1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/Verifier.h" 55 #include "llvm/Support/BlockFrequency.h" 56 #include "llvm/Support/BranchProbability.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <map> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 using namespace llvm::PatternMatch; 72 using ProfileCount = Function::ProfileCount; 73 74 #define DEBUG_TYPE "code-extractor" 75 76 // Provide a command-line option to aggregate function arguments into a struct 77 // for functions produced by the code extractor. This is useful when converting 78 // extracted functions to pthread-based code, as only one argument (void*) can 79 // be passed in to pthread_create(). 80 static cl::opt<bool> 81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 82 cl::desc("Aggregate arguments to code-extracted functions")); 83 84 /// Test whether a block is valid for extraction. 85 static bool isBlockValidForExtraction(const BasicBlock &BB, 86 const SetVector<BasicBlock *> &Result, 87 bool AllowVarArgs, bool AllowAlloca) { 88 // taking the address of a basic block moved to another function is illegal 89 if (BB.hasAddressTaken()) 90 return false; 91 92 // don't hoist code that uses another basicblock address, as it's likely to 93 // lead to unexpected behavior, like cross-function jumps 94 SmallPtrSet<User const *, 16> Visited; 95 SmallVector<User const *, 16> ToVisit; 96 97 for (Instruction const &Inst : BB) 98 ToVisit.push_back(&Inst); 99 100 while (!ToVisit.empty()) { 101 User const *Curr = ToVisit.pop_back_val(); 102 if (!Visited.insert(Curr).second) 103 continue; 104 if (isa<BlockAddress const>(Curr)) 105 return false; // even a reference to self is likely to be not compatible 106 107 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 108 continue; 109 110 for (auto const &U : Curr->operands()) { 111 if (auto *UU = dyn_cast<User>(U)) 112 ToVisit.push_back(UU); 113 } 114 } 115 116 // If explicitly requested, allow vastart and alloca. For invoke instructions 117 // verify that extraction is valid. 118 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 119 if (isa<AllocaInst>(I)) { 120 if (!AllowAlloca) 121 return false; 122 continue; 123 } 124 125 if (const auto *II = dyn_cast<InvokeInst>(I)) { 126 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 127 // must be a part of the subgraph which is being extracted. 128 if (auto *UBB = II->getUnwindDest()) 129 if (!Result.count(UBB)) 130 return false; 131 continue; 132 } 133 134 // All catch handlers of a catchswitch instruction as well as the unwind 135 // destination must be in the subgraph. 136 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 137 if (auto *UBB = CSI->getUnwindDest()) 138 if (!Result.count(UBB)) 139 return false; 140 for (const auto *HBB : CSI->handlers()) 141 if (!Result.count(const_cast<BasicBlock*>(HBB))) 142 return false; 143 continue; 144 } 145 146 // Make sure that entire catch handler is within subgraph. It is sufficient 147 // to check that catch return's block is in the list. 148 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 149 for (const auto *U : CPI->users()) 150 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 151 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 152 return false; 153 continue; 154 } 155 156 // And do similar checks for cleanup handler - the entire handler must be 157 // in subgraph which is going to be extracted. For cleanup return should 158 // additionally check that the unwind destination is also in the subgraph. 159 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 160 for (const auto *U : CPI->users()) 161 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 162 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 163 return false; 164 continue; 165 } 166 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 167 if (auto *UBB = CRI->getUnwindDest()) 168 if (!Result.count(UBB)) 169 return false; 170 continue; 171 } 172 173 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 174 if (const Function *F = CI->getCalledFunction()) { 175 auto IID = F->getIntrinsicID(); 176 if (IID == Intrinsic::vastart) { 177 if (AllowVarArgs) 178 continue; 179 else 180 return false; 181 } 182 183 // Currently, we miscompile outlined copies of eh_typid_for. There are 184 // proposals for fixing this in llvm.org/PR39545. 185 if (IID == Intrinsic::eh_typeid_for) 186 return false; 187 } 188 } 189 } 190 191 return true; 192 } 193 194 /// Build a set of blocks to extract if the input blocks are viable. 195 static SetVector<BasicBlock *> 196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 197 bool AllowVarArgs, bool AllowAlloca) { 198 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 199 SetVector<BasicBlock *> Result; 200 201 // Loop over the blocks, adding them to our set-vector, and aborting with an 202 // empty set if we encounter invalid blocks. 203 for (BasicBlock *BB : BBs) { 204 // If this block is dead, don't process it. 205 if (DT && !DT->isReachableFromEntry(BB)) 206 continue; 207 208 if (!Result.insert(BB)) 209 llvm_unreachable("Repeated basic blocks in extraction input"); 210 } 211 212 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 213 << '\n'); 214 215 for (auto *BB : Result) { 216 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 217 return {}; 218 219 // Make sure that the first block is not a landing pad. 220 if (BB == Result.front()) { 221 if (BB->isEHPad()) { 222 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 223 return {}; 224 } 225 continue; 226 } 227 228 // All blocks other than the first must not have predecessors outside of 229 // the subgraph which is being extracted. 230 for (auto *PBB : predecessors(BB)) 231 if (!Result.count(PBB)) { 232 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 233 "outside the region except for the first block!\n" 234 << "Problematic source BB: " << BB->getName() << "\n" 235 << "Problematic destination BB: " << PBB->getName() 236 << "\n"); 237 return {}; 238 } 239 } 240 241 return Result; 242 } 243 244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 245 bool AggregateArgs, BlockFrequencyInfo *BFI, 246 BranchProbabilityInfo *BPI, AssumptionCache *AC, 247 bool AllowVarArgs, bool AllowAlloca, 248 BasicBlock *AllocationBlock, std::string Suffix, 249 bool ArgsInZeroAddressSpace) 250 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 251 BPI(BPI), AC(AC), AllocationBlock(AllocationBlock), 252 AllowVarArgs(AllowVarArgs), 253 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 254 Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {} 255 256 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 257 BlockFrequencyInfo *BFI, 258 BranchProbabilityInfo *BPI, AssumptionCache *AC, 259 std::string Suffix) 260 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 261 BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false), 262 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 263 /* AllowVarArgs */ false, 264 /* AllowAlloca */ false)), 265 Suffix(Suffix) {} 266 267 /// definedInRegion - Return true if the specified value is defined in the 268 /// extracted region. 269 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 270 if (Instruction *I = dyn_cast<Instruction>(V)) 271 if (Blocks.count(I->getParent())) 272 return true; 273 return false; 274 } 275 276 /// definedInCaller - Return true if the specified value is defined in the 277 /// function being code extracted, but not in the region being extracted. 278 /// These values must be passed in as live-ins to the function. 279 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 280 if (isa<Argument>(V)) return true; 281 if (Instruction *I = dyn_cast<Instruction>(V)) 282 if (!Blocks.count(I->getParent())) 283 return true; 284 return false; 285 } 286 287 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 288 BasicBlock *CommonExitBlock = nullptr; 289 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 290 for (auto *Succ : successors(Block)) { 291 // Internal edges, ok. 292 if (Blocks.count(Succ)) 293 continue; 294 if (!CommonExitBlock) { 295 CommonExitBlock = Succ; 296 continue; 297 } 298 if (CommonExitBlock != Succ) 299 return true; 300 } 301 return false; 302 }; 303 304 if (any_of(Blocks, hasNonCommonExitSucc)) 305 return nullptr; 306 307 return CommonExitBlock; 308 } 309 310 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 311 for (BasicBlock &BB : F) { 312 for (Instruction &II : BB.instructionsWithoutDebug()) 313 if (auto *AI = dyn_cast<AllocaInst>(&II)) 314 Allocas.push_back(AI); 315 316 findSideEffectInfoForBlock(BB); 317 } 318 } 319 320 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 321 for (Instruction &II : BB.instructionsWithoutDebug()) { 322 unsigned Opcode = II.getOpcode(); 323 Value *MemAddr = nullptr; 324 switch (Opcode) { 325 case Instruction::Store: 326 case Instruction::Load: { 327 if (Opcode == Instruction::Store) { 328 StoreInst *SI = cast<StoreInst>(&II); 329 MemAddr = SI->getPointerOperand(); 330 } else { 331 LoadInst *LI = cast<LoadInst>(&II); 332 MemAddr = LI->getPointerOperand(); 333 } 334 // Global variable can not be aliased with locals. 