1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/Module.h" 22 #include "llvm/Pass.h" 23 #include "llvm/Analysis/Dominators.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/Verifier.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "Support/CommandLine.h" 28 #include "Support/Debug.h" 29 #include "Support/StringExtras.h" 30 #include <algorithm> 31 #include <set> 32 using namespace llvm; 33 34 // Provide a command-line option to aggregate function arguments into a struct 35 // for functions produced by the code extrator. This is useful when converting 36 // extracted functions to pthread-based code, as only one argument (void*) can 37 // be passed in to pthread_create(). 38 static cl::opt<bool> 39 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 40 cl::desc("Aggregate arguments to code-extracted functions")); 41 42 namespace { 43 class CodeExtractor { 44 typedef std::vector<Value*> Values; 45 std::set<BasicBlock*> BlocksToExtract; 46 DominatorSet *DS; 47 bool AggregateArgs; 48 unsigned NumExitBlocks; 49 const Type *RetTy; 50 public: 51 CodeExtractor(DominatorSet *ds = 0, bool AggArgs = false) 52 : DS(ds), AggregateArgs(AggregateArgsOpt), NumExitBlocks(~0U) {} 53 54 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 55 56 bool isEligible(const std::vector<BasicBlock*> &code); 57 58 private: 59 /// definedInRegion - Return true if the specified value is defined in the 60 /// extracted region. 61 bool definedInRegion(Value *V) const { 62 if (Instruction *I = dyn_cast<Instruction>(V)) 63 if (BlocksToExtract.count(I->getParent())) 64 return true; 65 return false; 66 } 67 68 /// definedInCaller - Return true if the specified value is defined in the 69 /// function being code extracted, but not in the region being extracted. 70 /// These values must be passed in as live-ins to the function. 71 bool definedInCaller(Value *V) const { 72 if (isa<Argument>(V)) return true; 73 if (Instruction *I = dyn_cast<Instruction>(V)) 74 if (!BlocksToExtract.count(I->getParent())) 75 return true; 76 return false; 77 } 78 79 void severSplitPHINodes(BasicBlock *&Header); 80 void findInputsOutputs(Values &inputs, Values &outputs); 81 82 Function *constructFunction(const Values &inputs, 83 const Values &outputs, 84 BasicBlock *header, 85 BasicBlock *newRootNode, BasicBlock *newHeader, 86 Function *oldFunction, Module *M); 87 88 void moveCodeToFunction(Function *newFunction); 89 90 void emitCallAndSwitchStatement(Function *newFunction, 91 BasicBlock *newHeader, 92 Values &inputs, 93 Values &outputs); 94 95 }; 96 } 97 98 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 99 /// region, we need to split the entry block of the region so that the PHI node 100 /// is easier to deal with. 101 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 102 bool HasPredsFromRegion = false; 103 unsigned NumPredsOutsideRegion = 0; 104 105 if (Header != &Header->getParent()->front()) { 106 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 107 if (!PN) return; // No PHI nodes. 108 109 // If the header node contains any PHI nodes, check to see if there is more 110 // than one entry from outside the region. If so, we need to sever the 111 // header block into two. 112 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 113 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 114 HasPredsFromRegion = true; 115 else 116 ++NumPredsOutsideRegion; 117 118 // If there is one (or fewer) predecessor from outside the region, we don't 119 // need to do anything special. 120 if (NumPredsOutsideRegion <= 1) return; 121 } 122 123 // Otherwise, we need to split the header block into two pieces: one 124 // containing PHI nodes merging values from outside of the region, and a 125 // second that contains all of the code for the block and merges back any 126 // incoming values from inside of the region. 127 BasicBlock::iterator AfterPHIs = Header->begin(); 128 while (isa<PHINode>(AfterPHIs)) ++AfterPHIs; 129 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 130 Header->getName()+".ce"); 131 132 // We only want to code extract the second block now, and it becomes the new 133 // header of the region. 