1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PatternMatch.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/Verifier.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 #include <cassert> 65 #include <cstdint> 66 #include <iterator> 67 #include <map> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 using namespace llvm::PatternMatch; 73 using ProfileCount = Function::ProfileCount; 74 75 #define DEBUG_TYPE "code-extractor" 76 77 // Provide a command-line option to aggregate function arguments into a struct 78 // for functions produced by the code extractor. This is useful when converting 79 // extracted functions to pthread-based code, as only one argument (void*) can 80 // be passed in to pthread_create(). 81 static cl::opt<bool> 82 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 83 cl::desc("Aggregate arguments to code-extracted functions")); 84 85 /// Test whether a block is valid for extraction. 86 static bool isBlockValidForExtraction(const BasicBlock &BB, 87 const SetVector<BasicBlock *> &Result, 88 bool AllowVarArgs, bool AllowAlloca) { 89 // taking the address of a basic block moved to another function is illegal 90 if (BB.hasAddressTaken()) 91 return false; 92 93 // don't hoist code that uses another basicblock address, as it's likely to 94 // lead to unexpected behavior, like cross-function jumps 95 SmallPtrSet<User const *, 16> Visited; 96 SmallVector<User const *, 16> ToVisit; 97 98 for (Instruction const &Inst : BB) 99 ToVisit.push_back(&Inst); 100 101 while (!ToVisit.empty()) { 102 User const *Curr = ToVisit.pop_back_val(); 103 if (!Visited.insert(Curr).second) 104 continue; 105 if (isa<BlockAddress const>(Curr)) 106 return false; // even a reference to self is likely to be not compatible 107 108 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 109 continue; 110 111 for (auto const &U : Curr->operands()) { 112 if (auto *UU = dyn_cast<User>(U)) 113 ToVisit.push_back(UU); 114 } 115 } 116 117 // If explicitly requested, allow vastart and alloca. For invoke instructions 118 // verify that extraction is valid. 119 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 120 if (isa<AllocaInst>(I)) { 121 if (!AllowAlloca) 122 return false; 123 continue; 124 } 125 126 if (const auto *II = dyn_cast<InvokeInst>(I)) { 127 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 128 // must be a part of the subgraph which is being extracted. 129 if (auto *UBB = II->getUnwindDest()) 130 if (!Result.count(UBB)) 131 return false; 132 continue; 133 } 134 135 // All catch handlers of a catchswitch instruction as well as the unwind 136 // destination must be in the subgraph. 137 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 138 if (auto *UBB = CSI->getUnwindDest()) 139 if (!Result.count(UBB)) 140 return false; 141 for (auto *HBB : CSI->handlers()) 142 if (!Result.count(const_cast<BasicBlock*>(HBB))) 143 return false; 144 continue; 145 } 146 147 // Make sure that entire catch handler is within subgraph. It is sufficient 148 // to check that catch return's block is in the list. 149 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 150 for (const auto *U : CPI->users()) 151 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 152 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 153 return false; 154 continue; 155 } 156 157 // And do similar checks for cleanup handler - the entire handler must be 158 // in subgraph which is going to be extracted. For cleanup return should 159 // additionally check that the unwind destination is also in the subgraph. 160 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 161 for (const auto *U : CPI->users()) 162 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 163 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 164 return false; 165 continue; 166 } 167 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 168 if (auto *UBB = CRI->getUnwindDest()) 169 if (!Result.count(UBB)) 170 return false; 171 continue; 172 } 173 174 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 175 if (const Function *F = CI->getCalledFunction()) { 176 auto IID = F->getIntrinsicID(); 177 if (IID == Intrinsic::vastart) { 178 if (AllowVarArgs) 179 continue; 180 else 181 return false; 182 } 183 184 // Currently, we miscompile outlined copies of eh_typid_for. There are 185 // proposals for fixing this in llvm.org/PR39545. 186 if (IID == Intrinsic::eh_typeid_for) 187 return false; 188 } 189 } 190 } 191 192 return true; 193 } 194 195 /// Build a set of blocks to extract if the input blocks are viable. 196 static SetVector<BasicBlock *> 197 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 198 bool AllowVarArgs, bool AllowAlloca) { 199 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 200 SetVector<BasicBlock *> Result; 201 202 // Loop over the blocks, adding them to our set-vector, and aborting with an 203 // empty set if we encounter invalid blocks. 204 for (BasicBlock *BB : BBs) { 205 // If this block is dead, don't process it. 206 if (DT && !DT->isReachableFromEntry(BB)) 207 continue; 208 209 if (!Result.insert(BB)) 210 llvm_unreachable("Repeated basic blocks in extraction input"); 211 } 212 213 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 214 << '\n'); 215 216 for (auto *BB : Result) { 217 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 218 return {}; 219 220 // Make sure that the first block is not a landing pad. 221 if (BB == Result.front()) { 222 if (BB->isEHPad()) { 223 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 224 return {}; 225 } 226 continue; 227 } 228 229 // All blocks other than the first must not have predecessors outside of 230 // the subgraph which is being extracted. 231 for (auto *PBB : predecessors(BB)) 232 if (!Result.count(PBB)) { 233 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 234 "outside the region except for the first block!\n" 235 << "Problematic source BB: " << BB->getName() << "\n" 236 << "Problematic destination BB: " << PBB->getName() 237 << "\n"); 238 return {}; 239 } 240 } 241 242 return Result; 243 } 244 245 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 246 bool AggregateArgs, BlockFrequencyInfo *BFI, 247 BranchProbabilityInfo *BPI, AssumptionCache *AC, 248 bool AllowVarArgs, bool AllowAlloca, 249 BasicBlock *AllocationBlock, std::string Suffix) 250 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 251 BPI(BPI), AC(AC), AllocationBlock(AllocationBlock), 252 AllowVarArgs(AllowVarArgs), 253 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 254 Suffix(Suffix) {} 255 256 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 257 BlockFrequencyInfo *BFI, 258 BranchProbabilityInfo *BPI, AssumptionCache *AC, 259 std::string Suffix) 260 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 261 BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false), 262 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 263 /* AllowVarArgs */ false, 264 /* AllowAlloca */ false)), 265 Suffix(Suffix) {} 266 267 /// definedInRegion - Return true if the specified value is defined in the 268 /// extracted region. 269 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 270 if (Instruction *I = dyn_cast<Instruction>(V)) 271 if (Blocks.count(I->getParent())) 272 return true; 273 return false; 274 } 275 276 /// definedInCaller - Return true if the specified value is defined in the 277 /// function being code extracted, but not in the region being extracted. 278 /// These values must be passed in as live-ins to the function. 