335 if (isa<Constant>(MemAddr)) 336 break; 337 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 338 if (!isa<AllocaInst>(Base)) { 339 SideEffectingBlocks.insert(&BB); 340 return; 341 } 342 BaseMemAddrs[&BB].insert(Base); 343 break; 344 } 345 default: { 346 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 347 if (IntrInst) { 348 if (IntrInst->isLifetimeStartOrEnd()) 349 break; 350 SideEffectingBlocks.insert(&BB); 351 return; 352 } 353 // Treat all the other cases conservatively if it has side effects. 354 if (II.mayHaveSideEffects()) { 355 SideEffectingBlocks.insert(&BB); 356 return; 357 } 358 } 359 } 360 } 361 } 362 363 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 364 BasicBlock &BB, AllocaInst *Addr) const { 365 if (SideEffectingBlocks.count(&BB)) 366 return true; 367 auto It = BaseMemAddrs.find(&BB); 368 if (It != BaseMemAddrs.end()) 369 return It->second.count(Addr); 370 return false; 371 } 372 373 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 374 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 375 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 376 Function *Func = (*Blocks.begin())->getParent(); 377 for (BasicBlock &BB : *Func) { 378 if (Blocks.count(&BB)) 379 continue; 380 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 381 return false; 382 } 383 return true; 384 } 385 386 BasicBlock * 387 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 388 BasicBlock *SinglePredFromOutlineRegion = nullptr; 389 assert(!Blocks.count(CommonExitBlock) && 390 "Expect a block outside the region!"); 391 for (auto *Pred : predecessors(CommonExitBlock)) { 392 if (!Blocks.count(Pred)) 393 continue; 394 if (!SinglePredFromOutlineRegion) { 395 SinglePredFromOutlineRegion = Pred; 396 } else if (SinglePredFromOutlineRegion != Pred) { 397 SinglePredFromOutlineRegion = nullptr; 398 break; 399 } 400 } 401 402 if (SinglePredFromOutlineRegion) 403 return SinglePredFromOutlineRegion; 404 405 #ifndef NDEBUG 406 auto getFirstPHI = [](BasicBlock *BB) { 407 BasicBlock::iterator I = BB->begin(); 408 PHINode *FirstPhi = nullptr; 409 while (I != BB->end()) { 410 PHINode *Phi = dyn_cast<PHINode>(I); 411 if (!Phi) 412 break; 413 if (!FirstPhi) { 414 FirstPhi = Phi; 415 break; 416 } 417 } 418 return FirstPhi; 419 }; 420 // If there are any phi nodes, the single pred either exists or has already 421 // be created before code extraction. 422 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 423 #endif 424 425 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 426 CommonExitBlock->getFirstNonPHI()->getIterator()); 427 428 for (BasicBlock *Pred : 429 llvm::make_early_inc_range(predecessors(CommonExitBlock))) { 430 if (Blocks.count(Pred)) 431 continue; 432 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 433 } 434 // Now add the old exit block to the outline region. 435 Blocks.insert(CommonExitBlock); 436 OldTargets.push_back(NewExitBlock); 437 return CommonExitBlock; 438 } 439 440 // Find the pair of life time markers for address 'Addr' that are either 441 // defined inside the outline region or can legally be shrinkwrapped into the 442 // outline region. If there are not other untracked uses of the address, return 443 // the pair of markers if found; otherwise return a pair of nullptr. 444 CodeExtractor::LifetimeMarkerInfo 445 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 446 Instruction *Addr, 447 BasicBlock *ExitBlock) const { 448 LifetimeMarkerInfo Info; 449 450 for (User *U : Addr->users()) { 451 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 452 if (IntrInst) { 453 // We don't model addresses with multiple start/end markers, but the 454 // markers do not need to be in the region. 455 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 456 if (Info.LifeStart) 457 return {}; 458 Info.LifeStart = IntrInst; 459 continue; 460 } 461 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 462 if (Info.LifeEnd) 463 return {}; 464 Info.LifeEnd = IntrInst; 465 continue; 466 } 467 // At this point, permit debug uses outside of the region. 468 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 469 if (isa<DbgInfoIntrinsic>(IntrInst)) 470 continue; 471 } 472 // Find untracked uses of the address, bail. 473 if (!definedInRegion(Blocks, U)) 474 return {}; 475 } 476 477 if (!Info.LifeStart || !Info.LifeEnd) 478 return {}; 479 480 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 481 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 482 // Do legality check. 483 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 484 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 485 return {}; 486 487 // Check to see if we have a place to do hoisting, if not, bail. 488 if (Info.HoistLifeEnd && !ExitBlock) 489 return {}; 490 491 return Info; 492 } 493 494 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 495 ValueSet &SinkCands, ValueSet &HoistCands, 496 BasicBlock *&ExitBlock) const { 497 Function *Func = (*Blocks.begin())->getParent(); 498 ExitBlock = getCommonExitBlock(Blocks); 499 500 auto moveOrIgnoreLifetimeMarkers = 501 [&](const LifetimeMarkerInfo &LMI) -> bool { 502 if (!LMI.LifeStart) 503 return false; 504 if (LMI.SinkLifeStart) { 505 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 506 << "\n"); 507 SinkCands.insert(LMI.LifeStart); 508 } 509 if (LMI.HoistLifeEnd) { 510 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 511 HoistCands.insert(LMI.LifeEnd); 512 } 513 return true; 514 }; 515 516 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 517 // this is much faster than walking all the instructions. 518 for (AllocaInst *AI : CEAC.getAllocas()) { 519 BasicBlock *BB = AI->getParent(); 520 if (Blocks.count(BB)) 521 continue; 522 523 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 524 // check whether it is actually still in the original function. 525 Function *AIFunc = BB->getParent(); 526 if (AIFunc != Func) 527 continue; 528 529 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 530 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 531 if (Moved) { 532 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 533 SinkCands.insert(AI); 534 continue; 535 } 536 537 // Find bitcasts in the outlined region that have lifetime marker users 538 // outside that region. Replace the lifetime marker use with an 539 // outside region bitcast to avoid unnecessary alloca/reload instructions 540 // and extra lifetime markers. 541 SmallVector<Instruction *, 2> LifetimeBitcastUsers; 542 for (User *U : AI->users()) { 543 if (!definedInRegion(Blocks, U)) 544 continue; 545 546 if (U->stripInBoundsConstantOffsets() != AI) 547 continue; 548 549 Instruction *Bitcast = cast<Instruction>(U); 550 for (User *BU : Bitcast->users()) { 551 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU); 552 if (!IntrInst) 553 continue; 554 555 if (!IntrInst->isLifetimeStartOrEnd()) 556 continue; 557 558 if (definedInRegion(Blocks, IntrInst)) 559 continue; 560 561 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast" 562 << *Bitcast << " in out-of-region lifetime marker " 563 << *IntrInst << "\n"); 564 LifetimeBitcastUsers.push_back(IntrInst); 565 } 566 } 567 568 for (Instruction *I : LifetimeBitcastUsers) { 569 Module *M = AIFunc->getParent(); 570 LLVMContext &Ctx = M->getContext(); 571 auto *Int8PtrTy = PointerType::getUnqual(Ctx); 572 CastInst *CastI = 573 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I); 574 I->replaceUsesOfWith(I->getOperand(1), CastI); 575 } 576 577 // Follow any bitcasts. 