xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision 8a56d64d7620b3764f10f03f3a1e307fcdd72c2f)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/InstIterator.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/Verifier.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include <cassert>
66 #include <cstdint>
67 #include <iterator>
68 #include <map>
69 #include <set>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 using namespace llvm::PatternMatch;
75 using ProfileCount = Function::ProfileCount;
76 
77 #define DEBUG_TYPE "code-extractor"
78 
79 // Provide a command-line option to aggregate function arguments into a struct
80 // for functions produced by the code extractor. This is useful when converting
81 // extracted functions to pthread-based code, as only one argument (void*) can
82 // be passed in to pthread_create().
83 static cl::opt<bool>
84 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
85                  cl::desc("Aggregate arguments to code-extracted functions"));
86 
87 /// Test whether a block is valid for extraction.
88 static bool isBlockValidForExtraction(const BasicBlock &BB,
89                                       const SetVector<BasicBlock *> &Result,
90                                       bool AllowVarArgs, bool AllowAlloca) {
91   // taking the address of a basic block moved to another function is illegal
92   if (BB.hasAddressTaken())
93     return false;
94 
95   // don't hoist code that uses another basicblock address, as it's likely to
96   // lead to unexpected behavior, like cross-function jumps
97   SmallPtrSet<User const *, 16> Visited;
98   SmallVector<User const *, 16> ToVisit;
99 
100   for (Instruction const &Inst : BB)
101     ToVisit.push_back(&Inst);
102 
103   while (!ToVisit.empty()) {
104     User const *Curr = ToVisit.pop_back_val();
105     if (!Visited.insert(Curr).second)
106       continue;
107     if (isa<BlockAddress const>(Curr))
108       return false; // even a reference to self is likely to be not compatible
109 
110     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
111       continue;
112 
113     for (auto const &U : Curr->operands()) {
114       if (auto *UU = dyn_cast<User>(U))
115         ToVisit.push_back(UU);
116     }
117   }
118 
119   // If explicitly requested, allow vastart and alloca. For invoke instructions
120   // verify that extraction is valid.
121   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
122     if (isa<AllocaInst>(I)) {
123        if (!AllowAlloca)
124          return false;
125        continue;
126     }
127 
128     if (const auto *II = dyn_cast<InvokeInst>(I)) {
129       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
130       // must be a part of the subgraph which is being extracted.
131       if (auto *UBB = II->getUnwindDest())
132         if (!Result.count(UBB))
133           return false;
134       continue;
135     }
136 
137     // All catch handlers of a catchswitch instruction as well as the unwind
138     // destination must be in the subgraph.
139     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
140       if (auto *UBB = CSI->getUnwindDest())
141         if (!Result.count(UBB))
142           return false;
143       for (auto *HBB : CSI->handlers())
144         if (!Result.count(const_cast<BasicBlock*>(HBB)))
145           return false;
146       continue;
147     }
148 
149     // Make sure that entire catch handler is within subgraph. It is sufficient
150     // to check that catch return's block is in the list.
151     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
152       for (const auto *U : CPI->users())
153         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
154           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
155             return false;
156       continue;
157     }
158 
159     // And do similar checks for cleanup handler - the entire handler must be
160     // in subgraph which is going to be extracted. For cleanup return should
161     // additionally check that the unwind destination is also in the subgraph.
162     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
163       for (const auto *U : CPI->users())
164         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
165           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
166             return false;
167       continue;
168     }
169     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
170       if (auto *UBB = CRI->getUnwindDest())
171         if (!Result.count(UBB))
172           return false;
173       continue;
174     }
175 
176     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
177       if (const Function *F = CI->getCalledFunction()) {
178         auto IID = F->getIntrinsicID();
179         if (IID == Intrinsic::vastart) {
180           if (AllowVarArgs)
181             continue;
182           else
183             return false;
184         }
185 
186         // Currently, we miscompile outlined copies of eh_typid_for. There are
187         // proposals for fixing this in llvm.org/PR39545.
188         if (IID == Intrinsic::eh_typeid_for)
189           return false;
190       }
191     }
192   }
193 
194   return true;
195 }
196 
197 /// Build a set of blocks to extract if the input blocks are viable.
198 static SetVector<BasicBlock *>
199 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
200                         bool AllowVarArgs, bool AllowAlloca) {
201   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
202   SetVector<BasicBlock *> Result;
203 
204   // Loop over the blocks, adding them to our set-vector, and aborting with an
205   // empty set if we encounter invalid blocks.
206   for (BasicBlock *BB : BBs) {
207     // If this block is dead, don't process it.
208     if (DT && !DT->isReachableFromEntry(BB))
209       continue;
210 
211     if (!Result.insert(BB))
212       llvm_unreachable("Repeated basic blocks in extraction input");
213   }
214 
215   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
216                     << '\n');
217 
218   for (auto *BB : Result) {
219     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
220       return {};
221 
222     // Make sure that the first block is not a landing pad.
223     if (BB == Result.front()) {
224       if (BB->isEHPad()) {
225         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
226         return {};
227       }
228       continue;
229     }
230 
231     // All blocks other than the first must not have predecessors outside of
232     // the subgraph which is being extracted.
233     for (auto *PBB : predecessors(BB))
234       if (!Result.count(PBB)) {
235         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
236                              "outside the region except for the first block!\n"
237                           << "Problematic source BB: " << BB->getName() << "\n"
238                           << "Problematic destination BB: " << PBB->getName()
239                           << "\n");
240         return {};
241       }
242   }
243 
244   return Result;
245 }
246 
247 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
248                              bool AggregateArgs, BlockFrequencyInfo *BFI,
249                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
250                              bool AllowVarArgs, bool AllowAlloca,
251                              std::string Suffix)
252     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
253       BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
254       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
255       Suffix(Suffix) {}
256 
257 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
258                              BlockFrequencyInfo *BFI,
259                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
260                              std::string Suffix)
261     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
262       BPI(BPI), AC(AC), AllowVarArgs(false),
263       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
264                                      /* AllowVarArgs */ false,
265                                      /* AllowAlloca */ false)),
266       Suffix(Suffix) {}
267 
268 /// definedInRegion - Return true if the specified value is defined in the
269 /// extracted region.
270 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
271   if (Instruction *I = dyn_cast<Instruction>(V))
272     if (Blocks.count(I->getParent()))
273       return true;
274   return false;
275 }
276 
277 /// definedInCaller - Return true if the specified value is defined in the
278 /// function being code extracted, but not in the region being extracted.
279 /// These values must be passed in as live-ins to the function.
280 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
281   if (isa<Argument>(V)) return true;
282   if (Instruction *I = dyn_cast<Instruction>(V))
283     if (!Blocks.count(I->getParent()))
284       return true;
285   return false;
286 }
287 
288 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
289   BasicBlock *CommonExitBlock = nullptr;
290   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
291     for (auto *Succ : successors(Block)) {
292       // Internal edges, ok.