279 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 280 if (isa<Argument>(V)) return true; 281 if (Instruction *I = dyn_cast<Instruction>(V)) 282 if (!Blocks.count(I->getParent())) 283 return true; 284 return false; 285 } 286 287 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 288 BasicBlock *CommonExitBlock = nullptr; 289 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 290 for (auto *Succ : successors(Block)) { 291 // Internal edges, ok. 292 if (Blocks.count(Succ)) 293 continue; 294 if (!CommonExitBlock) { 295 CommonExitBlock = Succ; 296 continue; 297 } 298 if (CommonExitBlock != Succ) 299 return true; 300 } 301 return false; 302 }; 303 304 if (any_of(Blocks, hasNonCommonExitSucc)) 305 return nullptr; 306 307 return CommonExitBlock; 308 } 309 310 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 311 for (BasicBlock &BB : F) { 312 for (Instruction &II : BB.instructionsWithoutDebug()) 313 if (auto *AI = dyn_cast<AllocaInst>(&II)) 314 Allocas.push_back(AI); 315 316 findSideEffectInfoForBlock(BB); 317 } 318 } 319 320 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 321 for (Instruction &II : BB.instructionsWithoutDebug()) { 322 unsigned Opcode = II.getOpcode(); 323 Value *MemAddr = nullptr; 324 switch (Opcode) { 325 case Instruction::Store: 326 case Instruction::Load: { 327 if (Opcode == Instruction::Store) { 328 StoreInst *SI = cast<StoreInst>(&II); 329 MemAddr = SI->getPointerOperand(); 330 } else { 331 LoadInst *LI = cast<LoadInst>(&II); 332 MemAddr = LI->getPointerOperand(); 333 } 334 // Global variable can not be aliased with locals. 335 if (isa<Constant>(MemAddr)) 336 break; 337 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 338 if (!isa<AllocaInst>(Base)) { 339 SideEffectingBlocks.insert(&BB); 340 return; 341 } 342 BaseMemAddrs[&BB].insert(Base); 343 break; 344 } 345 default: { 346 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 347 if (IntrInst) { 348 if (IntrInst->isLifetimeStartOrEnd()) 349 break; 350 SideEffectingBlocks.insert(&BB); 351 return; 352 } 353 // Treat all the other cases conservatively if it has side effects. 354 if (II.mayHaveSideEffects()) { 355 SideEffectingBlocks.insert(&BB); 356 return; 357 } 358 } 359 } 360 } 361 } 362 363 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 364 BasicBlock &BB, AllocaInst *Addr) const { 365 if (SideEffectingBlocks.count(&BB)) 366 return true; 367 auto It = BaseMemAddrs.find(&BB); 368 if (It != BaseMemAddrs.end()) 369 return It->second.count(Addr); 370 return false; 371 } 372 373 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 374 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 375 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 376 Function *Func = (*Blocks.begin())->getParent(); 377 for (BasicBlock &BB : *Func) { 378 if (Blocks.count(&BB)) 379 continue; 380 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 381 return false; 382 } 383 return true; 384 } 385 386 BasicBlock * 387 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 388 BasicBlock *SinglePredFromOutlineRegion = nullptr; 389 assert(!Blocks.count(CommonExitBlock) && 390 "Expect a block outside the region!"); 391 for (auto *Pred : predecessors(CommonExitBlock)) { 392 if (!Blocks.count(Pred)) 393 continue; 394 if (!SinglePredFromOutlineRegion) { 395 SinglePredFromOutlineRegion = Pred; 396 } else if (SinglePredFromOutlineRegion != Pred) { 397 SinglePredFromOutlineRegion = nullptr; 398 break; 399 } 400 } 401 402 if (SinglePredFromOutlineRegion) 403 return SinglePredFromOutlineRegion; 404 405 #ifndef NDEBUG 406 auto getFirstPHI = [](BasicBlock *BB) { 407 BasicBlock::iterator I = BB->begin(); 408 PHINode *FirstPhi = nullptr; 409 while (I != BB->end()) { 410 PHINode *Phi = dyn_cast<PHINode>(I); 411 if (!Phi) 412 break; 413 if (!FirstPhi) { 414 FirstPhi = Phi; 415 break; 416 } 417 } 418 return FirstPhi; 419 }; 420 // If there are any phi nodes, the single pred either exists or has already 421 // be created before code extraction. 422 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 423 #endif 424 425 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 426 CommonExitBlock->getFirstNonPHI()->getIterator()); 427 428 for (BasicBlock *Pred : 429 llvm::make_early_inc_range(predecessors(CommonExitBlock))) { 430 if (Blocks.count(Pred)) 431 continue; 432 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 433 } 434 // Now add the old exit block to the outline region. 435 Blocks.insert(CommonExitBlock); 436 OldTargets.push_back(NewExitBlock); 437 return CommonExitBlock; 438 } 439 440 // Find the pair of life time markers for address 'Addr' that are either 441 // defined inside the outline region or can legally be shrinkwrapped into the 442 // outline region. If there are not other untracked uses of the address, return 443 // the pair of markers if found; otherwise return a pair of nullptr. 444 CodeExtractor::LifetimeMarkerInfo 445 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 446 Instruction *Addr, 447 BasicBlock *ExitBlock) const { 448 LifetimeMarkerInfo Info; 449 450 for (User *U : Addr->users()) { 451 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 452 if (IntrInst) { 453 // We don't model addresses with multiple start/end markers, but the 454 // markers do not need to be in the region. 455 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 456 if (Info.LifeStart) 457 return {}; 458 Info.LifeStart = IntrInst; 459 continue; 460 } 461 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 462 if (Info.LifeEnd) 463 return {}; 464 Info.LifeEnd = IntrInst; 465 continue; 466 } 467 // At this point, permit debug uses outside of the region. 468 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 469 if (isa<DbgInfoIntrinsic>(IntrInst)) 470 continue; 471 } 472 // Find untracked uses of the address, bail. 473 if (!definedInRegion(Blocks, U)) 474 return {}; 475 } 476 477 if (!Info.LifeStart || !Info.LifeEnd) 478 return {}; 479 480 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 481 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 482 // Do legality check. 483 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 484 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 485 return {}; 486 487 // Check to see if we have a place to do hoisting, if not, bail. 488 if (Info.HoistLifeEnd && !ExitBlock) 489 return {}; 490 491 return Info; 492 } 493 494 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 495 ValueSet &SinkCands, ValueSet &HoistCands, 496 BasicBlock *&ExitBlock) const { 497 Function *Func = (*Blocks.begin())->getParent(); 498 ExitBlock = getCommonExitBlock(Blocks); 499 500 auto moveOrIgnoreLifetimeMarkers = 501 [&](const LifetimeMarkerInfo &LMI) -> bool { 502 if (!LMI.LifeStart) 503 return false; 504 if (LMI.SinkLifeStart) { 505 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 506 << "\n"); 507 SinkCands.insert(LMI.LifeStart); 508 } 509 if (LMI.HoistLifeEnd) { 510 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 511 HoistCands.insert(LMI.LifeEnd); 512 } 513 return true; 514 }; 515 516 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 517 // this is much faster than walking all the instructions. 518 for (AllocaInst *AI : CEAC.getAllocas()) { 519 BasicBlock *BB = AI->getParent(); 520 if (Blocks.count(BB)) 521 continue; 522 523 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 524 // check whether it is actually still in the original function. 525 Function *AIFunc = BB->getParent(); 526 if (AIFunc != Func) 527 continue; 528 529 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 530 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 531 if (Moved) { 532 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 533 SinkCands.insert(AI); 534 continue; 535 } 536 537 // Find bitcasts in the outlined region that have lifetime marker users 538 // outside that region. Replace the lifetime marker use with an 539 // outside region bitcast to avoid unnecessary alloca/reload instructions 540 // and extra lifetime markers. 541 SmallVector<Instruction *, 2> LifetimeBitcastUsers; 542 for (User *U : AI->users()) { 543 if (!definedInRegion(Blocks, U)) 544 continue; 545 546 if (U->stripInBoundsConstantOffsets() != AI) 547 continue; 548 549 Instruction *Bitcast = cast<Instruction>(U); 550 for (User *BU : Bitcast->users()) { 551 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU); 552 if (!IntrInst) 553 continue; 554 555 if (!IntrInst->isLifetimeStartOrEnd()) 556 continue; 557 558 if (definedInRegion(Blocks, IntrInst)) 559 continue; 560 561 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast" 562 << *Bitcast << " in out-of-region lifetime marker " 563 << *IntrInst << "\n"); 564 LifetimeBitcastUsers.push_back(IntrInst); 565 } 566 } 567 568 for (Instruction *I : LifetimeBitcastUsers) { 569 Module *M = AIFunc->getParent(); 570 LLVMContext &Ctx = M->getContext(); 571 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); 572 CastInst *CastI = 573 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I); 574 I->replaceUsesOfWith(I->getOperand(1), CastI); 575 } 576 577 // Follow any bitcasts. 