134 BasicBlock *OldPred = Header; 135 BlocksToExtract.erase(OldPred); 136 BlocksToExtract.insert(NewBB); 137 Header = NewBB; 138 139 // Okay, update dominator sets. The blocks that dominate the new one are the 140 // blocks that dominate TIBB plus the new block itself. 141 if (DS) { 142 DominatorSet::DomSetType DomSet = DS->getDominators(OldPred); 143 DomSet.insert(NewBB); // A block always dominates itself. 144 DS->addBasicBlock(NewBB, DomSet); 145 146 // Additionally, NewBB dominates all blocks in the function that are 147 // dominated by OldPred. 148 Function *F = Header->getParent(); 149 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) 150 if (DS->properlyDominates(OldPred, I)) 151 DS->addDominator(I, NewBB); 152 } 153 154 // Okay, now we need to adjust the PHI nodes and any branches from within the 155 // region to go to the new header block instead of the old header block. 156 if (HasPredsFromRegion) { 157 PHINode *PN = cast<PHINode>(OldPred->begin()); 158 // Loop over all of the predecessors of OldPred that are in the region, 159 // changing them to branch to NewBB instead. 160 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 161 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 162 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 163 TI->replaceUsesOfWith(OldPred, NewBB); 164 } 165 166 // Okay, everthing within the region is now branching to the right block, we 167 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 168 for (AfterPHIs = OldPred->begin(); 169 PHINode *PN = dyn_cast<PHINode>(AfterPHIs); ++AfterPHIs) { 170 // Create a new PHI node in the new region, which has an incoming value 171 // from OldPred of PN. 172 PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".ce", 173 NewBB->begin()); 174 NewPN->addIncoming(PN, OldPred); 175 176 // Loop over all of the incoming value in PN, moving them to NewPN if they 177 // are from the extracted region. 178 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 179 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 180 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 181 PN->removeIncomingValue(i); 182 --i; 183 } 184 } 185 } 186 } 187 188 verifyFunction(*NewBB->getParent()); 189 } 190 191 // findInputsOutputs - Find inputs to, outputs from the code region. 192 // 193 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 194 std::set<BasicBlock*> ExitBlocks; 195 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 196 ce = BlocksToExtract.end(); ci != ce; ++ci) { 197 BasicBlock *BB = *ci; 198 199 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 200 // If a used value is defined outside the region, it's an input. If an 201 // instruction is used outside the region, it's an output. 202 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 203 if (definedInCaller(*O)) 204 inputs.push_back(*O); 205 206 // Consider uses of this instruction (outputs). 207 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 208 UI != E; ++UI) 209 if (!definedInRegion(*UI)) { 210 outputs.push_back(I); 211 break; 212 } 213 } // for: insts 214 215 // Keep track of the exit blocks from the region. 216 TerminatorInst *TI = BB->getTerminator(); 217 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 218 if (!BlocksToExtract.count(TI->getSuccessor(i))) 219 ExitBlocks.insert(TI->getSuccessor(i)); 220 } // for: basic blocks 221 222 NumExitBlocks = ExitBlocks.size(); 223 } 224 225 /// constructFunction - make a function based on inputs and outputs, as follows: 226 /// f(in0, ..., inN, out0, ..., outN) 227 /// 228 Function *CodeExtractor::constructFunction(const Values &inputs, 229 const Values &outputs, 230 BasicBlock *header, 231 BasicBlock *newRootNode, 232 BasicBlock *newHeader, 233 Function *oldFunction, 234 Module *M) { 235 DEBUG(std::cerr << "inputs: " << inputs.size() << "\n"); 236 DEBUG(std::cerr << "outputs: " << outputs.size() << "\n"); 237 238 // This function returns unsigned, outputs will go back by reference. 