293       if (Blocks.count(Succ))
294         continue;
295       if (!CommonExitBlock) {
296         CommonExitBlock = Succ;
297         continue;
298       }
299       if (CommonExitBlock != Succ)
300         return true;
301     }
302     return false;
303   };
304 
305   if (any_of(Blocks, hasNonCommonExitSucc))
306     return nullptr;
307 
308   return CommonExitBlock;
309 }
310 
311 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
312   for (BasicBlock &BB : F) {
313     for (Instruction &II : BB.instructionsWithoutDebug())
314       if (auto *AI = dyn_cast<AllocaInst>(&II))
315         Allocas.push_back(AI);
316 
317     findSideEffectInfoForBlock(BB);
318   }
319 }
320 
321 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
322   for (Instruction &II : BB.instructionsWithoutDebug()) {
323     unsigned Opcode = II.getOpcode();
324     Value *MemAddr = nullptr;
325     switch (Opcode) {
326     case Instruction::Store:
327     case Instruction::Load: {
328       if (Opcode == Instruction::Store) {
329         StoreInst *SI = cast<StoreInst>(&II);
330         MemAddr = SI->getPointerOperand();
331       } else {
332         LoadInst *LI = cast<LoadInst>(&II);
333         MemAddr = LI->getPointerOperand();
334       }
335       // Global variable can not be aliased with locals.
336       if (dyn_cast<Constant>(MemAddr))
337         break;
338       Value *Base = MemAddr->stripInBoundsConstantOffsets();
339       if (!isa<AllocaInst>(Base)) {
340         SideEffectingBlocks.insert(&BB);
341         return;
342       }
343       BaseMemAddrs[&BB].insert(Base);
344       break;
345     }
346     default: {
347       IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
348       if (IntrInst) {
349         if (IntrInst->isLifetimeStartOrEnd())
350           break;
351         SideEffectingBlocks.insert(&BB);
352         return;
353       }
354       // Treat all the other cases conservatively if it has side effects.
355       if (II.mayHaveSideEffects()) {
356         SideEffectingBlocks.insert(&BB);
357         return;
358       }
359     }
360     }
361   }
362 }
363 
364 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
365     BasicBlock &BB, AllocaInst *Addr) const {
366   if (SideEffectingBlocks.count(&BB))
367     return true;
368   auto It = BaseMemAddrs.find(&BB);
369   if (It != BaseMemAddrs.end())
370     return It->second.count(Addr);
371   return false;
372 }
373 
374 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
375     const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
376   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
377   Function *Func = (*Blocks.begin())->getParent();
378   for (BasicBlock &BB : *Func) {
379     if (Blocks.count(&BB))
380       continue;
381     if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
382       return false;
383   }
384   return true;
385 }
386 
387 BasicBlock *
388 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
389   BasicBlock *SinglePredFromOutlineRegion = nullptr;
390   assert(!Blocks.count(CommonExitBlock) &&
391          "Expect a block outside the region!");
392   for (auto *Pred : predecessors(CommonExitBlock)) {
393     if (!Blocks.count(Pred))
394       continue;
395     if (!SinglePredFromOutlineRegion) {
396       SinglePredFromOutlineRegion = Pred;
397     } else if (SinglePredFromOutlineRegion != Pred) {
398       SinglePredFromOutlineRegion = nullptr;
399       break;
400     }
401   }
402 
403   if (SinglePredFromOutlineRegion)
404     return SinglePredFromOutlineRegion;
405 
406 #ifndef NDEBUG
407   auto getFirstPHI = [](BasicBlock *BB) {
408     BasicBlock::iterator I = BB->begin();
409     PHINode *FirstPhi = nullptr;
410     while (I != BB->end()) {
411       PHINode *Phi = dyn_cast<PHINode>(I);
412       if (!Phi)
413         break;
414       if (!FirstPhi) {
415         FirstPhi = Phi;
416         break;
417       }
418     }
419     return FirstPhi;
420   };
421   // If there are any phi nodes, the single pred either exists or has already
422   // be created before code extraction.
423   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
424 #endif
425 
426   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
427       CommonExitBlock->getFirstNonPHI()->getIterator());
428 
429   for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
430        PI != PE;) {
431     BasicBlock *Pred = *PI++;
432     if (Blocks.count(Pred))
433       continue;
434     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
435   }
436   // Now add the old exit block to the outline region.
437   Blocks.insert(CommonExitBlock);
438   return CommonExitBlock;
439 }
440 
441 // Find the pair of life time markers for address 'Addr' that are either
442 // defined inside the outline region or can legally be shrinkwrapped into the
443 // outline region. If there are not other untracked uses of the address, return
444 // the pair of markers if found; otherwise return a pair of nullptr.
445 CodeExtractor::LifetimeMarkerInfo
446 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
447                                   Instruction *Addr,
448                                   BasicBlock *ExitBlock) const {
449   LifetimeMarkerInfo Info;
450 
451   for (User *U : Addr->users()) {
452     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
453     if (IntrInst) {
454       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
455         // Do not handle the case where Addr has multiple start markers.
456         if (Info.LifeStart)
457           return {};
458         Info.LifeStart = IntrInst;
459       }
460       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
461         if (Info.LifeEnd)
462           return {};
463         Info.LifeEnd = IntrInst;
464       }
465       continue;
466     }
467     // Find untracked uses of the address, bail.
468     if (!definedInRegion(Blocks, U))
469       return {};
470   }
471 
472   if (!Info.LifeStart || !Info.LifeEnd)
473     return {};
474 
475   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
476   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
477   // Do legality check.
478   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
479       !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
480     return {};
481 
482   // Check to see if we have a place to do hoisting, if not, bail.
483   if (Info.HoistLifeEnd && !ExitBlock)
484     return {};
485 
486   return Info;
487 }
488 
489 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
490                                 ValueSet &SinkCands, ValueSet &HoistCands,
491                                 BasicBlock *&ExitBlock) const {
492   Function *Func = (*Blocks.begin())->getParent();
493   ExitBlock = getCommonExitBlock(Blocks);
494 
495   auto moveOrIgnoreLifetimeMarkers =
496       [&](const LifetimeMarkerInfo &LMI) -> bool {
497     if (!LMI.LifeStart)
498       return false;
499     if (LMI.SinkLifeStart) {
500       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
501                         << "\n");
502       SinkCands.insert(LMI.LifeStart);
503     }
504     if (LMI.HoistLifeEnd) {
505       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
506       HoistCands.insert(LMI.LifeEnd);
507     }
508     return true;
509   };
510 
511   // Look up allocas in the original function in CodeExtractorAnalysisCache, as
512   // this is much faster than walking all the instructions.
513   for (AllocaInst *AI : CEAC.getAllocas()) {
514     BasicBlock *BB = AI->getParent();
515     if (Blocks.count(BB))
516       continue;
517 
518     // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
519     // check whether it is actually still in the original function.
520     Function *AIFunc = BB->getParent();
521     if (AIFunc != Func)
522       continue;
523 
524     LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
525     bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
526     if (Moved) {
527       LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
528       SinkCands.insert(AI);
529       continue;
530     }
531 
532     // Follow any bitcasts.