578 SmallVector<Instruction *, 2> Bitcasts; 579 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 580 for (User *U : AI->users()) { 581 if (U->stripInBoundsConstantOffsets() == AI) { 582 Instruction *Bitcast = cast<Instruction>(U); 583 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 584 if (LMI.LifeStart) { 585 Bitcasts.push_back(Bitcast); 586 BitcastLifetimeInfo.push_back(LMI); 587 continue; 588 } 589 } 590 591 // Found unknown use of AI. 592 if (!definedInRegion(Blocks, U)) { 593 Bitcasts.clear(); 594 break; 595 } 596 } 597 598 // Either no bitcasts reference the alloca or there are unknown uses. 599 if (Bitcasts.empty()) 600 continue; 601 602 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 603 SinkCands.insert(AI); 604 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 605 Instruction *BitcastAddr = Bitcasts[I]; 606 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 607 assert(LMI.LifeStart && 608 "Unsafe to sink bitcast without lifetime markers"); 609 moveOrIgnoreLifetimeMarkers(LMI); 610 if (!definedInRegion(Blocks, BitcastAddr)) { 611 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 612 << "\n"); 613 SinkCands.insert(BitcastAddr); 614 } 615 } 616 } 617 } 618 619 bool CodeExtractor::isEligible() const { 620 if (Blocks.empty()) 621 return false; 622 BasicBlock *Header = *Blocks.begin(); 623 Function *F = Header->getParent(); 624 625 // For functions with varargs, check that varargs handling is only done in the 626 // outlined function, i.e vastart and vaend are only used in outlined blocks. 627 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 628 auto containsVarArgIntrinsic = [](const Instruction &I) { 629 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 630 if (const Function *Callee = CI->getCalledFunction()) 631 return Callee->getIntrinsicID() == Intrinsic::vastart || 632 Callee->getIntrinsicID() == Intrinsic::vaend; 633 return false; 634 }; 635 636 for (auto &BB : *F) { 637 if (Blocks.count(&BB)) 638 continue; 639 if (llvm::any_of(BB, containsVarArgIntrinsic)) 640 return false; 641 } 642 } 643 return true; 644 } 645 646 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 647 const ValueSet &SinkCands) const { 648 for (BasicBlock *BB : Blocks) { 649 // If a used value is defined outside the region, it's an input. If an 650 // instruction is used outside the region, it's an output. 651 for (Instruction &II : *BB) { 652 for (auto &OI : II.operands()) { 653 Value *V = OI; 654 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 655 Inputs.insert(V); 656 } 657 658 for (User *U : II.users()) 659 if (!definedInRegion(Blocks, U)) { 660 Outputs.insert(&II); 661 break; 662 } 663 } 664 } 665 } 666 667 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 668 /// of the region, we need to split the entry block of the region so that the 669 /// PHI node is easier to deal with. 670 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 671 unsigned NumPredsFromRegion = 0; 672 unsigned NumPredsOutsideRegion = 0; 673 674 if (Header != &Header->getParent()->getEntryBlock()) { 675 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 676 if (!PN) return; // No PHI nodes. 677 678 // If the header node contains any PHI nodes, check to see if there is more 679 // than one entry from outside the region. If so, we need to sever the 680 // header block into two. 681 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 682 if (Blocks.count(PN->getIncomingBlock(i))) 683 ++NumPredsFromRegion; 684 else 685 ++NumPredsOutsideRegion; 686 687 // If there is one (or fewer) predecessor from outside the region, we don't 688 // need to do anything special. 689 if (NumPredsOutsideRegion <= 1) return; 690 } 691 692 // Otherwise, we need to split the header block into two pieces: one 693 // containing PHI nodes merging values from outside of the region, and a 694 // second that contains all of the code for the block and merges back any 695 // incoming values from inside of the region. 696 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 697 698 // We only want to code extract the second block now, and it becomes the new 699 // header of the region. 700 BasicBlock *OldPred = Header; 701 Blocks.remove(OldPred); 702 Blocks.insert(NewBB); 703 Header = NewBB; 704 705 // Okay, now we need to adjust the PHI nodes and any branches from within the 706 // region to go to the new header block instead of the old header block. 707 if (NumPredsFromRegion) { 708 PHINode *PN = cast<PHINode>(OldPred->begin()); 709 // Loop over all of the predecessors of OldPred that are in the region, 710 // changing them to branch to NewBB instead. 711 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 712 if (Blocks.count(PN->getIncomingBlock(i))) { 713 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 714 TI->replaceUsesOfWith(OldPred, NewBB); 715 } 716 717 // Okay, everything within the region is now branching to the right block, we 718 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 719 BasicBlock::iterator AfterPHIs; 720 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 721 PHINode *PN = cast<PHINode>(AfterPHIs); 722 // Create a new PHI node in the new region, which has an incoming value 723 // from OldPred of PN. 724 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 725 PN->getName() + ".ce", &NewBB->front()); 726 PN->replaceAllUsesWith(NewPN); 727 NewPN->addIncoming(PN, OldPred); 728 729 // Loop over all of the incoming value in PN, moving them to NewPN if they 730 // are from the extracted region. 731 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 732 if (Blocks.count(PN->getIncomingBlock(i))) { 733 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 734 PN->removeIncomingValue(i); 735 --i; 736 } 737 } 738 } 739 } 740 } 741 742 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 743 /// outlined region, we split these PHIs on two: one with inputs from region 744 /// and other with remaining incoming blocks; then first PHIs are placed in 745 /// outlined region. 746 void CodeExtractor::severSplitPHINodesOfExits( 747 const SmallPtrSetImpl<BasicBlock *> &Exits) { 748 for (BasicBlock *ExitBB : Exits) { 749 BasicBlock *NewBB = nullptr; 750 751 for (PHINode &PN : ExitBB->phis()) { 752 // Find all incoming values from the outlining region. 753 SmallVector<unsigned, 2> IncomingVals; 754 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 755 if (Blocks.count(PN.getIncomingBlock(i))) 756 IncomingVals.push_back(i); 757 758 // Do not process PHI if there is one (or fewer) predecessor from region. 759 // If PHI has exactly one predecessor from region, only this one incoming 760 // will be replaced on codeRepl block, so it should be safe to skip PHI. 761 if (IncomingVals.size() <= 1) 762 continue; 763 764 // Create block for new PHIs and add it to the list of outlined if it 765 // wasn't done before. 766 if (!NewBB) { 767 NewBB = BasicBlock::Create(ExitBB->getContext(), 768 ExitBB->getName() + ".split", 769 ExitBB->getParent(), ExitBB); 770 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB)); 771 for (BasicBlock *PredBB : Preds) 772 if (Blocks.count(PredBB)) 773 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 774 BranchInst::Create(ExitBB, NewBB); 775 Blocks.insert(NewBB); 776 } 777 778 // Split this PHI. 779 PHINode *NewPN = 780 PHINode::Create(PN.getType(), IncomingVals.size(), 781 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 782 for (unsigned i : IncomingVals) 783 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 784 for (unsigned i : reverse(IncomingVals)) 785 PN.removeIncomingValue(i, false); 786 PN.addIncoming(NewPN, NewBB); 787 } 788 } 789 } 790 791 void CodeExtractor::splitReturnBlocks() { 792 for (BasicBlock *Block : Blocks) 793 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 794 BasicBlock *New = 795 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 796 if (DT) { 797 // Old dominates New. New node dominates all other nodes dominated 798 // by Old. 799 DomTreeNode *OldNode = DT->getNode(Block); 800 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 801 OldNode->end()); 802 803 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 804 805 for (DomTreeNode *I : Children) 806 DT->changeImmediateDominator(I, NewNode); 807 } 808 } 809 } 810 811 /// constructFunction - make a function based on inputs and outputs, as follows: 812 /// f(in0, ..., inN, out0, ..., outN) 813 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 814 const ValueSet &outputs, 815 BasicBlock *header, 816 BasicBlock *newRootNode, 817 BasicBlock *newHeader, 818 Function *oldFunction, 819 Module *M) { 820 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 821 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 822 823 // This function returns unsigned, outputs will go back by reference. 