239 switch (NumExitBlocks) { 240 case 0: 241 case 1: RetTy = Type::VoidTy; break; 242 case 2: RetTy = Type::BoolTy; break; 243 default: RetTy = Type::UShortTy; break; 244 } 245 246 std::vector<const Type*> paramTy; 247 248 // Add the types of the input values to the function's argument list 249 for (Values::const_iterator i = inputs.begin(), 250 e = inputs.end(); i != e; ++i) { 251 const Value *value = *i; 252 DEBUG(std::cerr << "value used in func: " << value << "\n"); 253 paramTy.push_back(value->getType()); 254 } 255 256 // Add the types of the output values to the function's argument list. 257 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 258 I != E; ++I) { 259 DEBUG(std::cerr << "instr used in func: " << *I << "\n"); 260 if (AggregateArgs) 261 paramTy.push_back((*I)->getType()); 262 else 263 paramTy.push_back(PointerType::get((*I)->getType())); 264 } 265 266 DEBUG(std::cerr << "Function type: " << RetTy << " f("); 267 DEBUG(for (std::vector<const Type*>::iterator i = paramTy.begin(), 268 e = paramTy.end(); i != e; ++i) std::cerr << *i << ", "); 269 DEBUG(std::cerr << ")\n"); 270 271 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 272 PointerType *StructPtr = PointerType::get(StructType::get(paramTy)); 273 paramTy.clear(); 274 paramTy.push_back(StructPtr); 275 } 276 const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false); 277 278 // Create the new function 279 Function *newFunction = new Function(funcType, 280 GlobalValue::InternalLinkage, 281 oldFunction->getName() + "_code", M); 282 newFunction->getBasicBlockList().push_back(newRootNode); 283 284 // Create an iterator to name all of the arguments we inserted. 285 Function::aiterator AI = newFunction->abegin(); 286 287 // Rewrite all users of the inputs in the extracted region to use the 288 // arguments (or appropriate addressing into struct) instead. 289 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 290 Value *RewriteVal; 291 if (AggregateArgs) { 292 std::vector<Value*> Indices; 293 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 294 Indices.push_back(ConstantUInt::get(Type::UIntTy, i)); 295 std::string GEPname = "gep_" + inputs[i]->getName(); 296 TerminatorInst *TI = newFunction->begin()->getTerminator(); 297 GetElementPtrInst *GEP = new GetElementPtrInst(AI, Indices, GEPname, TI); 298 RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); 299 } else 300 RewriteVal = AI++; 301 302 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 303 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 304 use != useE; ++use) 305 if (Instruction* inst = dyn_cast<Instruction>(*use)) 306 if (BlocksToExtract.count(inst->getParent())) 307 inst->replaceUsesOfWith(inputs[i], RewriteVal); 308 } 309 310 // Set names for input and output arguments. 311 if (!AggregateArgs) { 312 AI = newFunction->abegin(); 313 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 314 AI->setName(inputs[i]->getName()); 315 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 316 AI->setName(outputs[i]->getName()+".out"); 317 } 318 319 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 320 // within the new function. This must be done before we lose track of which 321 // blocks were originally in the code region. 322 std::vector<User*> Users(header->use_begin(), header->use_end()); 323 for (unsigned i = 0, e = Users.size(); i != e; ++i) 324 // The BasicBlock which contains the branch is not in the region 325 // modify the branch target to a new block 326 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 327 if (!BlocksToExtract.count(TI->getParent()) && 328 TI->getParent()->getParent() == oldFunction) 329 TI->replaceUsesOfWith(header, newHeader); 330 331 return newFunction; 332 } 333 334 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 335 /// the call instruction, splitting any PHI nodes in the header block as 336 /// necessary. 337 void CodeExtractor:: 338 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 339 Values &inputs, Values &outputs) { 340 // Emit a call to the new function, passing in: *pointer to struct (if 341 // aggregating parameters), or plan inputs and allocated memory for outputs 342 std::vector<Value*> params, StructValues, ReloadOutputs; 343 344 // Add inputs as params, or to be filled into the struct 345 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 346 if (AggregateArgs) 347 StructValues.push_back(*i); 348 else 349 params.push_back(*i); 350 351 // Create allocas for the outputs 352 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 353 if (AggregateArgs) { 354 StructValues.push_back(*i); 355 } else { 356 AllocaInst *alloca = 357 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 358 codeReplacer->getParent()->begin()->begin()); 359 ReloadOutputs.push_back(alloca); 360 params.push_back(alloca); 361 } 362 } 363 364 AllocaInst *Struct = 0; 365 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 366 std::vector<const Type*> ArgTypes; 367 for (Values::iterator v = StructValues.begin(), 368 ve = StructValues.end(); v != ve; ++v) 369 ArgTypes.push_back((*v)->getType()); 370 371 // Allocate a struct at the beginning of this function 372 Type *StructArgTy = StructType::get(ArgTypes); 373 Struct = 374 new AllocaInst(StructArgTy, 0, "structArg", 375 codeReplacer->getParent()->begin()->begin()); 376 params.push_back(Struct); 377 378 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 379 std::vector<Value*> Indices; 380 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 381 Indices.push_back(ConstantUInt::get(Type::UIntTy, i)); 382 GetElementPtrInst *GEP = 383 new GetElementPtrInst(Struct, Indices, 384 "gep_" + StructValues[i]->getName(), 0); 385 codeReplacer->getInstList().push_back(GEP); 386 StoreInst *SI = new StoreInst(StructValues[i], GEP); 387 codeReplacer->getInstList().push_back(SI); 388 } 389 } 390 391 // Emit the call to the function 392 CallInst *call = new CallInst(newFunction, params, 393 NumExitBlocks > 1 ? "targetBlock": ""); 394 codeReplacer->getInstList().push_back(call); 395 396 Function::aiterator OutputArgBegin = newFunction->abegin(); 397 unsigned FirstOut = inputs.size(); 398 if (!AggregateArgs) 399 std::advance(OutputArgBegin, inputs.size()); 400 401 // Reload the outputs passed in by reference 402 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 403 Value *Output = 0; 404 if (AggregateArgs) { 405 std::vector<Value*> Indices; 406 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 407 Indices.push_back(ConstantUInt::get(Type::UIntTy, FirstOut + i)); 408 GetElementPtrInst *GEP 409 = new GetElementPtrInst(Struct, Indices, 410 "gep_reload_" + outputs[i]->getName(), 0); 411 codeReplacer->getInstList().push_back(GEP); 412 Output = GEP; 413 } else { 414 Output = ReloadOutputs[i]; 415 } 416 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 417 codeReplacer->getInstList().push_back(load); 418 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 419 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 420 Instruction *inst = cast<Instruction>(Users[u]); 421 if (!BlocksToExtract.count(inst->getParent())) 422 inst->replaceUsesOfWith(outputs[i], load); 423 } 424 } 425 426 // Now we can emit a switch statement using the call as a value. 427 SwitchInst *TheSwitch = 428 new SwitchInst(ConstantUInt::getNullValue(Type::UShortTy), 429 codeReplacer, codeReplacer); 430 431 // Since there may be multiple exits from the original region, make the new 432 // function return an unsigned, switch on that number. This loop iterates 433 // over all of the blocks in the extracted region, updating any terminator 434 // instructions in the to-be-extracted region that branch to blocks that are 435 // not in the region to be extracted. 436 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 437 438 unsigned switchVal = 0; 439 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 440 e = BlocksToExtract.end(); i != e; ++i) { 441 TerminatorInst *TI = (*i)->getTerminator(); 442 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 443 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 444 BasicBlock *OldTarget = TI->getSuccessor(i); 445 // add a new basic block which returns the appropriate value 446 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 447 if (!NewTarget) { 448 // If we don't already have an exit stub for this non-extracted 449 // destination, create one now! 450 NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", 451 newFunction); 452 unsigned SuccNum = switchVal++; 453 454 Value *brVal = 0; 455 switch (NumExitBlocks) { 456 case 0: 457 case 1: break; // No value needed. 458 case 2: // Conditional branch, return a bool 459 brVal = SuccNum ? ConstantBool::False : ConstantBool::True; 460 break; 461 default: 462 brVal = ConstantUInt::get(Type::UShortTy, SuccNum); 463 break; 464 } 465 466 ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); 467 468 // Update the switch instruction. 