533     SmallVector<Instruction *, 2> Bitcasts;
534     SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
535     for (User *U : AI->users()) {
536       if (U->stripInBoundsConstantOffsets() == AI) {
537         Instruction *Bitcast = cast<Instruction>(U);
538         LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
539         if (LMI.LifeStart) {
540           Bitcasts.push_back(Bitcast);
541           BitcastLifetimeInfo.push_back(LMI);
542           continue;
543         }
544       }
545 
546       // Found unknown use of AI.
547       if (!definedInRegion(Blocks, U)) {
548         Bitcasts.clear();
549         break;
550       }
551     }
552 
553     // Either no bitcasts reference the alloca or there are unknown uses.
554     if (Bitcasts.empty())
555       continue;
556 
557     LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
558     SinkCands.insert(AI);
559     for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
560       Instruction *BitcastAddr = Bitcasts[I];
561       const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
562       assert(LMI.LifeStart &&
563              "Unsafe to sink bitcast without lifetime markers");
564       moveOrIgnoreLifetimeMarkers(LMI);
565       if (!definedInRegion(Blocks, BitcastAddr)) {
566         LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
567                           << "\n");
568         SinkCands.insert(BitcastAddr);
569       }
570     }
571   }
572 }
573 
574 bool CodeExtractor::isEligible() const {
575   if (Blocks.empty())
576     return false;
577   BasicBlock *Header = *Blocks.begin();
578   Function *F = Header->getParent();
579 
580   // For functions with varargs, check that varargs handling is only done in the
581   // outlined function, i.e vastart and vaend are only used in outlined blocks.
582   if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
583     auto containsVarArgIntrinsic = [](const Instruction &I) {
584       if (const CallInst *CI = dyn_cast<CallInst>(&I))
585         if (const Function *Callee = CI->getCalledFunction())
586           return Callee->getIntrinsicID() == Intrinsic::vastart ||
587                  Callee->getIntrinsicID() == Intrinsic::vaend;
588       return false;
589     };
590 
591     for (auto &BB : *F) {
592       if (Blocks.count(&BB))
593         continue;
594       if (llvm::any_of(BB, containsVarArgIntrinsic))
595         return false;
596     }
597   }
598   return true;
599 }
600 
601 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
602                                       const ValueSet &SinkCands) const {
603   for (BasicBlock *BB : Blocks) {
604     // If a used value is defined outside the region, it's an input.  If an
605     // instruction is used outside the region, it's an output.
606     for (Instruction &II : *BB) {
607       for (auto &OI : II.operands()) {
608         Value *V = OI;
609         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
610           Inputs.insert(V);
611       }
612 
613       for (User *U : II.users())
614         if (!definedInRegion(Blocks, U)) {
615           Outputs.insert(&II);
616           break;
617         }
618     }
619   }
620 }
621 
622 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
623 /// of the region, we need to split the entry block of the region so that the
624 /// PHI node is easier to deal with.
625 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
626   unsigned NumPredsFromRegion = 0;
627   unsigned NumPredsOutsideRegion = 0;
628 
629   if (Header != &Header->getParent()->getEntryBlock()) {
630     PHINode *PN = dyn_cast<PHINode>(Header->begin());
631     if (!PN) return;  // No PHI nodes.
632 
633     // If the header node contains any PHI nodes, check to see if there is more
634     // than one entry from outside the region.  If so, we need to sever the
635     // header block into two.
636     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
637       if (Blocks.count(PN->getIncomingBlock(i)))
638         ++NumPredsFromRegion;
639       else
640         ++NumPredsOutsideRegion;
641 
642     // If there is one (or fewer) predecessor from outside the region, we don't
643     // need to do anything special.
644     if (NumPredsOutsideRegion <= 1) return;
645   }
646 
647   // Otherwise, we need to split the header block into two pieces: one
648   // containing PHI nodes merging values from outside of the region, and a
649   // second that contains all of the code for the block and merges back any
650   // incoming values from inside of the region.
651   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
652 
653   // We only want to code extract the second block now, and it becomes the new
654   // header of the region.
655   BasicBlock *OldPred = Header;
656   Blocks.remove(OldPred);
657   Blocks.insert(NewBB);
658   Header = NewBB;
659 
660   // Okay, now we need to adjust the PHI nodes and any branches from within the
661   // region to go to the new header block instead of the old header block.
662   if (NumPredsFromRegion) {
663     PHINode *PN = cast<PHINode>(OldPred->begin());
664     // Loop over all of the predecessors of OldPred that are in the region,
665     // changing them to branch to NewBB instead.
666     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
667       if (Blocks.count(PN->getIncomingBlock(i))) {
668         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
669         TI->replaceUsesOfWith(OldPred, NewBB);
670       }
671 
672     // Okay, everything within the region is now branching to the right block, we
673     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
674     BasicBlock::iterator AfterPHIs;
675     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
676       PHINode *PN = cast<PHINode>(AfterPHIs);
677       // Create a new PHI node in the new region, which has an incoming value
678       // from OldPred of PN.
679       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
680                                        PN->getName() + ".ce", &NewBB->front());
681       PN->replaceAllUsesWith(NewPN);
682       NewPN->addIncoming(PN, OldPred);
683 
684       // Loop over all of the incoming value in PN, moving them to NewPN if they
685       // are from the extracted region.
686       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
687         if (Blocks.count(PN->getIncomingBlock(i))) {
688           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
689           PN->removeIncomingValue(i);
690           --i;
691         }
692       }
693     }
694   }
695 }
696 
697 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
698 /// outlined region, we split these PHIs on two: one with inputs from region
699 /// and other with remaining incoming blocks; then first PHIs are placed in
700 /// outlined region.
701 void CodeExtractor::severSplitPHINodesOfExits(
702     const SmallPtrSetImpl<BasicBlock *> &Exits) {
703   for (BasicBlock *ExitBB : Exits) {
704     BasicBlock *NewBB = nullptr;
705 
706     for (PHINode &PN : ExitBB->phis()) {
707       // Find all incoming values from the outlining region.
708       SmallVector<unsigned, 2> IncomingVals;
709       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
710         if (Blocks.count(PN.getIncomingBlock(i)))
711           IncomingVals.push_back(i);
712 
713       // Do not process PHI if there is one (or fewer) predecessor from region.
714       // If PHI has exactly one predecessor from region, only this one incoming
715       // will be replaced on codeRepl block, so it should be safe to skip PHI.
716       if (IncomingVals.size() <= 1)
717         continue;
718 
719       // Create block for new PHIs and add it to the list of outlined if it
720       // wasn't done before.
721       if (!NewBB) {
722         NewBB = BasicBlock::Create(ExitBB->getContext(),
723                                    ExitBB->getName() + ".split",
724                                    ExitBB->getParent(), ExitBB);
725         SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
726                                            pred_end(ExitBB));
727         for (BasicBlock *PredBB : Preds)
728           if (Blocks.count(PredBB))
729             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
730         BranchInst::Create(ExitBB, NewBB);
731         Blocks.insert(NewBB);
732       }
733 
734       // Split this PHI.