824 switch (NumExitBlocks) { 825 case 0: 826 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 827 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 828 default: RetTy = Type::getInt16Ty(header->getContext()); break; 829 } 830 831 std::vector<Type *> ParamTy; 832 std::vector<Type *> AggParamTy; 833 ValueSet StructValues; 834 835 // Add the types of the input values to the function's argument list 836 for (Value *value : inputs) { 837 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 838 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) { 839 AggParamTy.push_back(value->getType()); 840 StructValues.insert(value); 841 } else 842 ParamTy.push_back(value->getType()); 843 } 844 845 // Add the types of the output values to the function's argument list. 846 for (Value *output : outputs) { 847 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 848 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 849 AggParamTy.push_back(output->getType()); 850 StructValues.insert(output); 851 } else 852 ParamTy.push_back(PointerType::getUnqual(output->getType())); 853 } 854 855 assert( 856 (ParamTy.size() + AggParamTy.size()) == 857 (inputs.size() + outputs.size()) && 858 "Number of scalar and aggregate params does not match inputs, outputs"); 859 assert((StructValues.empty() || AggregateArgs) && 860 "Expeced StructValues only with AggregateArgs set"); 861 862 // Concatenate scalar and aggregate params in ParamTy. 863 size_t NumScalarParams = ParamTy.size(); 864 StructType *StructTy = nullptr; 865 if (AggregateArgs && !AggParamTy.empty()) { 866 StructTy = StructType::get(M->getContext(), AggParamTy); 867 ParamTy.push_back(PointerType::getUnqual(StructTy)); 868 } 869 870 LLVM_DEBUG({ 871 dbgs() << "Function type: " << *RetTy << " f("; 872 for (Type *i : ParamTy) 873 dbgs() << *i << ", "; 874 dbgs() << ")\n"; 875 }); 876 877 FunctionType *funcType = FunctionType::get( 878 RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg()); 879 880 std::string SuffixToUse = 881 Suffix.empty() 882 ? (header->getName().empty() ? "extracted" : header->getName().str()) 883 : Suffix; 884 // Create the new function 885 Function *newFunction = Function::Create( 886 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 887 oldFunction->getName() + "." + SuffixToUse, M); 888 889 // Inherit all of the target dependent attributes and white-listed 890 // target independent attributes. 891 // (e.g. If the extracted region contains a call to an x86.sse 892 // instruction we need to make sure that the extracted region has the 893 // "target-features" attribute allowing it to be lowered. 894 // FIXME: This should be changed to check to see if a specific 895 // attribute can not be inherited. 896 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) { 897 if (Attr.isStringAttribute()) { 898 if (Attr.getKindAsString() == "thunk") 899 continue; 900 } else 901 switch (Attr.getKindAsEnum()) { 902 // Those attributes cannot be propagated safely. Explicitly list them 903 // here so we get a warning if new attributes are added. 904 case Attribute::AllocSize: 905 case Attribute::ArgMemOnly: 906 case Attribute::Builtin: 907 case Attribute::Convergent: 908 case Attribute::InaccessibleMemOnly: 909 case Attribute::InaccessibleMemOrArgMemOnly: 910 case Attribute::JumpTable: 911 case Attribute::Naked: 912 case Attribute::NoBuiltin: 913 case Attribute::NoMerge: 914 case Attribute::NoReturn: 915 case Attribute::NoSync: 916 case Attribute::ReadNone: 917 case Attribute::ReadOnly: 918 case Attribute::ReturnsTwice: 919 case Attribute::Speculatable: 920 case Attribute::StackAlignment: 921 case Attribute::WillReturn: 922 case Attribute::WriteOnly: 923 continue; 924 // Those attributes should be safe to propagate to the extracted function. 925 case Attribute::AlwaysInline: 926 case Attribute::Cold: 927 case Attribute::DisableSanitizerInstrumentation: 928 case Attribute::Hot: 929 case Attribute::NoRecurse: 930 case Attribute::InlineHint: 931 case Attribute::MinSize: 932 case Attribute::NoCallback: 933 case Attribute::NoDuplicate: 934 case Attribute::NoFree: 935 case Attribute::NoImplicitFloat: 936 case Attribute::NoInline: 937 case Attribute::NonLazyBind: 938 case Attribute::NoRedZone: 939 case Attribute::NoUnwind: 940 case Attribute::NoSanitizeBounds: 941 case Attribute::NoSanitizeCoverage: 942 case Attribute::NullPointerIsValid: 943 case Attribute::OptForFuzzing: 944 case Attribute::OptimizeNone: 945 case Attribute::OptimizeForSize: 946 case Attribute::SafeStack: 947 case Attribute::ShadowCallStack: 948 case Attribute::SanitizeAddress: 949 case Attribute::SanitizeMemory: 950 case Attribute::SanitizeThread: 951 case Attribute::SanitizeHWAddress: 952 case Attribute::SanitizeMemTag: 953 case Attribute::SpeculativeLoadHardening: 954 case Attribute::StackProtect: 955 case Attribute::StackProtectReq: 956 case Attribute::StackProtectStrong: 957 case Attribute::StrictFP: 958 case Attribute::UWTable: 959 case Attribute::VScaleRange: 960 case Attribute::NoCfCheck: 961 case Attribute::MustProgress: 962 case Attribute::NoProfile: 963 break; 964 // These attributes cannot be applied to functions. 965 case Attribute::Alignment: 966 case Attribute::AllocAlign: 967 case Attribute::ByVal: 968 case Attribute::Dereferenceable: 969 case Attribute::DereferenceableOrNull: 970 case Attribute::ElementType: 971 case Attribute::InAlloca: 972 case Attribute::InReg: 973 case Attribute::Nest: 974 case Attribute::NoAlias: 975 case Attribute::NoCapture: 976 case Attribute::NoUndef: 977 case Attribute::NonNull: 978 case Attribute::Preallocated: 979 case Attribute::Returned: 980 case Attribute::SExt: 981 case Attribute::StructRet: 982 case Attribute::SwiftError: 983 case Attribute::SwiftSelf: 984 case Attribute::SwiftAsync: 985 case Attribute::ZExt: 986 case Attribute::ImmArg: 987 case Attribute::ByRef: 988 // These are not really attributes. 989 case Attribute::None: 990 case Attribute::EndAttrKinds: 991 case Attribute::EmptyKey: 992 case Attribute::TombstoneKey: 993 llvm_unreachable("Not a function attribute"); 994 } 995 996 newFunction->addFnAttr(Attr); 997 } 998 newFunction->getBasicBlockList().push_back(newRootNode); 999 1000 // Create scalar and aggregate iterators to name all of the arguments we 1001 // inserted. 1002 Function::arg_iterator ScalarAI = newFunction->arg_begin(); 1003 Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams); 1004 1005 // Rewrite all users of the inputs in the extracted region to use the 1006 // arguments (or appropriate addressing into struct) instead. 1007 for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) { 1008 Value *RewriteVal; 1009 if (AggregateArgs && StructValues.contains(inputs[i])) { 1010 Value *Idx[2]; 1011 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 1012 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx); 1013 Instruction *TI = newFunction->begin()->getTerminator(); 1014 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1015 StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI); 1016 RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP, 1017 "loadgep_" + inputs[i]->getName(), TI); 1018 ++aggIdx; 1019 } else 1020 RewriteVal = &*ScalarAI++; 1021 1022 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 1023 for (User *use : Users) 1024 if (Instruction *inst = dyn_cast<Instruction>(use)) 1025 if (Blocks.count(inst->getParent())) 1026 inst->replaceUsesOfWith(inputs[i], RewriteVal); 1027 } 1028 1029 // Set names for input and output arguments. 