification of oldFunction failed!"));
1842   LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1843                  report_fatal_error("Stale Asumption cache for old Function!"));
1844   return newFunction;
1845 }
1846 
1847 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1848                                           const Function &NewFunc,
1849                                           AssumptionCache *AC) {
1850   for (auto AssumeVH : AC->assumptions()) {
1851     auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1852     if (!I)
1853       continue;
1854 
1855     // There shouldn't be any llvm.assume intrinsics in the new function.
1856     if (I->getFunction() != &OldFunc)
1857       return true;
1858 
1859     // There shouldn't be any stale affected values in the assumption cache
1860     // that were previously in the old function, but that have now been moved
1861     // to the new function.
1862     for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1863       auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1864       if (!AffectedCI)
1865         continue;
1866       if (AffectedCI->getFunction() != &OldFunc)
1867         return true;
1868       auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1869       if (AssumedInst->getFunction() != &OldFunc)
1870         return true;
1871     }
1872   }
1873   return false;
1874 }
1875 
1876 void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1877   ExcludeArgsFromAggregate.insert(Arg);
1878 }
1879