735       PHINode *NewPN =
736           PHINode::Create(PN.getType(), IncomingVals.size(),
737                           PN.getName() + ".ce", NewBB->getFirstNonPHI());
738       for (unsigned i : IncomingVals)
739         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
740       for (unsigned i : reverse(IncomingVals))
741         PN.removeIncomingValue(i, false);
742       PN.addIncoming(NewPN, NewBB);
743     }
744   }
745 }
746 
747 void CodeExtractor::splitReturnBlocks() {
748   for (BasicBlock *Block : Blocks)
749     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
750       BasicBlock *New =
751           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
752       if (DT) {
753         // Old dominates New. New node dominates all other nodes dominated
754         // by Old.
755         DomTreeNode *OldNode = DT->getNode(Block);
756         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
757                                                OldNode->end());
758 
759         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
760 
761         for (DomTreeNode *I : Children)
762           DT->changeImmediateDominator(I, NewNode);
763       }
764     }
765 }
766 
767 /// constructFunction - make a function based on inputs and outputs, as follows:
768 /// f(in0, ..., inN, out0, ..., outN)
769 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
770                                            const ValueSet &outputs,
771                                            BasicBlock *header,
772                                            BasicBlock *newRootNode,
773                                            BasicBlock *newHeader,
774                                            Function *oldFunction,
775                                            Module *M) {
776   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
777   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
778 
779   // This function returns unsigned, outputs will go back by reference.
780   switch (NumExitBlocks) {
781   case 0:
782   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
783   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
784   default: RetTy = Type::getInt16Ty(header->getContext()); break;
785   }
786 
787   std::vector<Type *> paramTy;
788 
789   // Add the types of the input values to the function's argument list
790   for (Value *value : inputs) {
791     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
792     paramTy.push_back(value->getType());
793   }
794 
795   // Add the types of the output values to the function's argument list.
796   for (Value *output : outputs) {
797     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
798     if (AggregateArgs)
799       paramTy.push_back(output->getType());
800     else
801       paramTy.push_back(PointerType::getUnqual(output->getType()));
802   }
803 
804   LLVM_DEBUG({
805     dbgs() << "Function type: " << *RetTy << " f(";
806     for (Type *i : paramTy)
807       dbgs() << *i << ", ";
808     dbgs() << ")\n";
809   });
810 
811   StructType *StructTy = nullptr;
812   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
813     StructTy = StructType::get(M->getContext(), paramTy);
814     paramTy.clear();
815     paramTy.push_back(PointerType::getUnqual(StructTy));
816   }
817   FunctionType *funcType =
818                   FunctionType::get(RetTy, paramTy,
819                                     AllowVarArgs && oldFunction->isVarArg());
820 
821   std::string SuffixToUse =
822       Suffix.empty()
823           ? (header->getName().empty() ? "extracted" : header->getName().str())
824           : Suffix;
825   // Create the new function
826   Function *newFunction = Function::Create(
827       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
828       oldFunction->getName() + "." + SuffixToUse, M);
829   // If the old function is no-throw, so is the new one.
830   if (oldFunction->doesNotThrow())
831     newFunction->setDoesNotThrow();
832 
833   // Inherit the uwtable attribute if we need to.
834   if (oldFunction->hasUWTable())
835     newFunction->setHasUWTable();
836 
837   // Inherit all of the target dependent attributes and white-listed
838   // target independent attributes.
839   //  (e.g. If the extracted region contains a call to an x86.sse
840   //  instruction we need to make sure that the extracted region has the
841   //  "target-features" attribute allowing it to be lowered.
842   // FIXME: This should be changed to check to see if a specific
843   //           attribute can not be inherited.
844   for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
845     if (Attr.isStringAttribute()) {
846       if (Attr.getKindAsString() == "thunk")
847         continue;
848     } else
849       switch (Attr.getKindAsEnum()) {
850       // Those attributes cannot be propagated safely. Explicitly list them
851       // here so we get a warning if new attributes are added. This list also
852       // includes non-function attributes.
853       case Attribute::Alignment:
854       case Attribute::AllocSize:
855       case Attribute::ArgMemOnly:
856       case Attribute::Builtin:
857       case Attribute::ByVal:
858       case Attribute::Convergent:
859       case Attribute::Dereferenceable:
860       case Attribute::DereferenceableOrNull:
861       case Attribute::InAlloca:
862       case Attribute::InReg:
863       case Attribute::InaccessibleMemOnly:
864       case Attribute::InaccessibleMemOrArgMemOnly:
865       case Attribute::JumpTable:
866       case Attribute::Naked:
867       case Attribute::Nest:
868       case Attribute::NoAlias:
869       case Attribute::NoBuiltin:
870       case Attribute::NoCapture:
871       case Attribute::NoReturn:
872       case Attribute::NoSync:
873       case Attribute::None:
874       case Attribute::NonNull:
875       case Attribute::ReadNone:
876       case Attribute::ReadOnly:
877       case Attribute::Returned:
878       case Attribute::ReturnsTwice:
879       case Attribute::SExt:
880       case Attribute::Speculatable:
881       case Attribute::StackAlignment:
882       case Attribute::StructRet:
883       case Attribute::SwiftError:
884       case Attribute::SwiftSelf:
885       case Attribute::WillReturn:
886       case Attribute::WriteOnly:
887       case Attribute::ZExt:
888       case Attribute::ImmArg:
889       case Attribute::EndAttrKinds:
890         continue;
891       // Those attributes should be safe to propagate to the extracted function.
892       case Attribute::AlwaysInline:
893       case Attribute::Cold:
894       case Attribute::NoRecurse:
895       case Attribute::InlineHint:
896       case Attribute::MinSize:
897       case Attribute::NoDuplicate:
898       case Attribute::NoFree:
899       case Attribute::NoImplicitFloat:
900       case Attribute::NoInline:
901       case Attribute::NonLazyBind:
902       case Attribute::NoRedZone:
903       case Attribute::NoUnwind:
904       case Attribute::OptForFuzzing:
905       case Attribute::OptimizeNone:
906       case Attribute::OptimizeForSize:
907       case Attribute::SafeStack:
908       case Attribute::ShadowCallStack:
909       case Attribute::SanitizeAddress:
910       case Attribute::SanitizeMemory:
911       case Attribute::SanitizeThread:
912       case Attribute::SanitizeHWAddress:
913       case Attribute::SanitizeMemTag:
914       case Attribute::SpeculativeLoadHardening:
915       case Attribute::StackProtect:
916       case Attribute::StackProtectReq:
917       case Attribute::StackProtectStrong:
918       case Attribute::StrictFP:
919       case Attribute::UWTable:
920       case Attribute::NoCfCheck:
921         break;
922       }
923 
924     newFunction->addFnAttr(Attr);
925   }
926   newFunction->getBasicBlockList().push_back(newRootNode);
927 
928   // Create an iterator to name all of the arguments we inserted.