1030 if (NumScalarParams) { 1031 ScalarAI = newFunction->arg_begin(); 1032 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI) 1033 if (!StructValues.contains(inputs[i])) 1034 ScalarAI->setName(inputs[i]->getName()); 1035 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI) 1036 if (!StructValues.contains(outputs[i])) 1037 ScalarAI->setName(outputs[i]->getName() + ".out"); 1038 } 1039 1040 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 1041 // within the new function. This must be done before we lose track of which 1042 // blocks were originally in the code region. 1043 std::vector<User *> Users(header->user_begin(), header->user_end()); 1044 for (auto &U : Users) 1045 // The BasicBlock which contains the branch is not in the region 1046 // modify the branch target to a new block 1047 if (Instruction *I = dyn_cast<Instruction>(U)) 1048 if (I->isTerminator() && I->getFunction() == oldFunction && 1049 !Blocks.count(I->getParent())) 1050 I->replaceUsesOfWith(header, newHeader); 1051 1052 return newFunction; 1053 } 1054 1055 /// Erase lifetime.start markers which reference inputs to the extraction 1056 /// region, and insert the referenced memory into \p LifetimesStart. 1057 /// 1058 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 1059 /// of allocas which will be moved from the caller function into the extracted 1060 /// function (\p SunkAllocas). 1061 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 1062 const SetVector<Value *> &SunkAllocas, 1063 SetVector<Value *> &LifetimesStart) { 1064 for (BasicBlock *BB : Blocks) { 1065 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 1066 auto *II = dyn_cast<IntrinsicInst>(&I); 1067 if (!II || !II->isLifetimeStartOrEnd()) 1068 continue; 1069 1070 // Get the memory operand of the lifetime marker. If the underlying 1071 // object is a sunk alloca, or is otherwise defined in the extraction 1072 // region, the lifetime marker must not be erased. 1073 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1074 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1075 continue; 1076 1077 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1078 LifetimesStart.insert(Mem); 1079 II->eraseFromParent(); 1080 } 1081 } 1082 } 1083 1084 /// Insert lifetime start/end markers surrounding the call to the new function 1085 /// for objects defined in the caller. 1086 static void insertLifetimeMarkersSurroundingCall( 1087 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1088 CallInst *TheCall) { 1089 LLVMContext &Ctx = M->getContext(); 1090 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 1091 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1092 Instruction *Term = TheCall->getParent()->getTerminator(); 1093 1094 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 1095 // needed to satisfy this requirement so they may be reused. 1096 DenseMap<Value *, Value *> Bitcasts; 1097 1098 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1099 // markers before the call if \p InsertBefore, and after the call otherwise. 1100 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 1101 bool InsertBefore) { 1102 for (Value *Mem : Objects) { 1103 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1104 TheCall->getFunction()) && 1105 "Input memory not defined in original function"); 1106 Value *&MemAsI8Ptr = Bitcasts[Mem]; 1107 if (!MemAsI8Ptr) { 1108 if (Mem->getType() == Int8PtrTy) 1109 MemAsI8Ptr = Mem; 1110 else 1111 MemAsI8Ptr = 1112 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 1113 } 1114 1115 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 1116 if (InsertBefore) 1117 Marker->insertBefore(TheCall); 1118 else 1119 Marker->insertBefore(Term); 1120 } 1121 }; 1122 1123 if (!LifetimesStart.empty()) { 1124 auto StartFn = llvm::Intrinsic::getDeclaration( 1125 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 1126 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 1127 } 1128 1129 if (!LifetimesEnd.empty()) { 1130 auto EndFn = llvm::Intrinsic::getDeclaration( 1131 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 1132 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 1133 } 1134 } 1135 1136 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1137 /// the call instruction, splitting any PHI nodes in the header block as 1138 /// necessary. 1139 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1140 BasicBlock *codeReplacer, 1141 ValueSet &inputs, 1142 ValueSet &outputs) { 1143 // Emit a call to the new function, passing in: *pointer to struct (if 1144 // aggregating parameters), or plan inputs and allocated memory for outputs 1145 std::vector<Value *> params, ReloadOutputs, Reloads; 1146 ValueSet StructValues; 1147 1148 Module *M = newFunction->getParent(); 1149 LLVMContext &Context = M->getContext(); 1150 const DataLayout &DL = M->getDataLayout(); 1151 CallInst *call = nullptr; 1152 1153 // Add inputs as params, or to be filled into the struct 1154 unsigned ScalarInputArgNo = 0; 1155 SmallVector<unsigned, 1> SwiftErrorArgs; 1156 for (Value *input : inputs) { 1157 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input)) 1158 StructValues.insert(input); 1159 else { 1160 params.push_back(input); 1161 if (input->isSwiftError()) 1162 SwiftErrorArgs.push_back(ScalarInputArgNo); 1163 } 1164 ++ScalarInputArgNo; 1165 } 1166 1167 // Create allocas for the outputs 1168 unsigned ScalarOutputArgNo = 0; 1169 for (Value *output : outputs) { 1170 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 1171 StructValues.insert(output); 1172 } else { 1173 AllocaInst *alloca = 1174 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1175 nullptr, output->getName() + ".loc", 1176 &codeReplacer->getParent()->front().front()); 1177 ReloadOutputs.push_back(alloca); 1178 params.push_back(alloca); 1179 ++ScalarOutputArgNo; 1180 } 1181 } 1182 1183 StructType *StructArgTy = nullptr; 1184 AllocaInst *Struct = nullptr; 1185 unsigned NumAggregatedInputs = 0; 1186 if (AggregateArgs && !StructValues.empty()) { 1187 std::vector<Type *> ArgTypes; 1188 for (Value *V : StructValues) 1189 ArgTypes.push_back(V->getType()); 1190 1191 // Allocate a struct at the beginning of this function 1192 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1193 Struct = new AllocaInst( 1194 StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg", 1195 AllocationBlock ? &*AllocationBlock->getFirstInsertionPt() 1196 : &codeReplacer->getParent()->front().front()); 1197 params.push_back(Struct); 1198 1199 // Store aggregated inputs in the struct. 1200 for (unsigned i = 0, e = StructValues.size(); i != e; ++i) { 1201 if (inputs.contains(StructValues[i])) { 1202 Value *Idx[2]; 1203 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1204 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1205 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1206 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1207 codeReplacer->getInstList().push_back(GEP); 1208 new StoreInst(StructValues[i], GEP, codeReplacer); 1209 NumAggregatedInputs++; 1210 } 1211 } 1212 } 1213 1214 // Emit the call to the function 1215 call = CallInst::Create(newFunction, params, 1216 NumExitBlocks > 1 ? "targetBlock" : ""); 1217 // Add debug location to the new call, if the original function has debug 1218 // info. In that case, the terminator of the entry block of the extracted 1219 // function contains the first debug location of the extracted function, 1220 // set in extractCodeRegion. 1221 if (codeReplacer->getParent()->getSubprogram()) { 1222 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1223 call->setDebugLoc(DL); 1224 } 1225 codeReplacer->getInstList().push_back(call); 1226 1227 // Set swifterror parameter attributes. 1228 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1229 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1230 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1231 } 1232 1233 // Reload the outputs passed in by reference, use the struct if output is in 1234 // the aggregate or reload from the scalar argument. 