469 TheSwitch->addCase(ConstantUInt::get(Type::UShortTy, SuccNum), 470 OldTarget); 471 472 // Restore values just before we exit 473 Function::aiterator OAI = OutputArgBegin; 474 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 475 // For an invoke, the normal destination is the only one that is 476 // dominated by the result of the invocation 477 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 478 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) 479 DefBlock = Invoke->getNormalDest(); 480 if (!DS || DS->dominates(DefBlock, TI->getParent())) 481 if (AggregateArgs) { 482 std::vector<Value*> Indices; 483 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 484 Indices.push_back(ConstantUInt::get(Type::UIntTy,FirstOut+out)); 485 GetElementPtrInst *GEP = 486 new GetElementPtrInst(OAI, Indices, 487 "gep_" + outputs[out]->getName(), 488 NTRet); 489 new StoreInst(outputs[out], GEP, NTRet); 490 } else 491 new StoreInst(outputs[out], OAI, NTRet); 492 // Advance output iterator even if we don't emit a store 493 if (!AggregateArgs) ++OAI; 494 } 495 } 496 497 // rewrite the original branch instruction with this new target 498 TI->setSuccessor(i, NewTarget); 499 } 500 } 501 502 // Now that we've done the deed, simplify the switch instruction. 503 switch (NumExitBlocks) { 504 case 0: 505 // There is only 1 successor (the block containing the switch itself), which 506 // means that previously this was the last part of the function, and hence 507 // this should be rewritten as a `ret' 508 509 // Check if the function should return a value 510 if (TheSwitch->getParent()->getParent()->getReturnType() != Type::VoidTy && 511 TheSwitch->getParent()->getParent()->getReturnType() == 512 TheSwitch->getCondition()->getType()) 513 // return what we have 514 new ReturnInst(TheSwitch->getCondition(), TheSwitch); 515 else 516 // just return 517 new ReturnInst(0, TheSwitch); 518 519 TheSwitch->getParent()->getInstList().erase(TheSwitch); 520 break; 521 case 1: 522 // Only a single destination, change the switch into an unconditional 523 // branch. 524 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch); 525 TheSwitch->getParent()->getInstList().erase(TheSwitch); 526 break; 527 case 2: 528 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 529 call, TheSwitch); 530 TheSwitch->getParent()->getInstList().erase(TheSwitch); 531 break; 532 default: 533 // Otherwise, make the default destination of the switch instruction be one 534 // of the other successors. 535 TheSwitch->setOperand(0, call); 536 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 537 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 538 break; 539 } 540 } 541 542 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 543 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 544 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 545 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 546 547 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 548 e = BlocksToExtract.end(); i != e; ++i) { 549 // Delete the basic block from the old function, and the list of blocks 550 oldBlocks.remove(*i); 551 552 // Insert this basic block into the new function 553 newBlocks.push_back(*i); 554 } 555 } 556 557 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 558 /// new function. Returns pointer to the new function. 559 /// 560 /// algorithm: 561 /// 562 /// find inputs and outputs for the region 563 /// 564 /// for inputs: add to function as args, map input instr* to arg# 565 /// for outputs: add allocas for scalars, 566 /// add to func as args, map output instr* to arg# 567 /// 568 /// rewrite func to use argument #s instead of instr* 569 /// 570 /// for each scalar output in the function: at every exit, store intermediate 571 /// computed result back into memory. 572 /// 573 Function *CodeExtractor::ExtractCodeRegion(const std::vector<BasicBlock*> &code) 574 { 575 if (!isEligible(code)) 576 return 0; 577 578 // 1) Find inputs, outputs 579 // 2) Construct new function 580 // * Add allocas for defs, pass as args by reference 581 // * Pass in uses as args 582 // 3) Move code region, add call instr to func 583 // 584 BlocksToExtract.insert(code.begin(), code.end()); 585 586 Values inputs, outputs; 587 588 // Assumption: this is a single-entry code region, and the header is the first 589 // block in the region. 