578 SmallVector<Instruction *, 2> Bitcasts; 579 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 580 for (User *U : AI->users()) { 581 if (U->stripInBoundsConstantOffsets() == AI) { 582 Instruction *Bitcast = cast<Instruction>(U); 583 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 584 if (LMI.LifeStart) { 585 Bitcasts.push_back(Bitcast); 586 BitcastLifetimeInfo.push_back(LMI); 587 continue; 588 } 589 } 590 591 // Found unknown use of AI. 592 if (!definedInRegion(Blocks, U)) { 593 Bitcasts.clear(); 594 break; 595 } 596 } 597 598 // Either no bitcasts reference the alloca or there are unknown uses. 599 if (Bitcasts.empty()) 600 continue; 601 602 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 603 SinkCands.insert(AI); 604 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 605 Instruction *BitcastAddr = Bitcasts[I]; 606 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 607 assert(LMI.LifeStart && 608 "Unsafe to sink bitcast without lifetime markers"); 609 moveOrIgnoreLifetimeMarkers(LMI); 610 if (!definedInRegion(Blocks, BitcastAddr)) { 611 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 612 << "\n"); 613 SinkCands.insert(BitcastAddr); 614 } 615 } 616 } 617 } 618 619 bool CodeExtractor::isEligible() const { 620 if (Blocks.empty()) 621 return false; 622 BasicBlock *Header = *Blocks.begin(); 623 Function *F = Header->getParent(); 624 625 // For functions with varargs, check that varargs handling is only done in the 626 // outlined function, i.e vastart and vaend are only used in outlined blocks. 627 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 628 auto containsVarArgIntrinsic = [](const Instruction &I) { 629 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 630 if (const Function *Callee = CI->getCalledFunction()) 631 return Callee->getIntrinsicID() == Intrinsic::vastart || 632 Callee->getIntrinsicID() == Intrinsic::vaend; 633 return false; 634 }; 635 636 for (auto &BB : *F) { 637 if (Blocks.count(&BB)) 638 continue; 639 if (llvm::any_of(BB, containsVarArgIntrinsic)) 640 return false; 641 } 642 } 643 return true; 644 } 645 646 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 647 const ValueSet &SinkCands) const { 648 for (BasicBlock *BB : Blocks) { 649 // If a used value is defined outside the region, it's an input. If an 650 // instruction is used outside the region, it's an output. 651 for (Instruction &II : *BB) { 652 for (auto &OI : II.operands()) { 653 Value *V = OI; 654 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 655 Inputs.insert(V); 656 } 657 658 for (User *U : II.users()) 659 if (!definedInRegion(Blocks, U)) { 660 Outputs.insert(&II); 661 break; 662 } 663 } 664 } 665 } 666 667 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 668 /// of the region, we need to split the entry block of the region so that the 669 /// PHI node is easier to deal with. 670 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 671 unsigned NumPredsFromRegion = 0; 672 unsigned NumPredsOutsideRegion = 0; 673 674 if (Header != &Header->getParent()->getEntryBlock()) { 675 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 676 if (!PN) return; // No PHI nodes. 677 678 // If the header node contains any PHI nodes, check to see if there is more 679 // than one entry from outside the region. If so, we need to sever the 680 // header block into two. 681 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 682 if (Blocks.count(PN->getIncomingBlock(i))) 683 ++NumPredsFromRegion; 684 else 685 ++NumPredsOutsideRegion; 686 687 // If there is one (or fewer) predecessor from outside the region, we don't 688 // need to do anything special. 689 if (NumPredsOutsideRegion <= 1) return; 690 } 691 692 // Otherwise, we need to split the header block into two pieces: one 693 // containing PHI nodes merging values from outside of the region, and a 694 // second that contains all of the code for the block and merges back any 695 // incoming values from inside of the region. 696 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 697 698 // We only want to code extract the second block now, and it becomes the new 699 // header of the region. 700 BasicBlock *OldPred = Header; 701 Blocks.remove(OldPred); 702 Blocks.insert(NewBB); 703 Header = NewBB; 704 705 // Okay, now we need to adjust the PHI nodes and any branches from within the 706 // region to go to the new header block instead of the old header block. 707 if (NumPredsFromRegion) { 708 PHINode *PN = cast<PHINode>(OldPred->begin()); 709 // Loop over all of the predecessors of OldPred that are in the region, 710 // changing them to branch to NewBB instead. 711 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 712 if (Blocks.count(PN->getIncomingBlock(i))) { 713 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 714 TI->replaceUsesOfWith(OldPred, NewBB); 715 } 716 717 // Okay, everything within the region is now branching to the right block, we 718 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 719 BasicBlock::iterator AfterPHIs; 720 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 721 PHINode *PN = cast<PHINode>(AfterPHIs); 722 // Create a new PHI node in the new region, which has an incoming value 723 // from OldPred of PN. 724 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 725 PN->getName() + ".ce"); 726 NewPN->insertBefore(NewBB->begin()); 727 PN->replaceAllUsesWith(NewPN); 728 NewPN->addIncoming(PN, OldPred); 729 730 // Loop over all of the incoming value in PN, moving them to NewPN if they 731 // are from the extracted region. 732 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 733 if (Blocks.count(PN->getIncomingBlock(i))) { 734 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 735 PN->removeIncomingValue(i); 736 --i; 737 } 738 } 739 } 740 } 741 } 742 743 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 744 /// outlined region, we split these PHIs on two: one with inputs from region 745 /// and other with remaining incoming blocks; then first PHIs are placed in 746 /// outlined region. 747 void CodeExtractor::severSplitPHINodesOfExits( 748 const SmallPtrSetImpl<BasicBlock *> &Exits) { 749 for (BasicBlock *ExitBB : Exits) { 750 BasicBlock *NewBB = nullptr; 751 752 for (PHINode &PN : ExitBB->phis()) { 753 // Find all incoming values from the outlining region. 754 SmallVector<unsigned, 2> IncomingVals; 755 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 756 if (Blocks.count(PN.getIncomingBlock(i))) 757 IncomingVals.push_back(i); 758 759 // Do not process PHI if there is one (or fewer) predecessor from region. 760 // If PHI has exactly one predecessor from region, only this one incoming 761 // will be replaced on codeRepl block, so it should be safe to skip PHI. 762 if (IncomingVals.size() <= 1) 763 continue; 764 765 // Create block for new PHIs and add it to the list of outlined if it 766 // wasn't done before. 767 if (!NewBB) { 768 NewBB = BasicBlock::Create(ExitBB->getContext(), 769 ExitBB->getName() + ".split", 770 ExitBB->getParent(), ExitBB); 771 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB)); 772 for (BasicBlock *PredBB : Preds) 773 if (Blocks.count(PredBB)) 774 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 775 BranchInst::Create(ExitBB, NewBB); 776 Blocks.insert(NewBB); 777 } 778 779 // Split this PHI. 780 PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(), 781 PN.getName() + ".ce"); 782 NewPN->insertBefore(NewBB->getFirstNonPHIIt()); 783 for (unsigned i : IncomingVals) 784 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 785 for (unsigned i : reverse(IncomingVals)) 786 PN.removeIncomingValue(i, false); 787 PN.addIncoming(NewPN, NewBB); 788 } 789 } 790 } 791 792 void CodeExtractor::splitReturnBlocks() { 793 for (BasicBlock *Block : Blocks) 794 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 795 BasicBlock *New = 796 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 797 if (DT) { 798 // Old dominates New. New node dominates all other nodes dominated 799 // by Old. 800 DomTreeNode *OldNode = DT->getNode(Block); 801 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 802 OldNode->end()); 803 804 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 805 806 for (DomTreeNode *I : Children) 807 DT->changeImmediateDominator(I, NewNode); 808 } 809 } 810 } 811 812 /// constructFunction - make a function based on inputs and outputs, as follows: 813 /// f(in0, ..., inN, out0, ..., outN) 814 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 815 const ValueSet &outputs, 816 BasicBlock *header, 817 BasicBlock *newRootNode, 818 BasicBlock *newHeader, 819 Function *oldFunction, 820 Module *M) { 821 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 822 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 823 824 // This function returns unsigned, outputs will go back by reference. 