929   Function::arg_iterator AI = newFunction->arg_begin();
930 
931   // Rewrite all users of the inputs in the extracted region to use the
932   // arguments (or appropriate addressing into struct) instead.
933   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
934     Value *RewriteVal;
935     if (AggregateArgs) {
936       Value *Idx[2];
937       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
938       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
939       Instruction *TI = newFunction->begin()->getTerminator();
940       GetElementPtrInst *GEP = GetElementPtrInst::Create(
941           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
942       RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
943                                 "loadgep_" + inputs[i]->getName(), TI);
944     } else
945       RewriteVal = &*AI++;
946 
947     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
948     for (User *use : Users)
949       if (Instruction *inst = dyn_cast<Instruction>(use))
950         if (Blocks.count(inst->getParent()))
951           inst->replaceUsesOfWith(inputs[i], RewriteVal);
952   }
953 
954   // Set names for input and output arguments.
955   if (!AggregateArgs) {
956     AI = newFunction->arg_begin();
957     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
958       AI->setName(inputs[i]->getName());
959     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
960       AI->setName(outputs[i]->getName()+".out");
961   }
962 
963   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
964   // within the new function. This must be done before we lose track of which
965   // blocks were originally in the code region.
966   std::vector<User *> Users(header->user_begin(), header->user_end());
967   for (auto &U : Users)
968     // The BasicBlock which contains the branch is not in the region
969     // modify the branch target to a new block
970     if (Instruction *I = dyn_cast<Instruction>(U))
971       if (I->isTerminator() && I->getFunction() == oldFunction &&
972           !Blocks.count(I->getParent()))
973         I->replaceUsesOfWith(header, newHeader);
974 
975   return newFunction;
976 }
977 
978 /// Erase lifetime.start markers which reference inputs to the extraction
979 /// region, and insert the referenced memory into \p LifetimesStart.
980 ///
981 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
982 /// of allocas which will be moved from the caller function into the extracted
983 /// function (\p SunkAllocas).
984 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
985                                          const SetVector<Value *> &SunkAllocas,
986                                          SetVector<Value *> &LifetimesStart) {
987   for (BasicBlock *BB : Blocks) {
988     for (auto It = BB->begin(), End = BB->end(); It != End;) {
989       auto *II = dyn_cast<IntrinsicInst>(&*It);
990       ++It;
991       if (!II || !II->isLifetimeStartOrEnd())
992         continue;
993 
994       // Get the memory operand of the lifetime marker. If the underlying
995       // object is a sunk alloca, or is otherwise defined in the extraction
996       // region, the lifetime marker must not be erased.
997       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
998       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
999         continue;
1000 
1001       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1002         LifetimesStart.insert(Mem);
1003       II->eraseFromParent();
1004     }
1005   }
1006 }
1007 
1008 /// Insert lifetime start/end markers surrounding the call to the new function
1009 /// for objects defined in the caller.
1010 static void insertLifetimeMarkersSurroundingCall(
1011     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1012     CallInst *TheCall) {
1013   LLVMContext &Ctx = M->getContext();
1014   auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
1015   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1016   Instruction *Term = TheCall->getParent()->getTerminator();
1017 
1018   // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
1019   // needed to satisfy this requirement so they may be reused.
1020   DenseMap<Value *, Value *> Bitcasts;
1021 
1022   // Emit lifetime markers for the pointers given in \p Objects. Insert the
1023   // markers before the call if \p InsertBefore, and after the call otherwise.
1024   auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
1025                            bool InsertBefore) {
1026     for (Value *Mem : Objects) {
1027       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1028                                             TheCall->getFunction()) &&
1029              "Input memory not defined in original function");
1030       Value *&MemAsI8Ptr = Bitcasts[Mem];
1031       if (!MemAsI8Ptr) {
1032         if (Mem->getType() == Int8PtrTy)
1033           MemAsI8Ptr = Mem;
1034         else
1035           MemAsI8Ptr =
1036               CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
1037       }
1038 
1039       auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
1040       if (InsertBefore)
1041         Marker->insertBefore(TheCall);
1042       else
1043         Marker->insertBefore(Term);
1044     }
1045   };
1046 
1047   if (!LifetimesStart.empty()) {
1048     auto StartFn = llvm::Intrinsic::getDeclaration(
1049         M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
1050     insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
1051   }
1052 
1053   if (!LifetimesEnd.empty()) {
1054     auto EndFn = llvm::Intrinsic::getDeclaration(
1055         M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
1056     insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
1057   }
1058 }
1059 
1060 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1061 /// the call instruction, splitting any PHI nodes in the header block as
1062 /// necessary.
1063 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1064                                                     BasicBlock *codeReplacer,
1065                                                     ValueSet &inputs,
1066                                                     ValueSet &outputs) {
1067   // Emit a call to the new function, passing in: *pointer to struct (if
1068   // aggregating parameters), or plan inputs and allocated memory for outputs
1069   std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
1070 
1071   Module *M = newFunction->getParent();
1072   LLVMContext &Context = M->getContext();
1073   const DataLayout &DL = M->getDataLayout();
1074   CallInst *call = nullptr;
1075 
1076   // Add inputs as params, or to be filled into the struct
1077   unsigned ArgNo = 0;
1078   SmallVector<unsigned, 1> SwiftErrorArgs;
1079   for (Value *input : inputs) {
1080     if (AggregateArgs)
1081       StructValues.push_back(input);
1082     else {
1083       params.push_back(input);
1084       if (input->isSwiftError())
1085         SwiftErrorArgs.push_back(ArgNo);
1086     }
1087     ++ArgNo;
1088   }
1089 
1090   // Create allocas for the outputs
1091   for (Value *output : outputs) {
1092     if (AggregateArgs) {
1093       StructValues.push_back(output);
1094     } else {
1095       AllocaInst *alloca =
1096         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1097                        nullptr, output->getName() + ".loc",
1098                        &codeReplacer->getParent()->front().front());
1099       ReloadOutputs.push_back(alloca);
1100       params.push_back(alloca);
1101     }
1102   }
1103 
1104   StructType *StructArgTy = nullptr;
1105   AllocaInst *Struct = nullptr;
1106   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
1107     std::vector<Type *> ArgTypes;
1108     for (ValueSet::iterator v = StructValues.begin(),
1109            ve = StructValues.end(); v != ve; ++v)
1110       ArgTypes.push_back((*v)->getType());
1111 
1112     // Allocate a struct at the beginning of this function
1113     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1114     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1115                             "structArg",
1116                             &codeReplacer->getParent()->front().front());
1117     params.push_back(Struct);
1118 
1119     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1120       Value *Idx[2];
1121       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1122       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1123       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1124           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1125       codeReplacer->getInstList().push_back(GEP);
1126       StoreInst *SI = new StoreInst(StructValues[i], GEP);
1127       codeReplacer->getInstList().push_back(SI);
1128     }
1129   }
1130 
1131   // Emit the call to the function
1132   call = CallInst::Create(newFunction, params,
1133                           NumExitBlocks > 1 ? "targetBlock" : "");
1134   // Add debug location to the new call, if the original function has debug
1135   // info. In that case, the terminator of the entry block of the extracted
1136   // function contains the first debug location of the extracted function,
1137   // set in extractCodeRegion.