590 BasicBlock *header = code[0]; 591 592 for (unsigned i = 1, e = code.size(); i != e; ++i) 593 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 594 PI != E; ++PI) 595 assert(BlocksToExtract.count(*PI) && 596 "No blocks in this region may have entries from outside the region" 597 " except for the first block!"); 598 599 // If we have to split PHI nodes, do so now. 600 severSplitPHINodes(header); 601 602 Function *oldFunction = header->getParent(); 603 604 // This takes place of the original loop 605 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction); 606 607 // The new function needs a root node because other nodes can branch to the 608 // head of the region, but the entry node of a function cannot have preds. 609 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 610 newFuncRoot->getInstList().push_back(new BranchInst(header)); 611 612 // Find inputs to, outputs from the code region. 613 findInputsOutputs(inputs, outputs); 614 615 // Construct new function based on inputs/outputs & add allocas for all defs. 616 Function *newFunction = constructFunction(inputs, outputs, header, 617 newFuncRoot, 618 codeReplacer, oldFunction, 619 oldFunction->getParent()); 620 621 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 622 623 moveCodeToFunction(newFunction); 624 625 // Loop over all of the PHI nodes in the header block, and change any 626 // references to the old incoming edge to be the new incoming edge. 627 for (BasicBlock::iterator I = header->begin(); 628 PHINode *PN = dyn_cast<PHINode>(I); ++I) 629 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 630 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 631 PN->setIncomingBlock(i, newFuncRoot); 632 633 // Look at all successors of the codeReplacer block. If any of these blocks 634 // had PHI nodes in them, we need to update the "from" block to be the code 635 // replacer, not the original block in the extracted region. 636 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 637 succ_end(codeReplacer)); 638 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 639 for (BasicBlock::iterator I = Succs[i]->begin(); 640 PHINode *PN = dyn_cast<PHINode>(I); ++I) 641 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 642 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 643 PN->setIncomingBlock(i, codeReplacer); 644 645 //std::cerr << "NEW FUNCTION: " << *newFunction; 646 // verifyFunction(*newFunction); 647 648 // std::cerr << "OLD FUNCTION: " << *oldFunction; 649 // verifyFunction(*oldFunction); 650 651 DEBUG(if (verifyFunction(*newFunction)) abort()); 652 return newFunction; 653 } 654 655 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 656 // Deny code region if it contains allocas or vastarts. 657 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 658 BB != e; ++BB) 659 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 660 I != Ie; ++I) 661 if (isa<AllocaInst>(*I)) 662 return false; 663 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 664 if (const Function *F = CI->getCalledFunction()) 665 if (F->getIntrinsicID() == Intrinsic::vastart) 666 return false; 667 return true; 668 } 669 670 671 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 672 /// function 673 /// 674 Function* llvm::ExtractCodeRegion(DominatorSet &DS, 675 const std::vector<BasicBlock*> &code, 676 bool AggregateArgs) { 677 return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(code); 678 } 679 680 /// ExtractBasicBlock - slurp a natural loop into a brand new function 681 /// 682 Function* llvm::ExtractLoop(DominatorSet &DS, Loop *L, bool AggregateArgs) { 683 return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 684 } 685 686 /// ExtractBasicBlock - slurp a basic block into a brand new function 687 /// 688 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 689 std::vector<BasicBlock*> Blocks; 690 Blocks.push_back(BB); 691 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 692 } 693