1235 for (unsigned i = 0, e = outputs.size(), scalarIdx = 0, 1236 aggIdx = NumAggregatedInputs; 1237 i != e; ++i) { 1238 Value *Output = nullptr; 1239 if (AggregateArgs && StructValues.contains(outputs[i])) { 1240 Value *Idx[2]; 1241 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1242 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1243 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1244 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1245 codeReplacer->getInstList().push_back(GEP); 1246 Output = GEP; 1247 ++aggIdx; 1248 } else { 1249 Output = ReloadOutputs[scalarIdx]; 1250 ++scalarIdx; 1251 } 1252 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1253 outputs[i]->getName() + ".reload", 1254 codeReplacer); 1255 Reloads.push_back(load); 1256 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1257 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1258 Instruction *inst = cast<Instruction>(Users[u]); 1259 if (!Blocks.count(inst->getParent())) 1260 inst->replaceUsesOfWith(outputs[i], load); 1261 } 1262 } 1263 1264 // Now we can emit a switch statement using the call as a value. 1265 SwitchInst *TheSwitch = 1266 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1267 codeReplacer, 0, codeReplacer); 1268 1269 // Since there may be multiple exits from the original region, make the new 1270 // function return an unsigned, switch on that number. This loop iterates 1271 // over all of the blocks in the extracted region, updating any terminator 1272 // instructions in the to-be-extracted region that branch to blocks that are 1273 // not in the region to be extracted. 1274 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1275 1276 // Iterate over the previously collected targets, and create new blocks inside 1277 // the function to branch to. 1278 unsigned switchVal = 0; 1279 for (BasicBlock *OldTarget : OldTargets) { 1280 if (Blocks.count(OldTarget)) 1281 continue; 1282 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1283 if (NewTarget) 1284 continue; 1285 1286 // If we don't already have an exit stub for this non-extracted 1287 // destination, create one now! 1288 NewTarget = BasicBlock::Create(Context, 1289 OldTarget->getName() + ".exitStub", 1290 newFunction); 1291 unsigned SuccNum = switchVal++; 1292 1293 Value *brVal = nullptr; 1294 assert(NumExitBlocks < 0xffff && "too many exit blocks for switch"); 1295 switch (NumExitBlocks) { 1296 case 0: 1297 case 1: break; // No value needed. 1298 case 2: // Conditional branch, return a bool 1299 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1300 break; 1301 default: 1302 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1303 break; 1304 } 1305 1306 ReturnInst::Create(Context, brVal, NewTarget); 1307 1308 // Update the switch instruction. 1309 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1310 SuccNum), 1311 OldTarget); 1312 } 1313 1314 for (BasicBlock *Block : Blocks) { 1315 Instruction *TI = Block->getTerminator(); 1316 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1317 if (Blocks.count(TI->getSuccessor(i))) 1318 continue; 1319 BasicBlock *OldTarget = TI->getSuccessor(i); 1320 // add a new basic block which returns the appropriate value 1321 BasicBlock *NewTarget = ExitBlockMap[OldTarget]; 1322 assert(NewTarget && "Unknown target block!"); 1323 1324 // rewrite the original branch instruction with this new target 1325 TI->setSuccessor(i, NewTarget); 1326 } 1327 } 1328 1329 // Store the arguments right after the definition of output value. 1330 // This should be proceeded after creating exit stubs to be ensure that invoke 1331 // result restore will be placed in the outlined function. 1332 Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin(); 1333 std::advance(ScalarOutputArgBegin, ScalarInputArgNo); 1334 Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin(); 1335 std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo); 1336 1337 for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e; 1338 ++i) { 1339 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1340 if (!OutI) 1341 continue; 1342 1343 // Find proper insertion point. 1344 BasicBlock::iterator InsertPt; 1345 // In case OutI is an invoke, we insert the store at the beginning in the 1346 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1347 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1348 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1349 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1350 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1351 else 1352 InsertPt = std::next(OutI->getIterator()); 1353 1354 Instruction *InsertBefore = &*InsertPt; 1355 assert((InsertBefore->getFunction() == newFunction || 1356 Blocks.count(InsertBefore->getParent())) && 1357 "InsertPt should be in new function"); 1358 if (AggregateArgs && StructValues.contains(outputs[i])) { 1359 assert(AggOutputArgBegin != newFunction->arg_end() && 1360 "Number of aggregate output arguments should match " 1361 "the number of defined values"); 1362 Value *Idx[2]; 1363 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1364 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1365 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1366 StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(), 1367 InsertBefore); 1368 new StoreInst(outputs[i], GEP, InsertBefore); 1369 ++aggIdx; 1370 // Since there should be only one struct argument aggregating 1371 // all the output values, we shouldn't increment AggOutputArgBegin, which 1372 // always points to the struct argument, in this case. 1373 } else { 1374 assert(ScalarOutputArgBegin != newFunction->arg_end() && 1375 "Number of scalar output arguments should match " 1376 "the number of defined values"); 1377 new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore); 1378 ++ScalarOutputArgBegin; 1379 } 1380 } 1381 1382 // Now that we've done the deed, simplify the switch instruction. 1383 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1384 switch (NumExitBlocks) { 1385 case 0: 1386 // There are no successors (the block containing the switch itself), which 1387 // means that previously this was the last part of the function, and hence 1388 // this should be rewritten as a `ret' 1389 1390 // Check if the function should return a value 1391 if (OldFnRetTy->isVoidTy()) { 1392 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1393 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1394 // return what we have 1395 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1396 } else { 1397 // Otherwise we must have code extracted an unwind or something, just 1398 // return whatever we want. 1399 ReturnInst::Create(Context, 1400 Constant::getNullValue(OldFnRetTy), TheSwitch); 1401 } 1402 1403 TheSwitch->eraseFromParent(); 1404 break; 1405 case 1: 1406 // Only a single destination, change the switch into an unconditional 1407 // branch. 1408 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1409 TheSwitch->eraseFromParent(); 1410 break; 1411 case 2: 1412 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1413 call, TheSwitch); 1414 TheSwitch->eraseFromParent(); 1415 break; 1416 default: 1417 // Otherwise, make the default destination of the switch instruction be one 1418 // of the other successors. 1419 TheSwitch->setCondition(call); 1420 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1421 // Remove redundant case 1422 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1423 break; 1424 } 1425 1426 // Insert lifetime markers around the reloads of any output values. The 1427 // allocas output values are stored in are only in-use in the codeRepl block. 1428 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1429 1430 return call; 1431 } 1432 1433 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1434 Function *oldFunc = (*Blocks.begin())->getParent(); 1435 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1436 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1437 1438 auto newFuncIt = newFunction->front().getIterator(); 1439 for (BasicBlock *Block : Blocks) { 1440 // Delete the basic block from the old function, and the list of blocks 1441 oldBlocks.remove(Block); 1442 1443 // Insert this basic block into the new function 1444 // Insert the original blocks after the entry block created 1445 // for the new function. The entry block may be followed 1446 // by a set of exit blocks at this point, but these exit 1447 // blocks better be placed at the end of the new function. 