1138   if (codeReplacer->getParent()->getSubprogram()) {
1139     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1140       call->setDebugLoc(DL);
1141   }
1142   codeReplacer->getInstList().push_back(call);
1143 
1144   // Set swifterror parameter attributes.
1145   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1146     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1147     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1148   }
1149 
1150   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
1151   unsigned FirstOut = inputs.size();
1152   if (!AggregateArgs)
1153     std::advance(OutputArgBegin, inputs.size());
1154 
1155   // Reload the outputs passed in by reference.
1156   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1157     Value *Output = nullptr;
1158     if (AggregateArgs) {
1159       Value *Idx[2];
1160       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1161       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1162       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1163           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1164       codeReplacer->getInstList().push_back(GEP);
1165       Output = GEP;
1166     } else {
1167       Output = ReloadOutputs[i];
1168     }
1169     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1170                                   outputs[i]->getName() + ".reload");
1171     Reloads.push_back(load);
1172     codeReplacer->getInstList().push_back(load);
1173     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1174     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1175       Instruction *inst = cast<Instruction>(Users[u]);
1176       if (!Blocks.count(inst->getParent()))
1177         inst->replaceUsesOfWith(outputs[i], load);
1178     }
1179   }
1180 
1181   // Now we can emit a switch statement using the call as a value.
1182   SwitchInst *TheSwitch =
1183       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1184                          codeReplacer, 0, codeReplacer);
1185 
1186   // Since there may be multiple exits from the original region, make the new
1187   // function return an unsigned, switch on that number.  This loop iterates
1188   // over all of the blocks in the extracted region, updating any terminator
1189   // instructions in the to-be-extracted region that branch to blocks that are
1190   // not in the region to be extracted.
1191   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1192 
1193   unsigned switchVal = 0;
1194   for (BasicBlock *Block : Blocks) {
1195     Instruction *TI = Block->getTerminator();
1196     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1197       if (!Blocks.count(TI->getSuccessor(i))) {
1198         BasicBlock *OldTarget = TI->getSuccessor(i);
1199         // add a new basic block which returns the appropriate value
1200         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1201         if (!NewTarget) {
1202           // If we don't already have an exit stub for this non-extracted
1203           // destination, create one now!
1204           NewTarget = BasicBlock::Create(Context,
1205                                          OldTarget->getName() + ".exitStub",
1206                                          newFunction);
1207           unsigned SuccNum = switchVal++;
1208 
1209           Value *brVal = nullptr;
1210           switch (NumExitBlocks) {
1211           case 0:
1212           case 1: break;  // No value needed.
1213           case 2:         // Conditional branch, return a bool
1214             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1215             break;
1216           default:
1217             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1218             break;
1219           }
1220 
1221           ReturnInst::Create(Context, brVal, NewTarget);
1222 
1223           // Update the switch instruction.
1224           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1225                                               SuccNum),
1226                              OldTarget);
1227         }
1228 
1229         // rewrite the original branch instruction with this new target
1230         TI->setSuccessor(i, NewTarget);
1231       }
1232   }
1233 
1234   // Store the arguments right after the definition of output value.
1235   // This should be proceeded after creating exit stubs to be ensure that invoke
1236   // result restore will be placed in the outlined function.
1237   Function::arg_iterator OAI = OutputArgBegin;
1238   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1239     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1240     if (!OutI)
1241       continue;
1242 
1243     // Find proper insertion point.
1244     BasicBlock::iterator InsertPt;
1245     // In case OutI is an invoke, we insert the store at the beginning in the
1246     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1247     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1248       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1249     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1250       InsertPt = Phi->getParent()->getFirstInsertionPt();
1251     else
1252       InsertPt = std::next(OutI->getIterator());
1253 
1254     Instruction *InsertBefore = &*InsertPt;
1255     assert((InsertBefore->getFunction() == newFunction ||
1256             Blocks.count(InsertBefore->getParent())) &&
1257            "InsertPt should be in new function");
1258     assert(OAI != newFunction->arg_end() &&
1259            "Number of output arguments should match "
1260            "the amount of defined values");
1261     if (AggregateArgs) {
1262       Value *Idx[2];
1263       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1264       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1265       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1266           StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
1267           InsertBefore);
1268       new StoreInst(outputs[i], GEP, InsertBefore);
1269       // Since there should be only one struct argument aggregating
1270       // all the output values, we shouldn't increment OAI, which always
1271       // points to the struct argument, in this case.
1272     } else {
1273       new StoreInst(outputs[i], &*OAI, InsertBefore);
1274       ++OAI;
1275     }
1276   }
1277 
1278   // Now that we've done the deed, simplify the switch instruction.
1279   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1280   switch (NumExitBlocks) {
1281   case 0:
1282     // There are no successors (the block containing the switch itself), which
1283     // means that previously this was the last part of the function, and hence
1284     // this should be rewritten as a `ret'
1285 
1286     // Check if the function should return a value
1287     if (OldFnRetTy->isVoidTy()) {
1288       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1289     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1290       // return what we have
1291       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1292     } else {
1293       // Otherwise we must have code extracted an unwind or something, just
1294       // return whatever we want.
1295       ReturnInst::Create(Context,
1296                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1297     }
1298 
1299     TheSwitch->eraseFromParent();
1300     break;
1301   case 1:
1302     // Only a single destination, change the switch into an unconditional
1303     // branch.
1304     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1305     TheSwitch->eraseFromParent();
1306     break;
1307   case 2:
1308     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1309                        call, TheSwitch);
1310     TheSwitch->eraseFromParent();
1311     break;
1312   default:
1313     // Otherwise, make the default destination of the switch instruction be one
1314     // of the other successors.
1315     TheSwitch->setCondition(call);
1316     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1317     // Remove redundant case
1318     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1319     break;
1320   }
1321 
1322   // Insert lifetime markers around the reloads of any output values. The
1323   // allocas output values are stored in are only in-use in the codeRepl block.
1324   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1325 
1326   return call;
1327 }
1328 
1329 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1330   Function *oldFunc = (*Blocks.begin())->getParent();
1331   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1332   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1333 
1334   for (BasicBlock *Block : Blocks) {
1335     // Delete the basic block from the old function, and the list of blocks
1336     oldBlocks.remove(Block);
1337 
1338     // Insert this basic block into the new function
1339     newBlocks.push_back(Block);
1340   }
1341 }
1342 
1343 void CodeExtractor::calculateNewCallTerminatorWeights(
1344     BasicBlock *CodeReplacer,
1345     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1346     BranchProbabilityInfo *BPI) {
1347   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1348   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1349 
1350   // Update the branch weights for the exit block.