825 switch (NumExitBlocks) { 826 case 0: 827 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 828 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 829 default: RetTy = Type::getInt16Ty(header->getContext()); break; 830 } 831 832 std::vector<Type *> ParamTy; 833 std::vector<Type *> AggParamTy; 834 ValueSet StructValues; 835 const DataLayout &DL = M->getDataLayout(); 836 837 // Add the types of the input values to the function's argument list 838 for (Value *value : inputs) { 839 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 840 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) { 841 AggParamTy.push_back(value->getType()); 842 StructValues.insert(value); 843 } else 844 ParamTy.push_back(value->getType()); 845 } 846 847 // Add the types of the output values to the function's argument list. 848 for (Value *output : outputs) { 849 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 850 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 851 AggParamTy.push_back(output->getType()); 852 StructValues.insert(output); 853 } else 854 ParamTy.push_back( 855 PointerType::get(output->getType(), DL.getAllocaAddrSpace())); 856 } 857 858 assert( 859 (ParamTy.size() + AggParamTy.size()) == 860 (inputs.size() + outputs.size()) && 861 "Number of scalar and aggregate params does not match inputs, outputs"); 862 assert((StructValues.empty() || AggregateArgs) && 863 "Expeced StructValues only with AggregateArgs set"); 864 865 // Concatenate scalar and aggregate params in ParamTy. 866 size_t NumScalarParams = ParamTy.size(); 867 StructType *StructTy = nullptr; 868 if (AggregateArgs && !AggParamTy.empty()) { 869 StructTy = StructType::get(M->getContext(), AggParamTy); 870 ParamTy.push_back(PointerType::get( 871 StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace())); 872 } 873 874 LLVM_DEBUG({ 875 dbgs() << "Function type: " << *RetTy << " f("; 876 for (Type *i : ParamTy) 877 dbgs() << *i << ", "; 878 dbgs() << ")\n"; 879 }); 880 881 FunctionType *funcType = FunctionType::get( 882 RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg()); 883 884 std::string SuffixToUse = 885 Suffix.empty() 886 ? (header->getName().empty() ? "extracted" : header->getName().str()) 887 : Suffix; 888 // Create the new function 889 Function *newFunction = Function::Create( 890 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 891 oldFunction->getName() + "." + SuffixToUse, M); 892 893 // Inherit all of the target dependent attributes and white-listed 894 // target independent attributes. 895 // (e.g. If the extracted region contains a call to an x86.sse 896 // instruction we need to make sure that the extracted region has the 897 // "target-features" attribute allowing it to be lowered. 898 // FIXME: This should be changed to check to see if a specific 899 // attribute can not be inherited. 900 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) { 901 if (Attr.isStringAttribute()) { 902 if (Attr.getKindAsString() == "thunk") 903 continue; 904 } else 905 switch (Attr.getKindAsEnum()) { 906 // Those attributes cannot be propagated safely. Explicitly list them 907 // here so we get a warning if new attributes are added. 908 case Attribute::AllocSize: 909 case Attribute::Builtin: 910 case Attribute::Convergent: 911 case Attribute::JumpTable: 912 case Attribute::Naked: 913 case Attribute::NoBuiltin: 914 case Attribute::NoMerge: 915 case Attribute::NoReturn: 916 case Attribute::NoSync: 917 case Attribute::ReturnsTwice: 918 case Attribute::Speculatable: 919 case Attribute::StackAlignment: 920 case Attribute::WillReturn: 921 case Attribute::AllocKind: 922 case Attribute::PresplitCoroutine: 923 case Attribute::Memory: 924 case Attribute::NoFPClass: 925 continue; 926 // Those attributes should be safe to propagate to the extracted function. 927 case Attribute::AlwaysInline: 928 case Attribute::Cold: 929 case Attribute::DisableSanitizerInstrumentation: 930 case Attribute::FnRetThunkExtern: 931 case Attribute::Hot: 932 case Attribute::NoRecurse: 933 case Attribute::InlineHint: 934 case Attribute::MinSize: 935 case Attribute::NoCallback: 936 case Attribute::NoDuplicate: 937 case Attribute::NoFree: 938 case Attribute::NoImplicitFloat: 939 case Attribute::NoInline: 940 case Attribute::NonLazyBind: 941 case Attribute::NoRedZone: 942 case Attribute::NoUnwind: 943 case Attribute::NoSanitizeBounds: 944 case Attribute::NoSanitizeCoverage: 945 case Attribute::NullPointerIsValid: 946 case Attribute::OptimizeForDebugging: 947 case Attribute::OptForFuzzing: 948 case Attribute::OptimizeNone: 949 case Attribute::OptimizeForSize: 950 case Attribute::SafeStack: 951 case Attribute::ShadowCallStack: 952 case Attribute::SanitizeAddress: 953 case Attribute::SanitizeMemory: 954 case Attribute::SanitizeThread: 955 case Attribute::SanitizeHWAddress: 956 case Attribute::SanitizeMemTag: 957 case Attribute::SpeculativeLoadHardening: 958 case Attribute::StackProtect: 959 case Attribute::StackProtectReq: 960 case Attribute::StackProtectStrong: 961 case Attribute::StrictFP: 962 case Attribute::UWTable: 963 case Attribute::VScaleRange: 964 case Attribute::NoCfCheck: 965 case Attribute::MustProgress: 966 case Attribute::NoProfile: 967 case Attribute::SkipProfile: 968 break; 969 // These attributes cannot be applied to functions. 970 case Attribute::Alignment: 971 case Attribute::AllocatedPointer: 972 case Attribute::AllocAlign: 973 case Attribute::ByVal: 974 case Attribute::Dereferenceable: 975 case Attribute::DereferenceableOrNull: 976 case Attribute::ElementType: 977 case Attribute::InAlloca: 978 case Attribute::InReg: 979 case Attribute::Nest: 980 case Attribute::NoAlias: 981 case Attribute::NoCapture: 982 case Attribute::NoUndef: 983 case Attribute::NonNull: 984 case Attribute::Preallocated: 985 case Attribute::ReadNone: 986 case Attribute::ReadOnly: 987 case Attribute::Returned: 988 case Attribute::SExt: 989 case Attribute::StructRet: 990 case Attribute::SwiftError: 991 case Attribute::SwiftSelf: 992 case Attribute::SwiftAsync: 993 case Attribute::ZExt: 994 case Attribute::ImmArg: 995 case Attribute::ByRef: 996 case Attribute::WriteOnly: 997 case Attribute::Writable: 998 // These are not really attributes. 999 case Attribute::None: 1000 case Attribute::EndAttrKinds: 1001 case Attribute::EmptyKey: 1002 case Attribute::TombstoneKey: 1003 llvm_unreachable("Not a function attribute"); 1004 } 1005 1006 newFunction->addFnAttr(Attr); 1007 } 1008 newFunction->insert(newFunction->end(), newRootNode); 1009 1010 // Create scalar and aggregate iterators to name all of the arguments we 1011 // inserted. 1012 Function::arg_iterator ScalarAI = newFunction->arg_begin(); 1013 Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams); 1014 1015 // Rewrite all users of the inputs in the extracted region to use the 1016 // arguments (or appropriate addressing into struct) instead. 1017 for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) { 1018 Value *RewriteVal; 1019 if (AggregateArgs && StructValues.contains(inputs[i])) { 1020 Value *Idx[2]; 1021 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 1022 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx); 1023 Instruction *TI = newFunction->begin()->getTerminator(); 1024 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1025 StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI); 1026 RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP, 1027 "loadgep_" + inputs[i]->getName(), TI); 1028 ++aggIdx; 1029 } else 1030 RewriteVal = &*ScalarAI++; 1031 1032 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 1033 for (User *use : Users) 1034 if (Instruction *inst = dyn_cast<Instruction>(use)) 1035 if (Blocks.count(inst->getParent())) 1036 inst->replaceUsesOfWith(inputs[i], RewriteVal); 1037 } 1038 1039 // Set names for input and output arguments. 