1448 newFuncIt = newBlocks.insertAfter(newFuncIt, Block); 1449 } 1450 } 1451 1452 void CodeExtractor::calculateNewCallTerminatorWeights( 1453 BasicBlock *CodeReplacer, 1454 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1455 BranchProbabilityInfo *BPI) { 1456 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1457 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1458 1459 // Update the branch weights for the exit block. 1460 Instruction *TI = CodeReplacer->getTerminator(); 1461 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1462 1463 // Block Frequency distribution with dummy node. 1464 Distribution BranchDist; 1465 1466 SmallVector<BranchProbability, 4> EdgeProbabilities( 1467 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1468 1469 // Add each of the frequencies of the successors. 1470 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1471 BlockNode ExitNode(i); 1472 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1473 if (ExitFreq != 0) 1474 BranchDist.addExit(ExitNode, ExitFreq); 1475 else 1476 EdgeProbabilities[i] = BranchProbability::getZero(); 1477 } 1478 1479 // Check for no total weight. 1480 if (BranchDist.Total == 0) { 1481 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1482 return; 1483 } 1484 1485 // Normalize the distribution so that they can fit in unsigned. 1486 BranchDist.normalize(); 1487 1488 // Create normalized branch weights and set the metadata. 1489 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1490 const auto &Weight = BranchDist.Weights[I]; 1491 1492 // Get the weight and update the current BFI. 1493 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1494 BranchProbability BP(Weight.Amount, BranchDist.Total); 1495 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1496 } 1497 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1498 TI->setMetadata( 1499 LLVMContext::MD_prof, 1500 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1501 } 1502 1503 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1504 /// \p F. 1505 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1506 for (Instruction &I : instructions(F)) { 1507 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1508 findDbgUsers(DbgUsers, &I); 1509 for (DbgVariableIntrinsic *DVI : DbgUsers) 1510 if (DVI->getFunction() != &F) 1511 DVI->eraseFromParent(); 1512 } 1513 } 1514 1515 /// Fix up the debug info in the old and new functions by pointing line 1516 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1517 /// intrinsics which point to values outside of the new function. 1518 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1519 CallInst &TheCall) { 1520 DISubprogram *OldSP = OldFunc.getSubprogram(); 1521 LLVMContext &Ctx = OldFunc.getContext(); 1522 1523 if (!OldSP) { 1524 // Erase any debug info the new function contains. 1525 stripDebugInfo(NewFunc); 1526 // Make sure the old function doesn't contain any non-local metadata refs. 1527 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1528 return; 1529 } 1530 1531 // Create a subprogram for the new function. Leave out a description of the 1532 // function arguments, as the parameters don't correspond to anything at the 1533 // source level. 1534 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1535 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, 1536 OldSP->getUnit()); 1537 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 1538 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1539 DISubprogram::SPFlagOptimized | 1540 DISubprogram::SPFlagLocalToUnit; 1541 auto NewSP = DIB.createFunction( 1542 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1543 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1544 NewFunc.setSubprogram(NewSP); 1545 1546 // Debug intrinsics in the new function need to be updated in one of two 1547 // ways: 1548 // 1) They need to be deleted, because they describe a value in the old 1549 // function. 1550 // 2) They need to point to fresh metadata, e.g. because they currently 1551 // point to a variable in the wrong scope. 1552 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1553 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1554 for (Instruction &I : instructions(NewFunc)) { 1555 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1556 if (!DII) 1557 continue; 1558 1559 // Point the intrinsic to a fresh label within the new function. 1560 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1561 DILabel *OldLabel = DLI->getLabel(); 1562 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1563 if (!NewLabel) 1564 NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(), 1565 OldLabel->getFile(), OldLabel->getLine()); 1566 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); 1567 continue; 1568 } 1569 1570 auto IsInvalidLocation = [&NewFunc](Value *Location) { 1571 // Location is invalid if it isn't a constant or an instruction, or is an 1572 // instruction but isn't in the new function. 1573 if (!Location || 1574 (!isa<Constant>(Location) && !isa<Instruction>(Location))) 1575 return true; 1576 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1577 return LocationInst && LocationInst->getFunction() != &NewFunc; 1578 }; 1579 1580 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1581 // If any of the used locations are invalid, delete the intrinsic. 1582 if (any_of(DVI->location_ops(), IsInvalidLocation)) { 1583 DebugIntrinsicsToDelete.push_back(DVI); 1584 continue; 1585 } 1586 1587 // Point the intrinsic to a fresh variable within the new function. 1588 DILocalVariable *OldVar = DVI->getVariable(); 1589 DINode *&NewVar = RemappedMetadata[OldVar]; 1590 if (!NewVar) 1591 NewVar = DIB.createAutoVariable( 1592 NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1593 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1594 OldVar->getAlignInBits()); 1595 DVI->setVariable(cast<DILocalVariable>(NewVar)); 1596 } 1597 for (auto *DII : DebugIntrinsicsToDelete) 1598 DII->eraseFromParent(); 1599 DIB.finalizeSubprogram(NewSP); 1600 1601 // Fix up the scope information attached to the line locations in the new 1602 // function. 1603 for (Instruction &I : instructions(NewFunc)) { 1604 if (const DebugLoc &DL = I.getDebugLoc()) 1605 I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP)); 1606 1607 // Loop info metadata may contain line locations. Fix them up. 1608 auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * { 1609 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1610 return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP, 1611 nullptr); 1612 return MD; 1613 }; 1614 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1615 } 1616 if (!TheCall.getDebugLoc()) 1617 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP)); 1618 1619 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1620 } 1621 1622 Function * 1623 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1624 ValueSet Inputs, Outputs; 1625 return extractCodeRegion(CEAC, Inputs, Outputs); 1626 } 1627 1628 Function * 1629 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC, 1630 ValueSet &inputs, ValueSet &outputs) { 1631 if (!isEligible()) 1632 return nullptr; 1633 1634 // Assumption: this is a single-entry code region, and the header is the first 1635 // block in the region. 1636 BasicBlock *header = *Blocks.begin(); 1637 Function *oldFunction = header->getParent(); 1638 1639 // Calculate the entry frequency of the new function before we change the root 1640 // block. 1641 BlockFrequency EntryFreq; 1642 if (BFI) { 1643 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1644 for (BasicBlock *Pred : predecessors(header)) { 1645 if (Blocks.count(Pred)) 1646 continue; 1647 EntryFreq += 1648 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1649 } 1650 } 1651 1652 // Remove @llvm.assume calls that will be moved to the new function from the 1653 // old function's assumption cache. 1654 for (BasicBlock *Block : Blocks) { 1655 for (Instruction &I : llvm::make_early_inc_range(*Block)) { 1656 if (auto *AI = dyn_cast<AssumeInst>(&I)) { 1657 if (AC) 1658 AC->unregisterAssumption(AI); 1659 AI->eraseFromParent(); 1660 } 1661 } 1662 } 1663 1664 // If we have any return instructions in the region, split those blocks so 1665 // that the return is not in the region. 1666 splitReturnBlocks(); 1667 1668 // Calculate the exit blocks for the extracted region and the total exit 1669 // weights for each of those blocks. 