1351   Instruction *TI = CodeReplacer->getTerminator();
1352   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1353 
1354   // Block Frequency distribution with dummy node.
1355   Distribution BranchDist;
1356 
1357   // Add each of the frequencies of the successors.
1358   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1359     BlockNode ExitNode(i);
1360     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1361     if (ExitFreq != 0)
1362       BranchDist.addExit(ExitNode, ExitFreq);
1363     else
1364       BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1365   }
1366 
1367   // Check for no total weight.
1368   if (BranchDist.Total == 0)
1369     return;
1370 
1371   // Normalize the distribution so that they can fit in unsigned.
1372   BranchDist.normalize();
1373 
1374   // Create normalized branch weights and set the metadata.
1375   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1376     const auto &Weight = BranchDist.Weights[I];
1377 
1378     // Get the weight and update the current BFI.
1379     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1380     BranchProbability BP(Weight.Amount, BranchDist.Total);
1381     BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1382   }
1383   TI->setMetadata(
1384       LLVMContext::MD_prof,
1385       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1386 }
1387 
1388 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1389 /// \p F.
1390 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1391   for (Instruction &I : instructions(F)) {
1392     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1393     findDbgUsers(DbgUsers, &I);
1394     for (DbgVariableIntrinsic *DVI : DbgUsers)
1395       if (DVI->getFunction() != &F)
1396         DVI->eraseFromParent();
1397   }
1398 }
1399 
1400 /// Fix up the debug info in the old and new functions by pointing line
1401 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1402 /// intrinsics which point to values outside of the new function.
1403 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1404                                          CallInst &TheCall) {
1405   DISubprogram *OldSP = OldFunc.getSubprogram();
1406   LLVMContext &Ctx = OldFunc.getContext();
1407 
1408   if (!OldSP) {
1409     // Erase any debug info the new function contains.
1410     stripDebugInfo(NewFunc);
1411     // Make sure the old function doesn't contain any non-local metadata refs.
1412     eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1413     return;
1414   }
1415 
1416   // Create a subprogram for the new function. Leave out a description of the
1417   // function arguments, as the parameters don't correspond to anything at the
1418   // source level.
1419   assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1420   DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolvedNodes=*/false,
1421                 OldSP->getUnit());
1422   auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
1423   DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1424                                     DISubprogram::SPFlagOptimized |
1425                                     DISubprogram::SPFlagLocalToUnit;
1426   auto NewSP = DIB.createFunction(
1427       OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1428       /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1429   NewFunc.setSubprogram(NewSP);
1430 
1431   // Debug intrinsics in the new function need to be updated in one of two
1432   // ways:
1433   //  1) They need to be deleted, because they describe a value in the old
1434   //     function.
1435   //  2) They need to point to fresh metadata, e.g. because they currently
1436   //     point to a variable in the wrong scope.
1437   SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1438   SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1439   for (Instruction &I : instructions(NewFunc)) {
1440     auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1441     if (!DII)
1442       continue;
1443 
1444     // Point the intrinsic to a fresh label within the new function.
1445     if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1446       DILabel *OldLabel = DLI->getLabel();
1447       DINode *&NewLabel = RemappedMetadata[OldLabel];
1448       if (!NewLabel)
1449         NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(),
1450                                 OldLabel->getFile(), OldLabel->getLine());
1451       DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1452       continue;
1453     }
1454 
1455     // If the location isn't a constant or an instruction, delete the
1456     // intrinsic.
1457     auto *DVI = cast<DbgVariableIntrinsic>(DII);
1458     Value *Location = DVI->getVariableLocation();
1459     if (!Location ||
1460         (!isa<Constant>(Location) && !isa<Instruction>(Location))) {
1461       DebugIntrinsicsToDelete.push_back(DVI);
1462       continue;
1463     }
1464 
1465     // If the variable location is an instruction but isn't in the new
1466     // function, delete the intrinsic.
1467     Instruction *LocationInst = dyn_cast<Instruction>(Location);
1468     if (LocationInst && LocationInst->getFunction() != &NewFunc) {
1469       DebugIntrinsicsToDelete.push_back(DVI);
1470       continue;
1471     }
1472 
1473     // Point the intrinsic to a fresh variable within the new function.
1474     DILocalVariable *OldVar = DVI->getVariable();
1475     DINode *&NewVar = RemappedMetadata[OldVar];
1476     if (!NewVar)
1477       NewVar = DIB.createAutoVariable(
1478           NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1479           OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1480           OldVar->getAlignInBits());
1481     DVI->setArgOperand(1, MetadataAsValue::get(Ctx, NewVar));
1482   }
1483   for (auto *DII : DebugIntrinsicsToDelete)
1484     DII->eraseFromParent();
1485   DIB.finalizeSubprogram(NewSP);
1486 
1487   // Fix up the scope information attached to the line locations in the new
1488   // function.
1489   for (Instruction &I : instructions(NewFunc)) {
1490     if (const DebugLoc &DL = I.getDebugLoc())
1491       I.setDebugLoc(DebugLoc::get(DL.getLine(), DL.getCol(), NewSP));
1492 
1493     // Loop info metadata may contain line locations. Fix them up.
1494     auto updateLoopInfoLoc = [&Ctx,
1495                               NewSP](const DILocation &Loc) -> DILocation * {
1496       return DILocation::get(Ctx, Loc.getLine(), Loc.getColumn(), NewSP,
1497                              nullptr);
1498     };
1499     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1500   }
1501   if (!TheCall.getDebugLoc())
1502     TheCall.setDebugLoc(DebugLoc::get(0, 0, OldSP));
1503 
1504   eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1505 }
1506 
1507 Function *
1508 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1509   if (!isEligible())
1510     return nullptr;
1511 
1512   // Assumption: this is a single-entry code region, and the header is the first
1513   // block in the region.
1514   BasicBlock *header = *Blocks.begin();
1515   Function *oldFunction = header->getParent();
1516 
1517   // Calculate the entry frequency of the new function before we change the root
1518   //   block.
1519   BlockFrequency EntryFreq;
1520   if (BFI) {
1521     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1522     for (BasicBlock *Pred : predecessors(header)) {
1523       if (Blocks.count(Pred))
1524         continue;
1525       EntryFreq +=
1526           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1527     }
1528   }
1529 
1530   // Remove @llvm.assume calls that will be moved to the new function from the
1531   // old function's assumption cache.
1532   for (BasicBlock *Block : Blocks) {
1533     for (auto It = Block->begin(), End = Block->end(); It != End;) {
1534       Instruction *I = &*It;
1535       ++It;
1536 
1537       if (match(I, m_Intrinsic<Intrinsic::assume>())) {
1538         if (AC)
1539           AC->unregisterAssumption(cast<CallInst>(I));
1540         I->eraseFromParent();
1541       }
1542     }
1543   }
1544 
1545   // If we have any return instructions in the region, split those blocks so
1546   // that the return is not in the region.