1040 if (NumScalarParams) { 1041 ScalarAI = newFunction->arg_begin(); 1042 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI) 1043 if (!StructValues.contains(inputs[i])) 1044 ScalarAI->setName(inputs[i]->getName()); 1045 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI) 1046 if (!StructValues.contains(outputs[i])) 1047 ScalarAI->setName(outputs[i]->getName() + ".out"); 1048 } 1049 1050 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 1051 // within the new function. This must be done before we lose track of which 1052 // blocks were originally in the code region. 1053 std::vector<User *> Users(header->user_begin(), header->user_end()); 1054 for (auto &U : Users) 1055 // The BasicBlock which contains the branch is not in the region 1056 // modify the branch target to a new block 1057 if (Instruction *I = dyn_cast<Instruction>(U)) 1058 if (I->isTerminator() && I->getFunction() == oldFunction && 1059 !Blocks.count(I->getParent())) 1060 I->replaceUsesOfWith(header, newHeader); 1061 1062 return newFunction; 1063 } 1064 1065 /// Erase lifetime.start markers which reference inputs to the extraction 1066 /// region, and insert the referenced memory into \p LifetimesStart. 1067 /// 1068 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 1069 /// of allocas which will be moved from the caller function into the extracted 1070 /// function (\p SunkAllocas). 1071 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 1072 const SetVector<Value *> &SunkAllocas, 1073 SetVector<Value *> &LifetimesStart) { 1074 for (BasicBlock *BB : Blocks) { 1075 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 1076 auto *II = dyn_cast<IntrinsicInst>(&I); 1077 if (!II || !II->isLifetimeStartOrEnd()) 1078 continue; 1079 1080 // Get the memory operand of the lifetime marker. If the underlying 1081 // object is a sunk alloca, or is otherwise defined in the extraction 1082 // region, the lifetime marker must not be erased. 1083 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1084 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1085 continue; 1086 1087 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1088 LifetimesStart.insert(Mem); 1089 II->eraseFromParent(); 1090 } 1091 } 1092 } 1093 1094 /// Insert lifetime start/end markers surrounding the call to the new function 1095 /// for objects defined in the caller. 1096 static void insertLifetimeMarkersSurroundingCall( 1097 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1098 CallInst *TheCall) { 1099 LLVMContext &Ctx = M->getContext(); 1100 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1101 Instruction *Term = TheCall->getParent()->getTerminator(); 1102 1103 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1104 // markers before the call if \p InsertBefore, and after the call otherwise. 1105 auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects, 1106 bool InsertBefore) { 1107 for (Value *Mem : Objects) { 1108 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1109 TheCall->getFunction()) && 1110 "Input memory not defined in original function"); 1111 1112 Function *Func = Intrinsic::getDeclaration(M, MarkerFunc, Mem->getType()); 1113 auto Marker = CallInst::Create(Func, {NegativeOne, Mem}); 1114 if (InsertBefore) 1115 Marker->insertBefore(TheCall); 1116 else 1117 Marker->insertBefore(Term); 1118 } 1119 }; 1120 1121 if (!LifetimesStart.empty()) { 1122 insertMarkers(Intrinsic::lifetime_start, LifetimesStart, 1123 /*InsertBefore=*/true); 1124 } 1125 1126 if (!LifetimesEnd.empty()) { 1127 insertMarkers(Intrinsic::lifetime_end, LifetimesEnd, 1128 /*InsertBefore=*/false); 1129 } 1130 } 1131 1132 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1133 /// the call instruction, splitting any PHI nodes in the header block as 1134 /// necessary. 1135 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1136 BasicBlock *codeReplacer, 1137 ValueSet &inputs, 1138 ValueSet &outputs) { 1139 // Emit a call to the new function, passing in: *pointer to struct (if 1140 // aggregating parameters), or plan inputs and allocated memory for outputs 1141 std::vector<Value *> params, ReloadOutputs, Reloads; 1142 ValueSet StructValues; 1143 1144 Module *M = newFunction->getParent(); 1145 LLVMContext &Context = M->getContext(); 1146 const DataLayout &DL = M->getDataLayout(); 1147 CallInst *call = nullptr; 1148 1149 // Add inputs as params, or to be filled into the struct 1150 unsigned ScalarInputArgNo = 0; 1151 SmallVector<unsigned, 1> SwiftErrorArgs; 1152 for (Value *input : inputs) { 1153 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input)) 1154 StructValues.insert(input); 1155 else { 1156 params.push_back(input); 1157 if (input->isSwiftError()) 1158 SwiftErrorArgs.push_back(ScalarInputArgNo); 1159 } 1160 ++ScalarInputArgNo; 1161 } 1162 1163 // Create allocas for the outputs 1164 unsigned ScalarOutputArgNo = 0; 1165 for (Value *output : outputs) { 1166 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 1167 StructValues.insert(output); 1168 } else { 1169 AllocaInst *alloca = 1170 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1171 nullptr, output->getName() + ".loc", 1172 &codeReplacer->getParent()->front().front()); 1173 ReloadOutputs.push_back(alloca); 1174 params.push_back(alloca); 1175 ++ScalarOutputArgNo; 1176 } 1177 } 1178 1179 StructType *StructArgTy = nullptr; 1180 AllocaInst *Struct = nullptr; 1181 unsigned NumAggregatedInputs = 0; 1182 if (AggregateArgs && !StructValues.empty()) { 1183 std::vector<Type *> ArgTypes; 1184 for (Value *V : StructValues) 1185 ArgTypes.push_back(V->getType()); 1186 1187 // Allocate a struct at the beginning of this function 1188 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1189 Struct = new AllocaInst( 1190 StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg", 1191 AllocationBlock ? &*AllocationBlock->getFirstInsertionPt() 1192 : &codeReplacer->getParent()->front().front()); 1193 1194 if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) { 1195 auto *StructSpaceCast = new AddrSpaceCastInst( 1196 Struct, PointerType ::get(Context, 0), "structArg.ascast"); 1197 StructSpaceCast->insertAfter(Struct); 1198 params.push_back(StructSpaceCast); 1199 } else { 1200 params.push_back(Struct); 1201 } 1202 // Store aggregated inputs in the struct. 1203 for (unsigned i = 0, e = StructValues.size(); i != e; ++i) { 1204 if (inputs.contains(StructValues[i])) { 1205 Value *Idx[2]; 1206 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1207 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1208 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1209 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1210 GEP->insertInto(codeReplacer, codeReplacer->end()); 1211 new StoreInst(StructValues[i], GEP, codeReplacer); 1212 NumAggregatedInputs++; 1213 } 1214 } 1215 } 1216 1217 // Emit the call to the function 1218 call = CallInst::Create(newFunction, params, 1219 NumExitBlocks > 1 ? "targetBlock" : ""); 1220 // Add debug location to the new call, if the original function has debug 1221 // info. In that case, the terminator of the entry block of the extracted 1222 // function contains the first debug location of the extracted function, 1223 // set in extractCodeRegion. 1224 if (codeReplacer->getParent()->getSubprogram()) { 1225 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1226 call->setDebugLoc(DL); 1227 } 1228 call->insertInto(codeReplacer, codeReplacer->end()); 1229 1230 // Set swifterror parameter attributes. 1231 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1232 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1233 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1234 } 1235 1236 // Reload the outputs passed in by reference, use the struct if output is in 1237 // the aggregate or reload from the scalar argument. 1238 for (unsigned i = 0, e = outputs.size(), scalarIdx = 0, 1239 aggIdx = NumAggregatedInputs; 1240 i != e; ++i) { 1241 Value *Output = nullptr; 1242 if (AggregateArgs && StructValues.contains(outputs[i])) { 1243 Value *Idx[2]; 1244 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1245 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1246 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1247 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1248 GEP->insertInto(codeReplacer, codeReplacer->end()); 1249 Output = GEP; 1250 ++aggIdx; 1251 } else { 1252 Output = ReloadOutputs[scalarIdx]; 1253 ++scalarIdx; 1254 } 1255 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1256 outputs[i]->getName() + ".reload", 1257 codeReplacer); 1258 Reloads.push_back(load); 1259 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1260 for (User *U : Users) { 1261 Instruction *inst = cast<Instruction>(U); 1262 if (!Blocks.count(inst->getParent())) 1263 inst->replaceUsesOfWith(outputs[i], load); 1264 } 1265 } 1266 1267 // Now we can emit a switch statement using the call as a value. 