1670 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1671 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1672 for (BasicBlock *Block : Blocks) { 1673 for (BasicBlock *Succ : successors(Block)) { 1674 if (!Blocks.count(Succ)) { 1675 // Update the branch weight for this successor. 1676 if (BFI) { 1677 BlockFrequency &BF = ExitWeights[Succ]; 1678 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ); 1679 } 1680 ExitBlocks.insert(Succ); 1681 } 1682 } 1683 } 1684 NumExitBlocks = ExitBlocks.size(); 1685 1686 for (BasicBlock *Block : Blocks) { 1687 Instruction *TI = Block->getTerminator(); 1688 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1689 if (Blocks.count(TI->getSuccessor(i))) 1690 continue; 1691 BasicBlock *OldTarget = TI->getSuccessor(i); 1692 OldTargets.push_back(OldTarget); 1693 } 1694 } 1695 1696 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1697 severSplitPHINodesOfEntry(header); 1698 severSplitPHINodesOfExits(ExitBlocks); 1699 1700 // This takes place of the original loop 1701 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1702 "codeRepl", oldFunction, 1703 header); 1704 1705 // The new function needs a root node because other nodes can branch to the 1706 // head of the region, but the entry node of a function cannot have preds. 1707 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1708 "newFuncRoot"); 1709 auto *BranchI = BranchInst::Create(header); 1710 // If the original function has debug info, we have to add a debug location 1711 // to the new branch instruction from the artificial entry block. 1712 // We use the debug location of the first instruction in the extracted 1713 // blocks, as there is no other equivalent line in the source code. 1714 if (oldFunction->getSubprogram()) { 1715 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1716 return any_of(*BB, [&BranchI](const Instruction &I) { 1717 if (!I.getDebugLoc()) 1718 return false; 1719 BranchI->setDebugLoc(I.getDebugLoc()); 1720 return true; 1721 }); 1722 }); 1723 } 1724 newFuncRoot->getInstList().push_back(BranchI); 1725 1726 ValueSet SinkingCands, HoistingCands; 1727 BasicBlock *CommonExit = nullptr; 1728 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1729 assert(HoistingCands.empty() || CommonExit); 1730 1731 // Find inputs to, outputs from the code region. 1732 findInputsOutputs(inputs, outputs, SinkingCands); 1733 1734 // Now sink all instructions which only have non-phi uses inside the region. 1735 // Group the allocas at the start of the block, so that any bitcast uses of 1736 // the allocas are well-defined. 1737 AllocaInst *FirstSunkAlloca = nullptr; 1738 for (auto *II : SinkingCands) { 1739 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1740 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1741 if (!FirstSunkAlloca) 1742 FirstSunkAlloca = AI; 1743 } 1744 } 1745 assert((SinkingCands.empty() || FirstSunkAlloca) && 1746 "Did not expect a sink candidate without any allocas"); 1747 for (auto *II : SinkingCands) { 1748 if (!isa<AllocaInst>(II)) { 1749 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1750 } 1751 } 1752 1753 if (!HoistingCands.empty()) { 1754 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1755 Instruction *TI = HoistToBlock->getTerminator(); 1756 for (auto *II : HoistingCands) 1757 cast<Instruction>(II)->moveBefore(TI); 1758 } 1759 1760 // Collect objects which are inputs to the extraction region and also 1761 // referenced by lifetime start markers within it. The effects of these 1762 // markers must be replicated in the calling function to prevent the stack 1763 // coloring pass from merging slots which store input objects. 1764 ValueSet LifetimesStart; 1765 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1766 1767 // Construct new function based on inputs/outputs & add allocas for all defs. 1768 Function *newFunction = 1769 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1770 oldFunction, oldFunction->getParent()); 1771 1772 // Update the entry count of the function. 1773 if (BFI) { 1774 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1775 if (Count.hasValue()) 1776 newFunction->setEntryCount( 1777 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1778 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1779 } 1780 1781 CallInst *TheCall = 1782 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1783 1784 moveCodeToFunction(newFunction); 1785 1786 // Replicate the effects of any lifetime start/end markers which referenced 1787 // input objects in the extraction region by placing markers around the call. 1788 insertLifetimeMarkersSurroundingCall( 1789 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1790 1791 // Propagate personality info to the new function if there is one. 1792 if (oldFunction->hasPersonalityFn()) 1793 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1794 1795 // Update the branch weights for the exit block. 1796 if (BFI && NumExitBlocks > 1) 1797 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1798 1799 // Loop over all of the PHI nodes in the header and exit blocks, and change 1800 // any references to the old incoming edge to be the new incoming edge. 1801 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1802 PHINode *PN = cast<PHINode>(I); 1803 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1804 if (!Blocks.count(PN->getIncomingBlock(i))) 1805 PN->setIncomingBlock(i, newFuncRoot); 1806 } 1807 1808 for (BasicBlock *ExitBB : ExitBlocks) 1809 for (PHINode &PN : ExitBB->phis()) { 1810 Value *IncomingCodeReplacerVal = nullptr; 1811 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1812 // Ignore incoming values from outside of the extracted region. 1813 if (!Blocks.count(PN.getIncomingBlock(i))) 1814 continue; 1815 1816 // Ensure that there is only one incoming value from codeReplacer. 1817 if (!IncomingCodeReplacerVal) { 1818 PN.setIncomingBlock(i, codeReplacer); 1819 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1820 } else 1821 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1822 "PHI has two incompatbile incoming values from codeRepl"); 1823 } 1824 } 1825 1826 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1827 1828 // Mark the new function `noreturn` if applicable. Terminators which resume 1829 // exception propagation are treated as returning instructions. This is to 1830 // avoid inserting traps after calls to outlined functions which unwind. 1831 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1832 const Instruction *Term = BB.getTerminator(); 1833 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1834 }); 1835 if (doesNotReturn) 1836 newFunction->setDoesNotReturn(); 1837 1838 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1839 newFunction->dump(); 1840 report_fatal_error("verification of newFunction failed!"); 1841 }); 1842 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1843 report_fatal_error("verification of oldFunction failed!")); 1844 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1845 report_fatal_error("Stale Asumption cache for old Function!")); 1846 return newFunction; 1847 } 1848 1849 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1850 const Function &NewFunc, 1851 AssumptionCache *AC) { 1852 for (auto AssumeVH : AC->assumptions()) { 1853 auto *I = dyn_cast_or_null<CallInst>(AssumeVH); 1854 if (!I) 1855 continue; 1856 1857 // There shouldn't be any llvm.assume intrinsics in the new function. 1858 if (I->getFunction() != &OldFunc) 1859 return true; 1860 1861 // There shouldn't be any stale affected values in the assumption cache 1862 // that were previously in the old function, but that have now been moved 1863 // to the new function. 1864 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1865 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1866 if (!AffectedCI) 1867 continue; 1868 if (AffectedCI->getFunction() != &OldFunc) 1869 return true; 1870 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); 1871 if (AssumedInst->getFunction() != &OldFunc) 1872 return true; 1873 } 1874 } 1875 return false; 1876 } 1877 1878 void CodeExtractor::excludeArgFromAggregate(Value *Arg) { 1879 ExcludeArgsFromAggregate.insert(Arg); 1880 } 1881