1547   splitReturnBlocks();
1548 
1549   // Calculate the exit blocks for the extracted region and the total exit
1550   // weights for each of those blocks.
1551   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1552   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1553   for (BasicBlock *Block : Blocks) {
1554     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1555          ++SI) {
1556       if (!Blocks.count(*SI)) {
1557         // Update the branch weight for this successor.
1558         if (BFI) {
1559           BlockFrequency &BF = ExitWeights[*SI];
1560           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1561         }
1562         ExitBlocks.insert(*SI);
1563       }
1564     }
1565   }
1566   NumExitBlocks = ExitBlocks.size();
1567 
1568   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1569   severSplitPHINodesOfEntry(header);
1570   severSplitPHINodesOfExits(ExitBlocks);
1571 
1572   // This takes place of the original loop
1573   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1574                                                 "codeRepl", oldFunction,
1575                                                 header);
1576 
1577   // The new function needs a root node because other nodes can branch to the
1578   // head of the region, but the entry node of a function cannot have preds.
1579   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1580                                                "newFuncRoot");
1581   auto *BranchI = BranchInst::Create(header);
1582   // If the original function has debug info, we have to add a debug location
1583   // to the new branch instruction from the artificial entry block.
1584   // We use the debug location of the first instruction in the extracted
1585   // blocks, as there is no other equivalent line in the source code.
1586   if (oldFunction->getSubprogram()) {
1587     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1588       return any_of(*BB, [&BranchI](const Instruction &I) {
1589         if (!I.getDebugLoc())
1590           return false;
1591         BranchI->setDebugLoc(I.getDebugLoc());
1592         return true;
1593       });
1594     });
1595   }
1596   newFuncRoot->getInstList().push_back(BranchI);
1597 
1598   ValueSet inputs, outputs, SinkingCands, HoistingCands;
1599   BasicBlock *CommonExit = nullptr;
1600   findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1601   assert(HoistingCands.empty() || CommonExit);
1602 
1603   // Find inputs to, outputs from the code region.
1604   findInputsOutputs(inputs, outputs, SinkingCands);
1605 
1606   // Now sink all instructions which only have non-phi uses inside the region.
1607   // Group the allocas at the start of the block, so that any bitcast uses of
1608   // the allocas are well-defined.
1609   AllocaInst *FirstSunkAlloca = nullptr;
1610   for (auto *II : SinkingCands) {
1611     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1612       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1613       if (!FirstSunkAlloca)
1614         FirstSunkAlloca = AI;
1615     }
1616   }
1617   assert((SinkingCands.empty() || FirstSunkAlloca) &&
1618          "Did not expect a sink candidate without any allocas");
1619   for (auto *II : SinkingCands) {
1620     if (!isa<AllocaInst>(II)) {
1621       cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1622     }
1623   }
1624 
1625   if (!HoistingCands.empty()) {
1626     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1627     Instruction *TI = HoistToBlock->getTerminator();
1628     for (auto *II : HoistingCands)
1629       cast<Instruction>(II)->moveBefore(TI);
1630   }
1631 
1632   // Collect objects which are inputs to the extraction region and also
1633   // referenced by lifetime start markers within it. The effects of these
1634   // markers must be replicated in the calling function to prevent the stack
1635   // coloring pass from merging slots which store input objects.
1636   ValueSet LifetimesStart;
1637   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1638 
1639   // Construct new function based on inputs/outputs & add allocas for all defs.
1640   Function *newFunction =
1641       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1642                         oldFunction, oldFunction->getParent());
1643 
1644   // Update the entry count of the function.
1645   if (BFI) {
1646     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1647     if (Count.hasValue())
1648       newFunction->setEntryCount(
1649           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1650     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1651   }
1652 
1653   CallInst *TheCall =
1654       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1655 
1656   moveCodeToFunction(newFunction);
1657 
1658   // Replicate the effects of any lifetime start/end markers which referenced
1659   // input objects in the extraction region by placing markers around the call.
1660   insertLifetimeMarkersSurroundingCall(
1661       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1662 
1663   // Propagate personality info to the new function if there is one.
1664   if (oldFunction->hasPersonalityFn())
1665     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1666 
1667   // Update the branch weights for the exit block.
1668   if (BFI && NumExitBlocks > 1)
1669     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1670 
1671   // Loop over all of the PHI nodes in the header and exit blocks, and change
1672   // any references to the old incoming edge to be the new incoming edge.
1673   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1674     PHINode *PN = cast<PHINode>(I);
1675     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1676       if (!Blocks.count(PN->getIncomingBlock(i)))
1677         PN->setIncomingBlock(i, newFuncRoot);
1678   }
1679 
1680   for (BasicBlock *ExitBB : ExitBlocks)
1681     for (PHINode &PN : ExitBB->phis()) {
1682       Value *IncomingCodeReplacerVal = nullptr;
1683       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1684         // Ignore incoming values from outside of the extracted region.
1685         if (!Blocks.count(PN.getIncomingBlock(i)))
1686           continue;
1687 
1688         // Ensure that there is only one incoming value from codeReplacer.
1689         if (!IncomingCodeReplacerVal) {
1690           PN.setIncomingBlock(i, codeReplacer);
1691           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1692         } else
1693           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1694                  "PHI has two incompatbile incoming values from codeRepl");
1695       }
1696     }
1697 
1698   fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1699 
1700   // Mark the new function `noreturn` if applicable. Terminators which resume
1701   // exception propagation are treated as returning instructions. This is to
1702   // avoid inserting traps after calls to outlined functions which unwind.
1703   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1704     const Instruction *Term = BB.getTerminator();
1705     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1706   });
1707   if (doesNotReturn)
1708     newFunction->setDoesNotReturn();
1709 
1710   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1711     newFunction->dump();
1712     report_fatal_error("verification of newFunction failed!");
1713   });
1714   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1715              report_fatal_error("verification of oldFunction failed!"));
1716   LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1717                  report_fatal_error("Stale Asumption cache for old Function!"));
1718   return newFunction;
1719 }
1720 
1721 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1722                                           const Function &NewFunc,
1723                                           AssumptionCache *AC) {
1724   for (auto AssumeVH : AC->assumptions()) {
1725     CallInst *I = dyn_cast_or_null<CallInst>(AssumeVH);
1726     if (!I)
1727       continue;
1728 
1729     // There shouldn't be any llvm.assume intrinsics in the new function.
1730     if (I->getFunction() != &OldFunc)
1731       return true;
1732 
1733     // There shouldn't be any stale affected values in the assumption cache
1734     // that were previously in the old function, but that have now been moved
1735     // to the new function.
1736     for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1737       CallInst *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1738       if (!AffectedCI)
1739         continue;
1740       if (AffectedCI->getFunction() != &OldFunc)
1741         return true;
1742       auto *AssumedInst = dyn_cast<Instruction>(AffectedCI->getOperand(0));
1743       if (AssumedInst->getFunction() != &OldFunc)
1744         return true;
1745     }
1746   }
1747   return false;
1748 }
1749