1268 SwitchInst *TheSwitch = 1269 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1270 codeReplacer, 0, codeReplacer); 1271 1272 // Since there may be multiple exits from the original region, make the new 1273 // function return an unsigned, switch on that number. This loop iterates 1274 // over all of the blocks in the extracted region, updating any terminator 1275 // instructions in the to-be-extracted region that branch to blocks that are 1276 // not in the region to be extracted. 1277 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1278 1279 // Iterate over the previously collected targets, and create new blocks inside 1280 // the function to branch to. 1281 unsigned switchVal = 0; 1282 for (BasicBlock *OldTarget : OldTargets) { 1283 if (Blocks.count(OldTarget)) 1284 continue; 1285 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1286 if (NewTarget) 1287 continue; 1288 1289 // If we don't already have an exit stub for this non-extracted 1290 // destination, create one now! 1291 NewTarget = BasicBlock::Create(Context, 1292 OldTarget->getName() + ".exitStub", 1293 newFunction); 1294 unsigned SuccNum = switchVal++; 1295 1296 Value *brVal = nullptr; 1297 assert(NumExitBlocks < 0xffff && "too many exit blocks for switch"); 1298 switch (NumExitBlocks) { 1299 case 0: 1300 case 1: break; // No value needed. 1301 case 2: // Conditional branch, return a bool 1302 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1303 break; 1304 default: 1305 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1306 break; 1307 } 1308 1309 ReturnInst::Create(Context, brVal, NewTarget); 1310 1311 // Update the switch instruction. 1312 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1313 SuccNum), 1314 OldTarget); 1315 } 1316 1317 for (BasicBlock *Block : Blocks) { 1318 Instruction *TI = Block->getTerminator(); 1319 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1320 if (Blocks.count(TI->getSuccessor(i))) 1321 continue; 1322 BasicBlock *OldTarget = TI->getSuccessor(i); 1323 // add a new basic block which returns the appropriate value 1324 BasicBlock *NewTarget = ExitBlockMap[OldTarget]; 1325 assert(NewTarget && "Unknown target block!"); 1326 1327 // rewrite the original branch instruction with this new target 1328 TI->setSuccessor(i, NewTarget); 1329 } 1330 } 1331 1332 // Store the arguments right after the definition of output value. 1333 // This should be proceeded after creating exit stubs to be ensure that invoke 1334 // result restore will be placed in the outlined function. 1335 Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin(); 1336 std::advance(ScalarOutputArgBegin, ScalarInputArgNo); 1337 Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin(); 1338 std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo); 1339 1340 for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e; 1341 ++i) { 1342 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1343 if (!OutI) 1344 continue; 1345 1346 // Find proper insertion point. 1347 BasicBlock::iterator InsertPt; 1348 // In case OutI is an invoke, we insert the store at the beginning in the 1349 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1350 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1351 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1352 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1353 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1354 else 1355 InsertPt = std::next(OutI->getIterator()); 1356 1357 Instruction *InsertBefore = &*InsertPt; 1358 assert((InsertBefore->getFunction() == newFunction || 1359 Blocks.count(InsertBefore->getParent())) && 1360 "InsertPt should be in new function"); 1361 if (AggregateArgs && StructValues.contains(outputs[i])) { 1362 assert(AggOutputArgBegin != newFunction->arg_end() && 1363 "Number of aggregate output arguments should match " 1364 "the number of defined values"); 1365 Value *Idx[2]; 1366 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1367 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1368 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1369 StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(), 1370 InsertBefore); 1371 new StoreInst(outputs[i], GEP, InsertBefore); 1372 ++aggIdx; 1373 // Since there should be only one struct argument aggregating 1374 // all the output values, we shouldn't increment AggOutputArgBegin, which 1375 // always points to the struct argument, in this case. 1376 } else { 1377 assert(ScalarOutputArgBegin != newFunction->arg_end() && 1378 "Number of scalar output arguments should match " 1379 "the number of defined values"); 1380 new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore); 1381 ++ScalarOutputArgBegin; 1382 } 1383 } 1384 1385 // Now that we've done the deed, simplify the switch instruction. 1386 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1387 switch (NumExitBlocks) { 1388 case 0: 1389 // There are no successors (the block containing the switch itself), which 1390 // means that previously this was the last part of the function, and hence 1391 // this should be rewritten as a `ret' 1392 1393 // Check if the function should return a value 1394 if (OldFnRetTy->isVoidTy()) { 1395 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1396 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1397 // return what we have 1398 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1399 } else { 1400 // Otherwise we must have code extracted an unwind or something, just 1401 // return whatever we want. 1402 ReturnInst::Create(Context, 1403 Constant::getNullValue(OldFnRetTy), TheSwitch); 1404 } 1405 1406 TheSwitch->eraseFromParent(); 1407 break; 1408 case 1: 1409 // Only a single destination, change the switch into an unconditional 1410 // branch. 1411 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1412 TheSwitch->eraseFromParent(); 1413 break; 1414 case 2: 1415 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1416 call, TheSwitch); 1417 TheSwitch->eraseFromParent(); 1418 break; 1419 default: 1420 // Otherwise, make the default destination of the switch instruction be one 1421 // of the other successors. 1422 TheSwitch->setCondition(call); 1423 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1424 // Remove redundant case 1425 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1426 break; 1427 } 1428 1429 // Insert lifetime markers around the reloads of any output values. The 1430 // allocas output values are stored in are only in-use in the codeRepl block. 1431 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1432 1433 return call; 1434 } 1435 1436 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1437 auto newFuncIt = newFunction->front().getIterator(); 1438 for (BasicBlock *Block : Blocks) { 1439 // Delete the basic block from the old function, and the list of blocks 1440 Block->removeFromParent(); 1441 1442 // Insert this basic block into the new function 1443 // Insert the original blocks after the entry block created 1444 // for the new function. The entry block may be followed 1445 // by a set of exit blocks at this point, but these exit 1446 // blocks better be placed at the end of the new function. 1447 newFuncIt = newFunction->insert(std::next(newFuncIt), Block); 1448 } 1449 } 1450 1451 void CodeExtractor::calculateNewCallTerminatorWeights( 1452 BasicBlock *CodeReplacer, 1453 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1454 BranchProbabilityInfo *BPI) { 1455 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1456 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1457 1458 // Update the branch weights for the exit block. 1459 Instruction *TI = CodeReplacer->getTerminator(); 1460 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1461 1462 // Block Frequency distribution with dummy node. 1463 Distribution BranchDist; 1464 1465 SmallVector<BranchProbability, 4> EdgeProbabilities( 1466 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1467 1468 // Add each of the frequencies of the successors. 1469 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1470 BlockNode ExitNode(i); 1471 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1472 if (ExitFreq != 0) 1473 BranchDist.addExit(ExitNode, ExitFreq); 1474 else 1475 EdgeProbabilities[i] = BranchProbability::getZero(); 1476 } 1477 1478 // Check for no total weight. 1479 if (BranchDist.Total == 0) { 1480 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1481 return; 1482 } 1483 1484 // Normalize the distribution so that they can fit in unsigned. 1485 BranchDist.normalize(); 1486 1487 // Create normalized branch weights and set the metadata. 1488 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1489 const auto &Weight = BranchDist.Weights[I]; 1490 1491 // Get the weight and update the current BFI. 1492 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1493 BranchProbability BP(Weight.Amount, BranchDist.Total); 1494 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1495 } 1496 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1497 TI->setMetadata( 1498 LLVMContext::MD_prof, 1499 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1500 } 1501 1502 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1503 /// \p F. 1504 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1505 for (Instruction &I : instructions(F)) { 1506 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1507 findDbgUsers(DbgUsers, &I); 1508 for (DbgVariableIntrinsic *DVI : DbgUsers) 1509 if (DVI->getFunction() != &F) 1510 DVI->eraseFromParent(); 1511 } 1512 } 1513 1514 /// Fix up the debug info in the old and new functions by pointing line 1515 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1516 /// intrinsics which point to values outside of the new function. 1517 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1518 CallInst &TheCall) { 1519 DISubprogram *OldSP = OldFunc.getSubprogram(); 1520 LLVMContext &Ctx = OldFunc.getContext(); 1521 1522 if (!OldSP) { 1523 // Erase any debug info the new function contains. 1524 stripDebugInfo(NewFunc); 1525 // Make sure the old function doesn't contain any non-local metadata refs. 1526 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1527 return; 1528 } 1529 1530 // Create a subprogram for the new function. Leave out a description of the 1531 // function arguments, as the parameters don't correspond to anything at the 1532 // source level. 1533 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1534 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, 1535 OldSP->getUnit()); 1536 auto SPType = 1537 DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt)); 1538 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1539 DISubprogram::SPFlagOptimized | 1540 DISubprogram::SPFlagLocalToUnit; 1541 auto NewSP = DIB.createFunction( 1542 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1543 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1544 NewFunc.setSubprogram(NewSP); 1545 1546 // Debug intrinsics in the new function need to be updated in one of two 1547 // ways: 1548 // 1) They need to be deleted, because they describe a value in the old 1549 // function. 1550 // 2) They need to point to fresh metadata, e.g. because they currently 1551 // point to a variable in the wrong scope. 1552 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1553 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1554 DenseMap<const MDNode *, MDNode *> Cache; 1555 for (Instruction &I : instructions(NewFunc)) { 1556 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1557 if (!DII) 1558 continue; 1559 1560 // Point the intrinsic to a fresh label within the new function if the 1561 // intrinsic was not inlined from some other function. 1562 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1563 if (DLI->getDebugLoc().getInlinedAt()) 1564 continue; 1565 DILabel *OldLabel = DLI->getLabel(); 1566 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1567 if (!NewLabel) { 1568 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram( 1569 *OldLabel->getScope(), *NewSP, Ctx, Cache); 1570 NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(), 1571 OldLabel->getFile(), OldLabel->getLine()); 1572 } 1573 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); 1574 continue; 1575 } 1576 1577 auto IsInvalidLocation = [&NewFunc](Value *Location) { 1578 // Location is invalid if it isn't a constant or an instruction, or is an 1579 // instruction but isn't in the new function. 1580 if (!Location || 1581 (!isa<Constant>(Location) && !isa<Instruction>(Location))) 1582 return true; 1583 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1584 return LocationInst && LocationInst->getFunction() != &NewFunc; 1585 }; 1586 1587 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1588 // If any of the used locations are invalid, delete the intrinsic. 1589 if (any_of(DVI->location_ops(), IsInvalidLocation)) { 1590 DebugIntrinsicsToDelete.push_back(DVI); 1591 continue; 1592 } 1593 // DbgAssign intrinsics have an extra Value argument: 1594 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 1595 DAI && IsInvalidLocation(DAI->getAddress())) { 1596 DebugIntrinsicsToDelete.push_back(DVI); 1597 continue; 1598 } 1599 // If the variable was in the scope of the old function, i.e. it was not 1600 // inlined, point the intrinsic to a fresh variable within the new function. 1601 if (!DVI->getDebugLoc().getInlinedAt()) { 1602 DILocalVariable *OldVar = DVI->getVariable(); 1603 DINode *&NewVar = RemappedMetadata[OldVar]; 1604 if (!NewVar) { 1605 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram( 1606 *OldVar->getScope(), *NewSP, Ctx, Cache); 1607 NewVar = DIB.createAutoVariable( 1608 NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1609 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1610 OldVar->getAlignInBits()); 1611 } 1612 DVI->setVariable(cast<DILocalVariable>(NewVar)); 1613 } 1614 } 1615 1616 for (auto *DII : DebugIntrinsicsToDelete) 1617 DII->eraseFromParent(); 1618 DIB.finalizeSubprogram(NewSP); 1619 1620 // Fix up the scope information attached to the line locations in the new 1621 // function. 1622 for (Instruction &I : instructions(NewFunc)) { 1623 if (const DebugLoc &DL = I.getDebugLoc()) 1624 I.setDebugLoc( 1625 DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache)); 1626 1627 // Loop info metadata may contain line locations. Fix them up. 1628 auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * { 1629 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1630 return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache); 1631 return MD; 1632 }; 1633 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1634 } 1635 if (!TheCall.getDebugLoc()) 1636 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP)); 1637 1638 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1639 } 1640 1641 Function * 1642 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1643 ValueSet Inputs, Outputs; 1644 return extractCodeRegion(CEAC, Inputs, Outputs); 1645 } 1646 1647 Function * 1648 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC, 1649 ValueSet &inputs, ValueSet &outputs) { 1650 if (!isEligible()) 1651 return nullptr; 1652 1653 // Assumption: this is a single-entry code region, and the header is the first 1654 // block in the region. 1655 BasicBlock *header = *Blocks.begin(); 1656 Function *oldFunction = header->getParent(); 1657 1658 // Calculate the entry frequency of the new function before we change the root 1659 // block. 1660 BlockFrequency EntryFreq; 1661 if (BFI) { 1662 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1663 for (BasicBlock *Pred : predecessors(header)) { 1664 if (Blocks.count(Pred)) 1665 continue; 1666 EntryFreq += 1667 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1668 } 1669 } 1670 1671 // Remove @llvm.assume calls that will be moved to the new function from the 1672 // old function's assumption cache. 1673 for (BasicBlock *Block : Blocks) { 1674 for (Instruction &I : llvm::make_early_inc_range(*Block)) { 1675 if (auto *AI = dyn_cast<AssumeInst>(&I)) { 1676 if (AC) 1677 AC->unregisterAssumption(AI); 1678 AI->eraseFromParent(); 1679 } 1680 } 1681 } 1682 1683 // If we have any return instructions in the region, split those blocks so 1684 // that the return is not in the region. 1685 splitReturnBlocks(); 1686 1687 // Calculate the exit blocks for the extracted region and the total exit 1688 // weights for each of those blocks. 1689 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1690 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1691 for (BasicBlock *Block : Blocks) { 1692 for (BasicBlock *Succ : successors(Block)) { 1693 if (!Blocks.count(Succ)) { 1694 // Update the branch weight for this successor. 1695 if (BFI) { 1696 BlockFrequency &BF = ExitWeights[Succ]; 1697 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ); 1698 } 1699 ExitBlocks.insert(Succ); 1700 } 1701 } 1702 } 1703 NumExitBlocks = ExitBlocks.size(); 1704 1705 for (BasicBlock *Block : Blocks) { 1706 Instruction *TI = Block->getTerminator(); 1707 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1708 if (Blocks.count(TI->getSuccessor(i))) 1709 continue; 1710 BasicBlock *OldTarget = TI->getSuccessor(i); 1711 OldTargets.push_back(OldTarget); 1712 } 1713 } 1714 1715 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1716 severSplitPHINodesOfEntry(header); 1717 severSplitPHINodesOfExits(ExitBlocks); 1718 1719 // This takes place of the original loop 1720 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1721 "codeRepl", oldFunction, 1722 header); 1723 1724 // The new function needs a root node because other nodes can branch to the 1725 // head of the region, but the entry node of a function cannot have preds. 1726 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1727 "newFuncRoot"); 1728 auto *BranchI = BranchInst::Create(header); 1729 // If the original function has debug info, we have to add a debug location 1730 // to the new branch instruction from the artificial entry block. 1731 // We use the debug location of the first instruction in the extracted 1732 // blocks, as there is no other equivalent line in the source code. 1733 if (oldFunction->getSubprogram()) { 1734 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1735 return any_of(*BB, [&BranchI](const Instruction &I) { 1736 if (!I.getDebugLoc()) 1737 return false; 1738 BranchI->setDebugLoc(I.getDebugLoc()); 1739 return true; 1740 }); 1741 }); 1742 } 1743 BranchI->insertInto(newFuncRoot, newFuncRoot->end()); 1744 1745 ValueSet SinkingCands, HoistingCands; 1746 BasicBlock *CommonExit = nullptr; 1747 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1748 assert(HoistingCands.empty() || CommonExit); 1749 1750 // Find inputs to, outputs from the code region. 1751 findInputsOutputs(inputs, outputs, SinkingCands); 1752 1753 // Now sink all instructions which only have non-phi uses inside the region. 1754 // Group the allocas at the start of the block, so that any bitcast uses of 1755 // the allocas are well-defined. 1756 AllocaInst *FirstSunkAlloca = nullptr; 1757 for (auto *II : SinkingCands) { 1758 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1759 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1760 if (!FirstSunkAlloca) 1761 FirstSunkAlloca = AI; 1762 } 1763 } 1764 assert((SinkingCands.empty() || FirstSunkAlloca) && 1765 "Did not expect a sink candidate without any allocas"); 1766 for (auto *II : SinkingCands) { 1767 if (!isa<AllocaInst>(II)) { 1768 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1769 } 1770 } 1771 1772 if (!HoistingCands.empty()) { 1773 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1774 Instruction *TI = HoistToBlock->getTerminator(); 1775 for (auto *II : HoistingCands) 1776 cast<Instruction>(II)->moveBefore(TI); 1777 } 1778 1779 // Collect objects which are inputs to the extraction region and also 1780 // referenced by lifetime start markers within it. The effects of these 1781 // markers must be replicated in the calling function to prevent the stack 1782 // coloring pass from merging slots which store input objects. 1783 ValueSet LifetimesStart; 1784 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1785 1786 // Construct new function based on inputs/outputs & add allocas for all defs. 1787 Function *newFunction = 1788 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1789 oldFunction, oldFunction->getParent()); 1790 1791 // Update the entry count of the function. 1792 if (BFI) { 1793 auto Count = BFI->getProfileCountFromFreq(EntryFreq); 1794 if (Count) 1795 newFunction->setEntryCount( 1796 ProfileCount(*Count, Function::PCT_Real)); // FIXME 1797 BFI->setBlockFreq(codeReplacer, EntryFreq); 1798 } 1799 1800 CallInst *TheCall = 1801 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1802 1803 moveCodeToFunction(newFunction); 1804 1805 // Replicate the effects of any lifetime start/end markers which referenced 1806 // input objects in the extraction region by placing markers around the call. 1807 insertLifetimeMarkersSurroundingCall( 1808 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1809 1810 // Propagate personality info to the new function if there is one. 1811 if (oldFunction->hasPersonalityFn()) 1812 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1813 1814 // Update the branch weights for the exit block. 1815 if (BFI && NumExitBlocks > 1) 1816 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1817 1818 // Loop over all of the PHI nodes in the header and exit blocks, and change 1819 // any references to the old incoming edge to be the new incoming edge. 1820 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1821 PHINode *PN = cast<PHINode>(I); 1822 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1823 if (!Blocks.count(PN->getIncomingBlock(i))) 1824 PN->setIncomingBlock(i, newFuncRoot); 1825 } 1826 1827 for (BasicBlock *ExitBB : ExitBlocks) 1828 for (PHINode &PN : ExitBB->phis()) { 1829 Value *IncomingCodeReplacerVal = nullptr; 1830 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1831 // Ignore incoming values from outside of the extracted region. 1832 if (!Blocks.count(PN.getIncomingBlock(i))) 1833 continue; 1834 1835 // Ensure that there is only one incoming value from codeReplacer. 1836 if (!IncomingCodeReplacerVal) { 1837 PN.setIncomingBlock(i, codeReplacer); 1838 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1839 } else 1840 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1841 "PHI has two incompatbile incoming values from codeRepl"); 1842 } 1843 } 1844 1845 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1846 1847 // Mark the new function `noreturn` if applicable. Terminators which resume 1848 // exception propagation are treated as returning instructions. This is to 1849 // avoid inserting traps after calls to outlined functions which unwind. 1850 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1851 const Instruction *Term = BB.getTerminator(); 1852 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1853 }); 1854 if (doesNotReturn) 1855 newFunction->setDoesNotReturn(); 1856 1857 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1858 newFunction->dump(); 1859 report_fatal_error("verification of newFunction failed!"); 1860 }); 1861 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1862 report_fatal_error("verification of oldFunction failed!")); 1863 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1864 report_fatal_error("Stale Asumption cache for old Function!")); 1865 return newFunction; 1866 } 1867 1868 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1869 const Function &NewFunc, 1870 AssumptionCache *AC) { 1871 for (auto AssumeVH : AC->assumptions()) { 1872 auto *I = dyn_cast_or_null<CallInst>(AssumeVH); 1873 if (!I) 1874 continue; 1875 1876 // There shouldn't be any llvm.assume intrinsics in the new function. 1877 if (I->getFunction() != &OldFunc) 1878 return true; 1879 1880 // There shouldn't be any stale affected values in the assumption cache 1881 // that were previously in the old function, but that have now been moved 1882 // to the new function. 1883 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1884 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1885 if (!AffectedCI) 1886 continue; 1887 if (AffectedCI->getFunction() != &OldFunc) 1888 return true; 1889 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); 1890 if (AssumedInst->getFunction() != &OldFunc) 1891 return true; 1892 } 1893 } 1894 return false; 1895 } 1896 1897 void CodeExtractor::excludeArgFromAggregate(Value *Arg) { 1898 ExcludeArgsFromAggregate.insert(Arg); 1899 } 1900